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Stochastic gradient descent
Consider sum of functions
1 n
mgn n Z fi(z)
i=1
Gradient descent applied to this problem would repeat

¢®) = pk=1) _ g Zsz k=) k=1,2,3,...

In comparison, stochastic gradient descent (or incremental gradient
descent) repeats

e®) = =0 v (YY), E=1,2,3,...

where i, € {1,...n} is some chosen index at iteration k



Notes:

e Typically we make a (uniform) random choice i, € {1,...n}

e Also common: mini-batch stochastic gradient descent, where
we choose a random subset I, C {1,...n}, of size b < n,
and update according to
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e In both cases, we are approximating the full graident by a
noisy estimate, and our noisy estimate is unbiased

E[V fi,(z)] = V f(2)
E [2 ) Vf@(x)} —Vf()

i€l

The mini-batch reduces the variance by a factor 1/b, but is
also b times more expensive!



Example: regularized logistic regression

Given labels y; € {0,1}, features x; € RP, i = 1,...n. Consider
logistic regression with ridge regularization:
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Write the criterion as
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The gradient computation Vf(8) = Y"1 (yi — pi(B))zi + AB is
doable when n is moderate, but not when n is huge. Note that:
¢ One batch update costs O(np)
¢ One stochastic update costs O(p)
e One mini-batch update costs O(bp)



Example with n = 10,000, p = 20, all methods employ fixed step
sizes (diminishing step sizes give roughly similar results):
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What's happening? lterations make better progress as mini-batch
size b gets bigger. But now let's parametrize by flops:
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Convergence rates

Recall that, under suitable step sizes, when f is convex and has a
Lipschitz gradient, full gradient (FG) descent satisfies

F@®) = = 0(1/k)

What about stochastic gradient (SG) descent? Under diminishing
step sizes, when f is convex (plus other conditions)

E[f(@")] - f* = O(1/Vk)

Finally, what about mini-batch stochastic gradient? Again, under
diminishing step sizes, for f convex (plus other conditions)

E[f(z™)] - f* = O(1/Vbk + 1/k)

But each iteration here b times more expensive ... and (for small
b), in terms of flops, this is the same rate



Back to our ridge logistic regression example, we gain important
insight by looking at suboptimality gap (on log scale):
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Recall that, under suitable step sizes, when f is strongly convex
with a Lipschitz gradient, gradient descent satisfies

F@®y — = 0(p")

where p < 1. But, under diminishing step sizes, when f is strongly
convex (plus other conditions), stochastic gradient descent gives

E[f(2™)] - f* = O(1/k)

So stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity

For a while, this was believed to be inevitable, as Nemirovski and
others had established matching lower bounds ... but these applied
to stochastic minimization of criterions, f(z) = [ F(z,&)d¢. Can
we do better for finite sums?



Stochastic Gradient: Bias

For solving min, f(x), stochastic gradient is actually a class of
algorithms that use the iterates:

x(k) - x(k_l) — Tk g(x(k_l)Q fk)y

where g(z(*=1 €,) is a stochastic gradient of the objective f(z)
evaluated at z(F=1),

Bias: The bias of the stochastic gradient is defined as:
bias(g(z* ;&) = Ee, (9(«*V;6)) — V(=)

Unbiased: When E¢, (g(z*~1; &) = Vf(2*~1), the stochastic
gradient is said to be unbiased. (e.g. the stochastic gradient
scheme discussed so far)

Biased: We might also be interested in biased estimators, but
where the bias is small, so that E¢, (g(z*~1; &) = V f(z*~1).
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Stochastic Gradient: Variance

Variance. In addition to small (or zero) bias, we also want the
variance of the estimator to be small:

variance(g(z* 7Y, &) := Ee, (g(zF=Y, &) — Ee, (g(z* D, &)
< Ee, (9(z" 1, &))%.

The caveat with the stochastic gradient scheme we have seen so
far is that its variance is large, and in particular doesn't decay to
zero with the iteration index.

Loosely: because of above, we have to decay the step size 7 to
zero, which in turn means we can't take “large” steps, and hence
the convergence rate is slow.

Can we get the variance to be small, and decay to zero with
iteration index?
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Variance Reduction

Consider an estimator X for a parameter 6.
Note that for an unbiased estimator, E(X) = 6.

Now consider the following modified estimator: Z := X — Y, such
that E(Y) ~ 0. Then the bias of Z is also close to zero, since

If E(Y) =0, then Z is unbiased iff X is unbiased.

What about the variance of estimator X?

Var(X —Y) = Var(X) 4+ Var(Y) — 2Cov(X,Y). This can be seen
to much less than Var(X) if Y is highly correlated with X.

Thus, given any estimator X, we can reduce its variance, if we can
construct a Y that (a) has expectation (close to) zero, and (b) is
highly correlated with X. This is the abstract template followed by
SAG, SAGA, SVRG, SDCA, ...
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Outline

Rest of today:
e Stochastic average gradient (SAG)
e SAGA (does this stand for something?)
e Stochastic Variance Reduced Gradient (SVRG)

e Many, many others
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Stochastic average gradient

Stochastic average gradient or SAG (Schmidt, Le Roux, Bach
2013) is a breakthrough method in stochastic optimization. Idea is
fairly simple:
e Maintain table, containing gradient g; of f;, i=1,...n
e Initialize (9, and gz-(o) = a:(o), i=1,...n
o At steps k=1,2,3,..., pick a random i; € {1,...n} and
then let

gz(k Vf( (k—1) ) (most recent gradient of f;)

Set all other ggk) = ggk_l), i # iy, i.e., these stay the same

e Update

1 n
k) _ (k=1 (k)
2(B) — 4 )tk'n;lgi
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Notes:
e Key of SAG is to allow each f;, i =1,...n to communicate a
part of the gradient estimate at each step

e This basic idea can be traced back to incremental aggregated
gradient (Blatt, Hero, Gauchman, 2006)

e SAG gradient estimates are no longer unbiased, but they have
greatly reduced variance

e Isn't it expensive to average all these gradients? (Especially if
n is huge?) This is basically just as efficient as stochastic
gradient descent, as long we're clever:

(k) (k—1)

& _ (=1) _, ( Jin gzk (k—1)
T x tr < n EZ: >

old table average

new table average
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SAG Variance Reduction
Stochastic gradient in SAG:

It can be seen that E(X) = Vf(z().
But that E(Y') # 0, so that we have a biased estimator.

But we do have that Y seems correlated with X (in line with
variance reduction template). In particular, we have that

X —Y =0, as k — 0o, since z*~1) and (%) converge to Z, the
difference between first two terms converges to zero, and the last
term converges to gradient at optimum, i.e. also to zero.

Thus, the overall estimator ¢, norm (and accordingly its variance)
decays to zero.
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SAG convergence analysis

Assume that f(z) = 1 57" | f;(x), where each f; is differentiable,

and V f; is Lipschitz with constant L

Denote z(F) = 5 Z 2 the average iterate after k — 1 steps

Theorem (Schmidt, Le Roux, Bach): SAG, with a fixed step
size t = 1/(16L), and the initialization

o = Vi) = Vi), i=1,
satisfies

EL/(E0)] — 7 < T2 (7@0) — )+ oD ol — a3

where the expectation is taken over the random choice of index
at each iteration
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Notes:

e Result stated in terms of the average iterate Z(¥), but also can

be shown to hold for best iterate xg:)st

e This is O(1/k) convergence rate for SAG. Compare to O(1/k)
rate for FG, and O(1/v/k) rate for SG

e But, the constants are different! Bounds after k& steps:

seen so far

128L
k

SAG : 4%"(f(x“))) - )+

Fo: oo — a3
*fu
W

e So first term in SAG bound suffers from factor of n; authors
suggest smarter initialization to make f(z(?)) — f* small (e.g.,
they suggest using result of n SG steps)

|2 — 213

SG* :

— 2%||]2 (*not a real bound, loose translation)



Convergence analysis under strong convexity

Assume further that each f; is strongly convex with parameter m

Theorem (Schmidt, Le Roux, Bach): SAG, with a step size
t = 1/(16L) and the same initialization as before, satisfies

E[f(=®)] - f* < <1 i {2 8112})’“ |

4L
() - )+ Z1a0 - o7pp)

More notes:

e This is linear convergence rate O(p"*) for SAG. Compare this
to O(p*) for FG, and only O(1/k) for SG

e Like FG, we say SAG is adaptive to strong convexity (achieves
better rate with same settings)

e Proofs of these results not easy: 15 pages, computed-aided!
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Back to our ridge logistic regression example, SG versus SAG, over
30 reruns of these randomized algorithms:
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SAG does well, but did not work out of the box; required a
specific setup

Took one full cycle of SG (one pass over the data) to get 3%,
and then started SG and SAG both from 8(9). This warm
start helped a lot

SAG initialized at ¢\*) = V£,(8©), i =1,...n, computed
during initial SG cycle. Centering these gradients was much
worse (and so was initializing them at 0)

Tuning the fixed step sizes for SAG was very finicky; here now
hand-tuned to be about as large as possible before it diverges
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Experiments from Schmidt, Le Roux, Bach (each plot is a different
problem setting):

0

jective minus Optimum

O
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SAGA

SAGA (Defazio, Bach, Lacoste-Julien, 2014) is another recent
stochastic method, similar in spirit to SAG. Idea is again simple:

e Maintain table, containing gradient g; of f;, i =1,...n
e Initialize a:(o), and gi(o) = x(o), i=1,...n

o At steps k=1,2,3,..., pick a random iy € {1,...n} and
then let

gl(k =Vfi(z (k=1) ) (most recent gradient of f;)
Set all other g§k) = gi(k_l), i # iy, i.e., these stay the same
e Update

2B) _ L (k=1) _ (QZ(::) g% n, 1 Z (k— 1>
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Notes:

e SAGA gradient estimate ggf) - gi(]’:_l) +i5, ggk_l), versus

SAG gradient estimate %g(k) 1kl s gi(kfl)

i nJdig
e Recall, SAG estimate is biased; remarkably, SAGA estimate is
unbiased!
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SAGA Variance Reduction
Stochastic gradient in SAGA:

(k) (k1) (k— 1
G — iy, Z
~—

X

Y

It can be seen that E(X) = Vf(z().
And that E(Y') # 0, so that we have an unbiased estimator.

Moreover, we have that Y seems correlated with X (in line with
variance reduction template). In particular, we have that
X —Y =0, as k — 0o, since z*~1) and (%) converge to Z, the
difference between first two terms converges to zero, and the last
term converges to gradient at optimum, i.e. also to zero.

Thus, the overall estimator ¢, norm (and accordingly its variance)
decays to zero.
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e SAGA basically matches strong convergence rates of SAG (for
both Lipschitz gradients, and strongly convex cases), but the
proofs here much simpler

Another strength of SAGA is that it can extend to composite
problems of the form

min ;; fi(@) + hiz)

where each f; is smooth and convex, and & is convex and
nonsmooth but has a known prox. The updates are now

-~ b1 ® -1, L (1)

It is not known whether SAG is generally convergent under
such a scheme
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Back to our ridge
the mix:

logistic regression example, now adding SAGA to

0.0006 0.0010 0.0014
| | |

Criterion gap fk — fstar

0.0002
|

0 500 1000 1500 2000

Iteration number k

27



SAGA does well, but again it required somewhat specific setup

As before, took one full cycle of SG (one pass over the data)
to get A0, and then started SG, SAG, SAGA all from ().
This warm start helped a lot

SAGA initialized at gz(o) =V/i(B©), i=1,...n, computed

during initial SG cycle. Centering these gradients was much
worse (and so was initializing them at 0)

Tuning the fixed step sizes for SAGA was fine; seemingly on
par with tuning for SG, and more robust than tuning for SAG

Interestingly, the SAGA criterion curves look like SG curves
(realizations being jagged and highly variable); SAG looks very
different, and this really emphasizes the fact that its updates
have much lower variance
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Stochastic Variance Reduced Gradient (SVRG)

The Stochastic Variance Reduced Gradient (SVRG) algorithm
(Johnson, Zhang, 2013) runs in epochs:
e Initialize Z(©.
e Fork=1,...
» Set 7 = (k1.
» Compute 11 := V f(Z).

» Set 20 =Z. For¢=1,...,m:
> Pick coordinate i, at random from {1,...,n}.
> Set:

2 =2 g (Vi (@) = Vi, (@) + ).

» Set 7F) = g(m),
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Stochastic Variance Reduced Gradient (SVRG)

Just like SAG/SAGA, but does not store a full table of gradients,
just an average, and updates this occasionally.

SAGA: VfF) —w =t y Lson g plkml),
SVRG: Vi, (zD) = V £,(@) + L Y0, V(@)

Can be shown to achieve variance reduction similar to SAGA.
Convergence rates similar to SAGA, but formal analysis much
simpler.
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Many, many others

A lot of recent work revisiting stochastic optimization:

e SDCA (Shalev-Schwartz, Zhang, 2013): applies randomized
coordinate ascent to the dual of ridge regularized problems.
Effective primal updates are similar to SAG/SAGA.

e There's also S2GD (Konecny, Richtarik, 2014), MISO (Mairal,
2013), Finito (Defazio, Caetano, Domke, 2014), etc.
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SAGA SAG SDCA SVRG FINITO
Strongly Convex (SC) v v v v v
Convex, Non-SC* v v X ? ?
Prox Reg. v ? V(6] v X
Non-smooth X X v X X
Low Storage Cost X X X v X
Simple(-ish) Proof v X v v v
Adaptive to SC v 4 X ? ?

(From Defazio, Bach, Lacoste-Julien, 2014)

e Are we approaching optimality with these methods? Agarwal
and Bottou (2014) recently proved nonmatching lower bounds
for minimizing finite sums

e Leaves three possibilities: (i) algorithms we currently have are
not optimal; (ii) lower bounds can be tightened; or (iii) upper
bounds can be tightened

e Very active area of research, this will likely be sorted out soon
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