Subgradient Method

Guest Lecturer: Fatma Kilinc-Karzan

Instructors: Pradeep Ravikumar, Aarti Singh
Convex Optimization 10-725/36-725

Adapted from slides from Ryan Tibshirani

Recall: gradient descent

Consider the problem
min f(z)

for f convex and differentiable, dom(f) = R™. Gradient descent:
choose initial (%) € R™, repeat:

2®) = =0 _ g VR k=1,2,3,...

Step sizes t; chosen to be fixed and small, or by backtracking line
search

If Vf Lipschitz, gradient descent has convergence rate O(1/¢)

Downsides:
e Requires f differentiable < this lecture

e Can be slow to converge < next lecture

Subgradient method

Now consider f convex, with dom(f) = R", but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients
with subgradients. l.e., initialize z(©), repeat:

g®) = =0 g gD =123,
where ¢*=1 € 9 f(x*~1), any subgradient of f at z(*~1

Subgradient method is not necessarily a descent method, so we

keep track of best iterate xﬁlz)st among (@, ...z so far, i.e.,

J(@hey) = min f(2®)

Outline

Today:
e How to choose step sizes
e Convergence analysis
e Intersection of sets

e Stochastic subgradient method

Step size choices

o Fixed step sizes: tp =t all k=1,2,3,...
e Diminishing step sizes: choose to meet conditions

o0 o0
Zt% < 00, Ztk = 00,
k=1 k=1

i.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:
step sizes are typically pre-specified, not adaptively computed

Convergence analysis

Assume that f convex, dom(f) = R", and also that f is Lipschitz
continuous with constant G > 0, i.e.,

[f(@) = f()| < Glle —yllz forall 2,y

Theorem: For a fixed step size ¢, subgradient method satisfies

lim f(z) < f*+ G%t/2
k—oo

Theorem: For diminishing step sizes, subgradient method sat-
isfies

. k *
Jim f(rp) = f

Basic inequality
Can prove both results from same basic inequality. Key steps:
e Using definition of subgradient,

l2®) — 2|3 <
2 ® Y — a1 — 26 (f(@*D) = (@) + R lg* V13

e lterating last inequality,

l2®) — 2|3 <

k
12 —Jf*Hz—2Zt CD) = f@h) + D gV
i=1

o Using [|z®) — z*||3 > 0, and letting R = ||z(®) — 2|,

k
0<R2—22t (D) — f@) + G 8
=1

e Introducing f(xl()]zlt) = min;—q__1, f(z()), and rearranging, we

have the basic inequality

t2

i=1"

R2+G22
222 1

F@y -) <

For different step sizes choices, convergence results can be directly
obtained from this bound. E.g., theorems for fixed and diminishing
step sizes follow

Convergence rate

The basic inequality tells us that after k steps, we have

RQ+GQZ, Lt

Fa®) - far) <

2 Zz 1 tl
With fixed step size t, this gives
2 2
(k) R G-t
o) = 1 < g

For this to be < ¢, let's make each term < €/2. Therefore choose
t=¢/G? and k = R?/t-1/e = R?G?/¢?

l.e., subgradient method has convergence rate O(1/¢2) ... compare
this to O(1/¢) rate of gradient descent

Example: regularized logistic regression

Given (z;,y;) € RP x {0,1} for i = 1,...n, consider the logistic
regression loss:

F(8) =Y (= vl B +log(1 + exp(a] 8))

i=1
This is a smooth and convex, with

n

VB = (v — pi(B)) i

i=1

where p;(8) = exp(z!' 8)/(1 + exp(zl'B)), i = 1,...n. We will
consider the regularized problem:

min f(B)+X- P(B)

where P(8) = ||8]|3 (ridge penalty) or P(3) = ||B]|1 (lasso penalty)

Ridge problem: use gradients; lasso problem: use subgradients.
Data example with n = 1000, p = 20:

Gradient descent Subgradient method
— t=0.001 s | — t=0.001
3 i — t=0.001/k
o i
-
3 3 -
I — o
[
— — [
g g 9
7 ,
Is 23
T -
— -
o wn
inl o 4
b] S
—
N
(2] o 4
T i I
-91) T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
k k

Step sizes hand-tuned to be favorable for each method (of course
comparison is imperfect, but it reveals the convergence behaviors)

11

Polyak step sizes

Polyak step sizes: when the optimal value f* is known, take

fla®=D) — f*

. k=1,2,3,...
lg%*=D1|3

te =
Can be motivated from first step in subgradient proof:
lz® —a*|3 < a* D —a* |3 -20 (£ (2" D) = (7)) +7llg "V
Polyak step size minimizes the right-hand side

With Polyak step sizes, can show subgradient method converges to
optimal value. Convergence rate is still O(1/¢€?)

12

Example: intersection of sets

Suppose we want to find x* € C1 N ... N Cyy,, i.e., find a point in
intersection of closed, convex sets C1,...Cy,

First define

fi(z) = dist(z,C;), i=1,...m
f(z) = max fi(v)

1=1,..m

and now solve

min f(z)

Note that f* =0 = z* € C1N...NCy,. Check: is this problem
convex?

13

Recall the distance function dist(x,C') = minyec ||y — x|2. Last
time we computed its gradient

x — Po(x)

leSt(:L“, C) = m

where Pg(x) is the projection of z onto C

Also recall subgradient rule: if f(z) = max;—1__m, fi(z), then

of (z) = conv< U afz(m)>
irfi(w)=f ()

So if fi(x) = f(z) and g; € Ofi(x), then g; € Of(x)

14

Put these two facts together for intersection of sets problem, with
fi(z) = dist(x, C;): if C; is farthest set from x (so f;(x) = f(z)),

and Fe,()

N e 1 GO
gi = Vfi(x) lz — Pc,()]]2
then g; € 0f ()

Now apply subgradient method, with Polyak size t;, = f(z(*~1).
At iteration k, with C; farthest from 2(*~1), we perform update

x(kil) — PCZ (w(kil))

(k) — g(k=1) _ p((k=1)
2®) = 4 J@) 0 = P, (2D 5

= PCi (m(k_1)>

15

For two sets, this is the famous alternating projections algorithm,
i.e., just keep projecting back and forth

(From Boyd's lecture notes)

16

Projected subgradient method

To optimize a convex function f over a convex set C,
min f(xz) subject to z € C
x

we can use the projected subgradient method. Just like the usual
subgradient method, except we project onto C' at each iteration:

2R — Pc(l‘(k_l) — .g(k—l))’ k=1,2,3,...

Assuming we can do this projection, we get the same convergence
guarantees as the usual subgradient method, with the same step
size choices

17

What sets C are easy to project onto? Lots, e.g.,

Affine images: {Az+b: 2z € R"}
Solution set of linear system: {z : Az = b}
Nonnegative orthant: R = {z : z > 0}

e Some norm balls: {z : ||z||, < 1} for p=1,2,00

Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and P
can turn out to be very hard! E.g., generally hard to project onto
arbitrary polyhedron C' = {z : Az < b}

Note: projected gradient descent works too, more next time ...

18

Stochastic subgradient method

Similar to our setup for stochastic gradient descent. Consider sum
of convex functions

m
mxin Zfl(a:)
i=1
Stochastic subgradient method repeats:

) = =1 g gg:_l), k=1,2,3,...
where i;, € {1,...m} is some chosen index at iteration k, chosen
by either by the random or cyclic rule, and gl-(kfl) € afi(zF=1)
(this update direction is used in place of the usual) ", gz(k_l))
Note that when each f;, i = 1,...,m is differentiable, this reduces
to stochastic gradient descent (SGD)

Convergence of stochastic methods

Assume each f;, i =1,...m is convex and Lipschitz with constant
G>0

For fixed step sizes t;, =t, k =1,2,3, ..., cyclic and randomized®
stochastic subgradient methods both satisfy

lim flape,) < f*+5m’Gt/2
—00

Note: mG can be viewed as Lipschitz constant for whole function
> ity fi, so this is comparable to batch bound

For diminishing step sizes, cyclic and randomized methods satisfy

. k *
Jlim f(apel) = f

1For randomized rule, results hold with probability 1

20

How about convergence rates? This is where things get interesting

Looking back carefully, the batch subgradient method rate was
O(Ggatch/eg), where Lipschitz constant Gpatch is for whole function

e Cyclic rule: iteration complexity is O(m3G?/€?). Therefore
number of cycles needed is O(m?G?/e?), comparable to batch
e Randomized rule?: iteration complexity is O(m2G?/€?). Thus

number of random cycles needed is O(mG?2/e?), reduced by a
factor of m!

This is a convincing reason to use randomized stochastic methods,
for problems where m is big

2For randomized rule, result holds in expectation, i.e., bound is on expected
number of iterations
21

Example: stochastic logistic regression

Back to the logistic regression problem (now we're talking SGD):

min £(8) =Y (~ wal B+ log(1 + exp(a])
i=1

1i(8)

The gradient computation Vf(8) = 31", (y; — pi(B))x; is doable
when n is moderate, but not when n ~ 500 million. Recall:

e One batch update costs O(np)
e One stochastic update costs O(p)

So clearly, e.g., 10K stochastic steps are much more affordable

Also, we often take fixed step size for stochastic updates to be = n
what we use for batch updates. (Why?)

22

The “classic picture”:

87 :

el
Blue: batch steps, O(np)
Red: stochastic steps, O(p)

10
|

Rule of thumb for stochastic
methods:
e generally thrive far
from optimum

e generally struggle close
to optimum

-20
|

-20 -10 0 10 20

(Even more on stochastic methods later in the course ...)

Can we do better?

Upside of the subgradient method: broad applicability. Downside:
O(1/€?) convergence rate over problem class of convex, Lipschitz
functions is really slow

Nonsmooth first-order methods: iterative methods updating z(*) in

29 + span{gl®, g1, .. g*=11

where subgradients ¢(©, ¢ ... ¢~ come from weak oracle

Theorem (Nesterov): For any k < n—1 and starting point (%),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

Wy _ s RGO
J@) =1 2 0+ VhED)

24

Improving on the subgradient method

In words, we cannot do better than the O(1/€?) rate of subgradient
method (unless we go beyond nonsmooth first-order methods)

So instead of trying to improve across the board, we will focus on
minimizing composite functions of the form

f(x) = g(x) + h(x)

where g is convex and differentiable, A is convex and nonsmooth
but “simple”

For a lot of problems (i.e., functions k), we can recover the O(1/¢)
rate of gradient descent with a simple algorithm, having important
practical consequences

25

References and further reading

D. Bertsekas (2010), “Incremental gradient, subgradient, and
proximal methods for convex optimization: a survey”

S. Boyd, Lecture notes for EE 264B, Stanford University,
Spring 2010-2011

Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 3

B. Polyak (1987), “Introduction to optimization”, Chapter 5

L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

26

