
Proximal Gradient Descent

Lecturer: Aarti Singh
Co-instructor: Pradeep Ravikumar

Convex Optimization 10-725/36-725

Outline

Today:

• Proximal gradient descent

• Subgradients

• Convergence analysis

• ISTA, matrix completion

• Accelerated proximal gradient descent, FISTA

2

Decomposable functions

Suppose
f(x) = g(x) + h(x)

• g is convex, differentiable, dom(g) = Rn

• h is convex, not necessarily differentiable

If f were differentiable, then gradient descent update would be:

x+ = x− t · ∇f(x)

Recall motivation: minimize quadratic approximation to f around
x, replace ∇2f(x) by 1

t I,

x+ = argmin
z

f(x) +∇f(x)T (z − x) +
1

2t
‖z − x‖22︸ ︷︷ ︸

f̃t(z)

3

In our case f is not differentiable, but f = g + h, g differentiable.
Why don’t we make quadratic approximation to g, leave h alone?

I.e., update

x+ = argmin
z

g̃t(z) + h(z)

= argmin
z

g(x) +∇g(x)T (z − x) +
1

2t
‖z − x‖22 + h(z)

= argmin
z

1

2t

∥∥z − (x− t∇g(x)
)∥∥2

2
+ h(z)

1
2t

∥∥z − (x− t∇g(x)
)∥∥2

2
stay close to gradient update for g

h(z) also make h small

4

Proximal gradient descent

Define proximal mapping:

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

Proximal gradient descent: choose initialize x(0), repeat:

x(k) = proxtk
(
x(k−1) − tk∇g(x(k−1))

)
, k = 1, 2, 3, . . .

To make this update step look familiar, can rewrite it as

x(k) = x(k−1) − tk ·Gtk(x(k−1))

where Gt is the generalized gradient of f ,

Gt(x) =
x− proxt

(
x− t∇g(x)

)
t

5

What good did this do?

You have a right to be suspicious ... may look like we just swapped
one minimization problem for another

Key point is that proxt(·) is can be computed analytically for a lot
of important functions h. Note:

• Mapping proxt(·) doesn’t depend on g at all, only on h

• Smooth part g can be complicated, we only need to compute
its gradients

Convergence analysis: will be in terms of number of iterations of
the algorithm. Keep in mind that each iteration evaluates proxt(·)
once, and this can be cheap or expensive, depending on h

6

Evaluating the prox operator

Proximal mapping:

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

How to evaluate the prox operator? Since h is not differentiable,

we need to notion of sub-gradients.

7

Subgradients

Recall that for convex and differentiable f ,

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y

I.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x) for all y

• Always exists

• If f differentiable at x, then g = ∇f(x) uniquely

• Actually, same definition works for nonconvex f (however,
subgradients need not exist)

8

Examples of subgradients

Consider f : R→ R, f(x) = |x|

−2 −1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x

f(
x)

• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [−1, 1]

9

Consider f : Rn → R, f(x) = ‖x‖1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is any element of [−1, 1]

10

Optimality condition for unconstrained problems
Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

For any f (convex or not),

f(x?) = min
x

f(x) ⇐⇒ 0 ∈ ∂f(x?)

I.e., x? is a minimizer if and only if 0 is a subgradient of f at x?.
This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x?) + 0T (y − x?) = f(x?)

Note the implication for a convex and differentiable function f ,
with ∂f(x) = {∇f(x)}

11

Example: soft-thresholding

Simplfied lasso problem with X = I:

min
β

1

2
‖y − β‖22 + λ‖β‖1

Subgradient optimality:

0 ∈ ∂
(1

2
‖y − β‖22 + λ‖β‖1

)
⇐⇒ 0 ∈ −(y − β) + λ∂‖β‖1
⇐⇒ (y − β) = λv

for some v ∈ ∂‖β‖1, i.e.,

vi ∈

{1} if βi > 0

{−1} if βi < 0

[−1, 1] if βi = 0

, i = 1, . . . p

12

From last slide, subgradient optimality conditions are{
yi − βi = λ · sign(βi) if βi 6= 0

|yi − βi| ≤ λ if βi = 0

Therefore, solution is β = Sλ(y), where Sλ is the soft-thresholding
operator:

[Sλ(y)]i =

yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

, i = 1, . . . n

Soft-thresholding in
one variable:

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

13

Example: ISTA

Given y ∈ Rn, X ∈ Rn×p, recall lasso criterion:

f(β) =
1

2
‖y −Xβ‖22︸ ︷︷ ︸

g(β)

+
.

.
λ‖β‖1︸ ︷︷ ︸
h(β)

Prox mapping is now

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖z‖1

= Sλt(β)

where Sλ(β) is the soft-thresholding operator,

[Sλ(β)]i =

βi − λ if βi > λ

0 if − λ ≤ βi ≤ λ
βi + λ if βi < −λ

, i = 1, . . . n

14

Recall ∇g(β) = −XT (y−Xβ), hence proximal gradient update is:

β+ = Sλt
(
β + tXT (y −Xβ)

)
Often called the iterative soft-thresholding algorithm (ISTA).1 Very
simple algorithm

Example of proximal
gradient (ISTA) vs.
subgradient method
convergence rates

0 200 400 600 800 1000

0.
02

0.
05

0.
10

0.
20

0.
50

k

f−
fs

ta
r

Subgradient method
Proximal gradient

1Beck and Teboulle (2008), “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”

15

Convergence analysis

With criterion f(x) = g(x) + h(x), we assume:

• g is convex, differentiable, dom(g) = Rn, and ∇g is Lipschitz
continuous with constant L > 0

• h is convex, proxt(x) = argminz{‖x− z‖22/(2t) + h(z)} can
be evaluated

Theorem: Proximal gradient descent with fixed step size t ≤
1/L satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

Proximal gradient descent has convergence rate O(1/k), or O(1/ε)

Same as gradient descent! But remember, this counts the number
of iterations, not operations

16

Backtracking line search

Similar to gradient descent, but operates on g and not f . We fix a
parameter 0 < β < 1. At each iteration, start with t = 1, and while

g
(
x− tGt(x)

)
> g(x)− t∇g(x)TGt(x) +

t

2
‖Gt(x)‖22

shrink t = βt. Else perform prox gradient update

Under same assumptions, we get the same rate

Theorem: Proximal gradient descent with backtracking line
search satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22
2tmink

where tmin = min{1, β/L}

17

Example: matrix completion

Given a matrix Y ∈ Rm×n, and only observe entries Yij , (i, j) ∈ Ω.
Suppose we want to fill in missing entries (e.g., for a recommender
system), so we solve a matrix completion problem:

min
B

1

2

∑
(i,j)∈Ω

(Yij −Bij)2 + λ‖B‖tr

Here ‖B‖tr is the trace (or nuclear) norm of B,

‖B‖tr =

r∑
i=1

σi(B)

where r = rank(B) and σ1(X) ≥ . . . ≥ σr(X) ≥ 0 are the singular
values

18

Define PΩ, projection operator onto observed set:

[PΩ(B)]ij =

{
Bij (i, j) ∈ Ω

0 (i, j) /∈ Ω

Then the criterion is

f(B) =
1

2
‖PΩ(Y)− PΩ(B)‖2F︸ ︷︷ ︸

g(B)

+
.

.
λ‖B‖tr︸ ︷︷ ︸
h(B)

Two ingredients needed for proximal gradient descent:

• Gradient calculation: ∇g(B) = −(PΩ(Y)− PΩ(B))

• Prox function:

proxt(B) = argmin
Z

1

2t
‖B − Z‖2F + λ‖Z‖tr

19

Claim: proxt(B) = Sλt(B), matrix soft-thresholding at the level λ.
Here Sλ(B) is defined by

Sλ(B) = UΣλV
T

where B = UΣV T is an SVD, and Σλ is diagonal with

(Σλ)ii = max{Σii − λ, 0}

Why? Note that proxt(B) = Z, where Z satisfies

0 ∈ Z −B + λt · ∂‖Z‖tr

Fact: if Z = UΣV T , then

∂‖Z‖tr = {UV T +W : ‖W‖op ≤ 1, UTW = 0, WV = 0}

Now plug in Z = Sλt(B) and check that we can get 0

20

Hence proximal gradient update step is:

B+ = Sλt

(
B + t

(
PΩ(Y)− PΩ(B)

))

Note that ∇g(B) is Lipschitz continuous with L = 1, so we can
choose fixed step size t = 1. Update step is now:

B+ = Sλ
(
PΩ(Y) + P⊥Ω (B)

)
where P⊥Ω projects onto unobserved set, PΩ(B) + P⊥Ω (B) = B

This is the soft-impute algorithm2, simple and effective method for
matrix completion

2Mazumder et al. (2011), “Spectral regularization algorithms for learning
large incomplete matrices”

21

Special cases

Proximal gradient descent also called composite gradient descent,
or generalized gradient descent

Why “generalized”? This refers to the several special cases, when
minimizing f = g + h:

• h = 0 → gradient descent

• h = IC → projected gradient descent

• g = 0 → proximal minimization algorithm

Therefore these algorithms all have O(1/ε) convergence rate

22

Projected gradient descent

Given closed, convex set C ∈ Rn,

min
x∈C

g(x) ⇐⇒ min
x

g(x) + IC(x)

where IC(x) =

{
0 x ∈ C
∞ x /∈ C

is the indicator function of C

Hence

proxt(x) = argmin
z

1

2t
‖x− z‖22 + IC(z)

= argmin
z∈C

‖x− z‖22

I.e., proxt(x) = PC(x), projection operator onto C

23

Therefore proximal gradient update step is:

x+ = PC
(
x− t∇g(x)

)
i.e., perform usual gradient update and then project back onto C.
Called projected gradient descent

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

c(
)

●

●

24

Proximal minimization algorithm

Consider for h convex (not necessarily differentiable),

min
x

h(x)

Proximal gradient update step is just:

x+ = argmin
z

1

2t
‖x− z‖22 + h(z)

Called proximal minimization algorithm. Faster than subgradient
method, but not implementable unless we know prox in closed form

25

What happens if we can’t evaluate prox?

Theory for proximal gradient, with f = g + h, assumes that prox
function can be evaluated, i.e., assumes the minimization

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

can be done exactly. In general, not clear what happens if we just
minimize this approximately

But, if you can precisely control the errors in approximating the
prox operator, then you can recover the original convergence rates3

In practice, if prox evaluation is done approximately, then it should
be done to decently high accuracy

3Schmidt et al. (2011), “Convergence rates of inexact proximal-gradient
methods for convex optimization”

26

Acceleration

Turns out we can accelerate proximal gradient descent in order to
achieve the optimal O(1/

√
ε) convergence rate. Four ideas (three

acceleration methods) by Nesterov:

• 1983: original acceleration idea for smooth functions

• 1988: another acceleration idea for smooth functions

• 2005: smoothing techniques for nonsmooth functions, coupled
with original acceleration idea

• 2007: acceleration idea for composite functions4

We will follow Beck and Teboulle (2008), extension of Nesterov
(1983) to composite functions5

4Each step uses entire history of previous steps and makes two prox calls
5Each step uses information from two last steps and makes one prox call

27

Accelerated proximal gradient method

Our problem, as before:

min
x

g(x) + h(x)

where g convex, differentiable, and h convex. Accelerated proximal
gradient method: choose initial point x(0) = x(−1) ∈ Rn, repeat:

v = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtk
(
v − tk∇g(v)

)
for k = 1, 2, 3, . . .

• First step k = 1 is just usual proximal gradient update

• After that, v = x(k−1) + k−2
k+1(x(k−1) − x(k−2)) carries some

“momentum” from previous iterations

• h = 0 gives accelerated gradient method

28

Momentum weights:

●

●

●

●

●

●

●
●
●
●
●●

●●
●●

●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

−
0.

5
0.

0
0.

5
1.

0

k

(k
 −

 2
)/

(k
 +

 1
)

29

Back to lasso example: acceleration can really help!

0 200 400 600 800 1000

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

k

f−
fs

ta
r

Subgradient method
Proximal gradient
Nesterov acceleration

Note: accelerated proximal gradient is not a descent method
(“Nesterov ripples”)

30

Convergence analysis

As usual, we are minimizing f(x) = g(x) + h(x), assuming:

• g is convex, differentiable, dom(f) = Rn, and ∇g is Lipschitz
continuous with constant L > 0

• h is convex, prox function can be evaluated

Theorem: Accelerated proximal gradient method with fixed step
size t ≤ 1/L satisfies

f(x(k))− f? ≤ 2‖x(0) − x?‖22
t(k + 1)2

Achieves the optimal rate O(1/k2) for first-order methods! I.e., a
rate of O(1/

√
ε)

31

Backtracking line search

A few ways to do this with acceleration ... here’s a simple method
(more complicated strategies exist): fix β < 1, t0 = 1. At iteration
k, start with t = tk−1, and while

g(x+) > g(v) +∇g(v)T (x+ − v) +
1

2t
‖x+ − v‖22

shrink t = βt, and let x+ = proxt(v − t∇g(v)). Else keep x+

Under same assumptions, we get the same rate

Theorem: Accelerated proximal gradient method with back-
tracking line search satisfies

f(x(k))− f? ≤ 2‖x(0) − x?‖22
tmin(k + 1)2

where tmin = min{1, β/L}

32

FISTA

Recall lasso problem,

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

and ISTA (Iterative Soft-thresholding Algorithm):

β(k) = Sλtk(β(k−1) + tkX
T (y −Xβ(k−1))

)
, k = 1, 2, 3, . . .

Sλ(·) being vector soft-thresholding. Applying acceleration gives us
FISTA (F is for Fast):6 for k = 1, 2, 3, . . .,

v = β(k−1) +
k − 2

k + 1
(β(k−1) − β(k−2))

β(k) = Sλtk
(
v + tkX

T (y −Xv)
)
,

6Beck and Teboulle (2008) actually call their general acceleration technique
(for general g, h) FISTA, which may be somewhat confusing

33

Lasso regression: 100 instances (with n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

34

Lasso logistic regression: 100 instances (n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

35

