Primal-Dual Interior-Point Methods

Lecturer: Aarti Singh
Co-instructor: Pradeep Ravikumar

Convex Optimization 10-725/36-725



Outline

Today:
e Primal-dual interior-point method

e Special case: linear programming



Barrier method versus primal-dual method

Like the barrier method, primal-dual interior-point methods aim to
compute (approximately) points on the central path.

Main differences between primal-dual and barrier methods:

e Both can be motivated by perturbed KKT conditions, but as
the name suggests primal-dual methods update both primal
and dual variables

e Primal-dual interior-point methods usually take one Newton
step per iteration (no additional loop for the centering step).

e Primal-dual interior-point methods are not necessarily feasible.

e Primal-dual interior-point methods are typically more efficient.
Under suitable conditions they have better than linear
convergence.



Constrained Optimization

Consider the problem

min f(x)
x
subject to Ax =b
g9(x) <0
where the equality constraints are linear.
Lagrangian

L(z,u,v) = f(z) +u'g(x) + v (Az — b)



KKT conditions

KKT conditions

Vf(x)+ Vg(x)u+ ATv =0

Ug(z) =0
Az =b

Here U = Diag(u), Vg(z) = [Vgi(z) -+ Vgr(z)]



KKT conditions for Barrier problem

Barrier problem
min f(x) + et(z)
Ax=b

where ;
¢(x) = =Y log(—g;(x)).
j=1
KKT conditions for barrier problem

Vf(x)+ Vg(z)u+ ATv =0

Ug(x) = —el
Az =b
u, —g(x) > 0.

Same as before, except complementary slackness condition is
perturbed.



We didn’t cover this, but Newton updates for log barrier problem
can be seen as Newton step for solving these nonlinear equations,
after eliminating u (i.e., taking u; = —¢/g;(x),j =1,...,7).

Primal-dual interior-point updates are also motivated by a Newton
step for solving these nonlinear equations, but without eliminating
u. Write the KKT conditions as a set of nonlinear equations

r(x;u;v) =0,

where
Vf(z)+Vg(z)u+ ATv
r(z,u,v) := Ug(x)+ el
Ax—b



This is a nonlinear equation is (x;u;v), and hard to solve; so let's
linearize, and approximately solve

Let y = (x; u;v) be the current iterate, and Ay = (Ax; Au; Av)
be the update direction. Define

Tdual = Vf(z)+ Vg(x)u+ Ao
Teent = Ug(x)+el
Torim = Az —0b

the dual, central, and primal residuals at current y = (x; u;v).

Now we make our first-order approximation
0=r(y+Ay) =r(y) + Vr(y)Ay

and we want to solve for Ay in the above.



l.e., we solve

V2f(x)+ > i1 u;V3gi(z)  Vg(x)T AT Az

UVyg(x) diag(g(z)) O Au
A 0 0 Av
Tdual
= - Tcent
T'prim

Solution Ay = (Ax, Au, Av) is our primal-dual update direction

Note that the update directions for the primal and dual variables
are inexorably linked together

(Also, these are different updates than those from barrier method)



Primal-dual interior-point method

Putting it all together, we now have our primal-dual interior-point
method. Start with a strictly feasible point (%) and u(®) > 0, v(0).

Define n(® = —g(2(©)T4©) and let o € (0,1), then we repeat for
k=1,2,3...
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Primal-dual interior-point method

Putting it all together, we now have our primal-dual interior-point
method. Start with a strictly feasible point (%) and u(®) > 0, v(0).

Define n(® = —g(2(©)T4©) and let o € (0,1), then we repeat for
k=1,2,3...

o Define € = on*~1 /m

Compute primal-dual update direction Ay

Determine step size s

Update y®) = ¢~ 4 5. Ay

Compute 7% = —g () Ty,(*)

Stop if 7*) < & and ([[rprim I3 + [Irasai[3)/* < &
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Primal-dual interior-point method

Putting it all together, we now have our primal-dual interior-point
method. Start with a strictly feasible point 2 and u© > 0, v

Define n(® = —g(2(©)T4©) and let o € (0,1), then we repeat for
k=1,2,3...

o Define € = on*~1 /m

Compute primal-dual update direction Ay

Determine step size s

Update y*) =y~ + 5 Ay

o Compute ¥ = —g(z(*)) Ty, (%)

 Stop if n™) <5 and ([ rprim3 + lIranai[3)'/* < 0

Note the stopping criterion checks both the central residual via 7,
and (approximate) primal and dual feasibility
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Backtracking line search

At each step, we need to find s and set
=2 +sAz, vt =u+sAu, vt =0v+sAv.

Two main goals:
e Maintain g(z) <0, u>0

e Reduce ||r(x,u,v)||

Use a multi-stage backtracking line search for this purpose: start
with largest step size spax < 1 that makes u + sAu > 0:

Smax = min {1, min{—u;/Au; : Au; < 0}}

Then, with parameters a, 8 € (0, 1), we set s = 0.998max, and
e Update s = s, until gj(z7) <0,j=1,...r
e Update s = s, until ||r(zT,u™,v1)|| < (1 — as)||r(z,u,v)||

11



Special case: linear programming
Consider

min ez
X

subject to Az =10
z>0

force R™, A e R™*" pec R™.

Some history:

¢ Dantzig (1940s): the simplex method, still today is one of the
most well-known /well-studied algorithms for LPs

e Karmarkar (1984): interior-point polynomial-time method for
LPs. Fairly efficient (US Patent 4,744,026, expired in 2006)

e Modern state-of-the-art LP solvers typically use both simplex
and interior-point methods
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KKT conditions for standard form LP

The points z* and (u*,v*) are respectively primal and dual optimal
LP solutions if and only if they solve:

ATy +u=c
ziu; =0,1=1,...,n
Axr =b
z,u >0

(Neat fact: the simplex method maintains the first three conditions
and aims for the fourth one ... interior-point methods maintain the
first and last two, and aim for the second)

13



The perturbed KKT conditions for standard form LP are hence:

ATv+u=c
TiU; = €, izl,...,n
Axr=0b
z,u >0

Let's work through the barrier method, and the primal-dual interior
point method, to get a sense of these two

Barrier method (after elim u): Primal-dual method:
0= rpe(x,v) 0 = rpa(z,u,v)
[ ATv + diag(z) " te—c ATy +u—c
N Az —b = | diag(z)u —e
Az —b
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Barrier method: 0 = 7, (y + Ay) = 1 (y) + Vrpe(y) Ay, ie., we

solve ) . A
—diag(z) % A T
L)) - e

and take a step y™ = y + sAy (with line search for s > 0), and
iterate until convergence. Then update € = ge

Primal-dual method: 0 = rpq(y + Ay) ~ rpa(y) + Vrpa(y) Ay,
i.e., we solve

0 I AT Az
diag(u) diag(x) O Au | = —rpa(x,u,v)
A 0 0 Av

and take a step yT = y + sAy (with line search for s > 0), but
only once. Then update € = o¢
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Example: barrier versus primal-dual

Example from B & V 11.3.2 and 11.7.4: standard LP with n = 50

variables and m = 100 equality constraints

Barrier method uses various values of o, primal-dual method uses
o =0.1. Both use « = 0.01, 8 =0.5

10%

100 p=50 =150 =2

0 20 10 60 50 5
Newton iterations

Barrier central residual Primal-dual central

(1n=1/0)

10 15 20
iteration number

residual

25

5 10 15 20 25 30
iteration number

Primal-dual feasibility

gap, Tfeas =
(I7prim13 + [I7auall3)'/2

Can see that primal-dual is faster to converge to high accuracy
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Now a sequence of problems with n = 2m, and n growing. Barrier
method uses p = 100, runs just two outer loops (decreases central
residual by 104); primal-dual method uses o = 0.1, stops when
central residual and feasibility gap are at most 1078

30

Newton iterations
iterations

20

5 1
1510l 10? 10° D101 102 10
m m

Barrier method Primal-dual method

Primal-dual method require only slightly more iterations, despite
the fact that it is producing higher accuracy solutions
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