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Equality Constrained
Problems

minimize f(x)

subjectto h;(z) =0, i=1,...,m.

where f:R"* — R, h; : R*" — R, i=1,...,m, are con-
tinuously differentiable functions. (Theory also
applies to case where f and h; are cont. differ-
entiable in a neighborhood of a local minimum.)



Lagrange Multiplier Theorem

o Letz* be alocal min and aregular point [Vh; (z*):
linearly independent]. Then there exist unique
scalars 2z, ..., \x, such that

VF(z*) + Z \Vh;(z*) = 0.
1=1

If in addition f and » are twice cont. differentiable,

1=1

y' (VQf(x*) + Z )\;FVZh,,;(a:*)> y>0,Vys.t. Vh(z*)y=0



Lagrange Multiplier Theorem

o Letz* be alocal min and aregular point [Vh; (z*):
linearly independent]. Then there exist unique
scalars 2z, ..., \x, such that

VF(z*) + Z \Vh;(z*) = 0.
1=1

Example:

\XM

2 hx) =0 c e

Yx minimize xi1 -+ T2

\ . _ subject to x? + x5 = 2.

Vi(x") = (1,1) \O > X1

X = (1) The Lagrange multiplier is
A=1/2.




Lagrange Multiplier Theorem

o Letz* be alocal min and aregular point [Vh; (z*):
linearly independent]. Then there exist unique
scalars 2z, ..., \x, such that

VF(z*) + Z \Vh;(z*) = 0.
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Example:

minimize x1 + xo

s. 1. (561—1)24—:13%—1:0

(1 —2)° +25—-4=0




Lagrange Multiplier Theorem

o Letz* be alocal min and aregular point [Vh; (z*):
linearly independent]. Then there exist unique
scalars 2z, ..., \x, such that

VF(z*) + Z \Vh;(z*) = 0.
1=1

When local minimum is not regular, then first-order feasible variation
V(") = {y| Vhi(z")'y = 0, Vha(z")'y = 0}

has larger dimension than true set of feasible variations
{y:h(z" +y) =0}



Lagrange Multiplier Theorem

o Letz* be alocal min and aregular point [Vh; (z*):
linearly independent]. Then there exist unique
scalars 2z, ..., \x, such that

VF(z*) + Z \Vh;(z*) = 0.
1=1

Optimality of xA* entails that gradient of t at xA* is orthogonal to
true set of feasible variations

For a Lagrange Multiplier to exist, gradient of f at xA* must be
orthogonal to subspace of first order feasible variations



Lagrangian Function

o Define the Lagrangian function

L(z,\) = f(z) + Z Aihi(z).
1=1

Then, if z* is a local minimum which is regular, the
Lagrange multiplier conditions are written

VzL(z™, \*) =0, VaL(x™,\*) =0,
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Lagrangian Function

o Define the Lagrangian function

L(z,\) = f(z) + Z Aihi(z).
1=1

Then, if z* is a local minimum which is regular, the
Lagrange multiplier conditions are written

VzL(z™, \*) =0, VaL(x™,\*) =0,

System of n + m equations with » + m unknowns.

o Example
minimize 1 (56% + x% + x%)
SUbjeCt to r1 + x20 + 3 = 3.
Necessary conditions

]+ A" =0, x5+ A\ =0,

rs + A" =0, z]+z5+x;=23.



Example: Portfolio Selection

o Investment of 1 unit of wealth among » assets
with random rates of return ¢;, and given means

¢;, and covariance matrix Q = | E{(e; —€;)(e; —;)}| -
e If z;: amount invested in asset i, we want to
minimize z'Qx ( — Variance of return Z eixi)

7

subject to ZZ x; = 1, and a given mean g €, T; =m



Example: Portfolio Selection

e Let )\; and X, be the L-multipliers. Have 2Qx* +
Au+d2e = 0, where v = (1,..., 1)’ ande = (e1,..., en).

where lambda_1, lambda_ 2 can be obtained as
the solution of:




Sufficiency Conditions

Equality constrained problem

minimize f(x)
subject to h;(x) =0, i=1,...,m.

where f : R* — R, h; : R — R, are continuously
differentiable. To obtain sufficiency conditions, as-

sume that f and hr; are twice continuously differen-
tiable.



Sufficiency Conditions

Second Order Sufficiency Conditions: Let z* ¢ R™
and )\* ¢ ®™ satisfy

VzL(z™,\*) =0, VaL(z™, \*) =0,

y'V2 L(z*, Ay >0, Vy#0 with Vh(z*)'y =0.

Then z* Is a strict local minimum.



Sufficiency Conditions:
Example

Example: Minimize —(x12x2 + X273 +T12X3) subject to
z1 + z2 + 23 = 3. We have that 27 = z3 =25 =1 and
2 = 2 satisfy the 1st order conditions. Also

0 -1 -1
VZ Lz* )= -1 0 -1].
-1 -1 0

We have for all y £ 0 with VA(z*)'y =0 Or y1 + y2 +
Y3z = 01



Sufficiency Conditions:
Example

Example: Minimize —(x12x2 + X273 +T12X3) subject to
z1 + z2 + 23 = 3. We have that 27 = z3 =25 =1 and
2 = 2 satisfy the 1st order conditions. Also

0 -1 -1
V2 L*X))=|-1 0 -1].
-1 -1 0

We have for all y £ 0 with VA(z*)'y =0 Or y1 + y2 +
Y3z = 01

y' V2 L(z* A"y = —y1(y2 +y3) — y2(y1 +y3) — y3(y1 + y2)

=yi +y35 +y3 >0,

Hence, z* 1S a strict local minimum.



SENSITIVITY THEOREM

Sensitivity Theorem: Consider the family of prob-
lems

hgl)iguf () (")

parameterized by » € ®™. Assume that for « = o,
this problem has a local minimum z*, which is reg-
ular and together with its unique Lagrange multi-
plier x* satisfies the sufficiency conditions.

Then there exists an open sphere s centered at
u = 0 such that for every « € s, there is an z(«) and
a \(u), which are a local minimum-Lagrange mul-
tiplier pair of problem (*). Furthermore, z(.) and
A(-) are continuously differentiable within s and we
have z(0) = z*, A(0) = A*. In addition,

Vp(u) = —A(u), VuelsS

where p(u) 1S the primal function

p(u) = f(z(w)).



EXAMPLE

[lustration of the primal function p(u) = f(:c(u))
for the two-dimensional problem

minimize f(x) = %(x% — a:%) — T2

subject to h(x) = x2 = 0.

Here,
p(u) = min f(z) = —2iu® —u
h(x)=u
and \* = —Vp(0) = 1, consistently with the sensitivity

theorem.



SENSITIVITY - GRAPHICAL DERIVATION

Sensitivity theorem for the problem ming,/,—; f(z). If b is
changed to b+ Ab, the minimum z* will change to x* + Ax.
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SENSITIVITY - GRAPHICAL DERIVATION

Sensitivity theorem for the problem ming,/,—; f(z). If b is
changed to b+ Ab, the minimum z* will change to x* + Ax.
Since b+ Ab = a/(z* + Azx) = d’x* +a’Ax = b+ a’ Ax, we
have a’ Ax = Ab. Using the condition V f(x*) = —A*a,

Acost = f(z* + Ax) — f(z*) = Vf(z") Az + o(||Az|])
= —\*ad' Az + o(||Az]|)

Thus Acost = —A*Ab + o(||Az||), so up to first order
Acost

Ab

A =




Inequality Constrained
Problems

Inequality constrained problem

minimize f(x)
subject to h(x) =0, g(z) <0

where f : ®R” — R, h: R* — R™, g : R* — K" are
continuously differentiable. Here

h=(ht,....,hm), g=1(91,--,9r).



TREATING INEQUALITIES AS EQUATIONS

e Consider the set of active inequality constraints
A(z) ={j | gj(z) =0}.

o If z* is a local minimum:

— The active inequality constraints at > can be
treated as equations

— The inactive constraints at z* don’t matter
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TREATING INEQUALITIES AS EQUATIONS

e Consider the set of active inequality constraints
A(z) ={j | gj(z) =0}.

o If z* is a local minimum:

— The active inequality constraints at > can be
treated as equations

— The inactive constraints at z* don’t matter

e Assuming regularity of =* and assigning zero
Lagrange multipliers to inactive constraints,

V™) + Z A;Vhi(z™) + Z,u;ngj(x*) =0,
i=1 j=1

p; =0, V¢ A(").

 Extra property: p* >0 for all ;.

e Intuitive reason: Relax jth constraint, g;(z) < u;.
Since Acost < 0if u; > 0, by the sensitivity theorem,
we have

p; = —(Acost due to uj;)/u; >0



BASIC RESULTS

Kuhn-Tucker Necessary Conditions: Let z* be a lo-
cal minimum and a regular point. Then there exist
unique Lagrange mult. vectors \* = (\1,...,\%),
u* = (pi,...,u), such that

VaeL(z™, X*, u*) =0,

pi =0, Vijé&A(x").

If 7, h, and ¢ are twice cont. differentiable,
y' Vi L(z* X, p*)y >0,  forallyeV(z*),
where

V(z")={y | Vh(z")y =0, Vg;(z*)'y =0, j € A(z")}.
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BASIC RESULTS

Kuhn-Tucker Necessary Conditions: Let z* be a lo-
cal minimum and a regular point. Then there exist
unique Lagrange mult. vectors \* = (\1,...,\%),
u* = (pi,...,u), such that

VaeL(z™, X*, u*) =0,

pi =0, Vijé&A(x").

If 7, h, and ¢ are twice cont. differentiable,
y' Vi L(z* X, p*)y >0,  forallyeV(z*),
where

V(z")={y | Vh(z")y =0, Vg;(z*)'y =0, j € A(z")}.

o Similar sufficiency conditions and sensitivity re-
sults. They require strict complementarity, i.e.,

pi >0, Ve A(z"),

as well as regularity of x*.
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Consider the problem
minimize f(x)
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Let > be feasible and ..* satisfy
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rzeX

Then z* is a global minimum of the problem.
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GENERAL SUFFICIENCY CONDITION
Consider the problem

minimize f(x)
subjectto z € X, gi(x) <0, j=1,...,n

Let > be feasible and ..* satisfy
p; >0, j=1,...,m p; =0, Vjé¢A(z"),

x* = arg min L(x, u™).
rzeX

Then z* is a global minimum of the problem.
Proof: We have

f(a*) = f(z") + p*'g(e) = min{f(z) + p"'g(x) }

S ot @@ s min | f(),
where the first equality follows from the hypothe-
sis, which implies that .*'¢g(=*) = 0, and the last in-
equality follows from the nonnegativity of ».*. Q.E.D.

e Special Case: Let X = ®», f and g; be con-
vex and differentiable. Then the 1st order Kuhn-
Tucker conditions are also sufficient for global op-
timality.



