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LECTURE OUTLINE

• Equality Constrained Problems
• Basic Lagrange Multiplier Theorem
• Proof 1: Elimination Approach
• Proof 2: Penalty Approach

Equality constrained problem

minimize f(x)

subject to hi(x) = 0, i = 1, . . . , m.

where f : ℜn "→ ℜ, hi : ℜn "→ ℜ, i = 1, . . . , m, are con-
tinuously differentiable functions. (Theory also
applies to case where f and hi are cont. differ-
entiable in a neighborhood of a local minimum.)



Lagrange Multiplier Theorem
LAGRANGE MULTIPLIER THEOREM

• Let x∗ be a local min and a regular point [∇hi(x∗):
linearly independent]. Then there exist unique
scalars λ∗

1, . . . , λ∗
m such that

∇f(x∗) +

m∑

i=1

λ∗
i ∇hi(x

∗) = 0.

If in addition f and h are twice cont. differentiable,

y′

(
∇2f(x∗) +

m∑

i=1

λ∗
i ∇

2hi(x
∗)

)
y ≥ 0, ∀ y s.t. ∇h(x∗)′y = 0

x1

x2

x* = (-1,-1)

∇h(x*) = (-2,-2)

∇f(x*) = (1,1) 0

2

2

h(x) = 0
minimize x1 + x2

subject to x2
1 + x2

2 = 2.

The Lagrange multiplier is
λ = 1/2.

x1

x2

∇f(x*) = (1,1)
∇h1(x*) = (-2,0)

∇h2(x*) = (-4,0)

h1(x) = 0

h2(x) = 0

21

minimize x1 + x2

s. t. (x1 − 1)2 + x2
2 − 1 = 0

(x1 − 2)2 + x2
2 − 4 = 0
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When local minimum is not regular, then first-order feasible variations: 

has larger dimension than true set of feasible variations 
{y : h(x⇤ + y) = 0}
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Optimality of x^* entails that gradient of f at x^* is orthogonal to  
true set of feasible variations 

For a Lagrange Multiplier to exist, gradient of f at x^* must be  
orthogonal to subspace of first order feasible variations



Lagrangian FunctionLAGRANGIAN FUNCTION

• Define the Lagrangian function

L(x, λ) = f(x) +

m∑

i=1

λihi(x).

Then, if x∗ is a local minimum which is regular, the
Lagrange multiplier conditions are written

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0,

System of n + m equations with n + m unknowns.

y′∇2
xxL(x∗, λ∗)y ≥ 0, ∀ y s.t. ∇h(x∗)′y = 0.

• Example
minimize 1

2

(
x2
1 + x2

2 + x2
3

)

subject to x1 + x2 + x3 = 3.

Necessary conditions

x∗
1 + λ∗ = 0, x∗

2 + λ∗ = 0,

x∗
3 + λ∗ = 0, x∗

1 + x∗
2 + x∗

3 = 3.
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Example: Portfolio Selection
EXAMPLE - PORTFOLIO SELECTION

• Investment of 1 unit of wealth among n assets
with random rates of return ei, and given means
ei, and covariance matrix Q =

[
E{(ei −ei)(ej −ej)}

]
.

• If xi: amount invested in asset i, we want to

minimize x′Qx
(

= Variance of return
∑

i

eixi

)

subject to
∑

i
xi = 1, and a given mean

∑

i

eixi = m

• Let λ1 and λ2 be the L-multipliers. Have 2Qx∗ +
λ1u+λ2e = 0, where u = (1, . . . , 1)′ and e = (e1, . . . , en)′.
This yields

x∗ = mv+w, Variance of return = σ2 = (αm+β)2+γ,

where v and w are vectors, and α, β, and γ are
some scalars that depend on Q and e.

m

σ

ef
-

Efficient Frontier σ = αm + β

For given m the optimal σ
lies on a line (called “effi-
cient frontier”).
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Q
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where lambda_1, lambda_2 can be obtained as  
the solution of:



Sufficiency Conditions

6.252 NONLINEAR PROGRAMMING

LECTURE 12: SUFFICIENCY CONDITIONS

LECTURE OUTLINE

• Equality Constrained Problems/Sufficiency Con-
ditions
• Convexification Using Augmented Lagrangians
• Proof of the Sufficiency Conditions
• Sensitivity

Equality constrained problem

minimize f(x)

subject to hi(x) = 0, i = 1, . . . , m.

where f : ℜn "→ ℜ, hi : ℜn "→ ℜ, are continuously
differentiable. To obtain sufficiency conditions, as-
sume that f and hi are twice continuously differen-
tiable.



Sufficiency Conditions
SUFFICIENCY CONDITIONS

Second Order Sufficiency Conditions: Let x∗ ∈ ℜn

and λ∗ ∈ ℜm satisfy

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0,

y′∇2
xxL(x∗, λ∗)y > 0, ∀ y ̸= 0 with ∇h(x∗)′y = 0.

Then x∗ is a strict local minimum.

Example: Minimize −(x1x2 +x2x3 +x1x3) subject to
x1 + x2 + x3 = 3. We have that x∗

1 = x∗
2 = x∗

3 = 1 and
λ∗ = 2 satisfy the 1st order conditions. Also

∇2
xxL(x∗, λ∗) =

(
0 −1 −1
−1 0 −1
−1 −1 0

)
.

We have for all y ̸= 0 with ∇h(x∗)′y = 0 or y1 + y2 +
y3 = 0,

y′∇2
xxL(x∗, λ∗)y = −y1(y2 + y3) − y2(y1 + y3) − y3(y1 + y2)

= y2
1 + y2

2 + y2
3 > 0.

Hence, x∗ is a strict local minimum.
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SENSITIVITY THEOREM

Sensitivity Theorem: Consider the family of prob-
lems

min
h(x)=u

f(x) (*)

parameterized by u ∈ ℜm. Assume that for u = 0,
this problem has a local minimum x∗, which is reg-
ular and together with its unique Lagrange multi-
plier λ∗ satisfies the sufficiency conditions.

Then there exists an open sphere S centered at
u = 0 such that for every u ∈ S, there is an x(u) and
a λ(u), which are a local minimum-Lagrange mul-
tiplier pair of problem (*). Furthermore, x(·) and
λ(·) are continuously differentiable within S and we
have x(0) = x∗, λ(0) = λ∗. In addition,

∇p(u) = −λ(u), ∀ u ∈ S

where p(u) is the primal function

p(u) = f
(
x(u)

)
.



EXAMPLE

p(u)

-1 0 uslope ∇p(0) = - λ* = -1

Illustration of the primal function p(u) = f
(
x(u)

)

for the two-dimensional problem

minimize f(x) = 1
2

(
x2
1 − x2

2

)
− x2

subject to h(x) = x2 = 0.

Here,
p(u) = min

h(x)=u
f(x) = − 1

2u2 − u

and λ∗ = −∇p(0) = 1, consistently with the sensitivity
theorem.

• Need for regularity of x∗: Change constraint to
h(x) = x2

2 = 0. Then p(u) = −u/2 −
√

u for u ≥ 0 and
is undefined for u < 0.



SENSITIVITY - GRAPHICAL DERIVATION

∇f(x*)

x* + ∆x

x*

∆x

a a'x = b + ∆b

a'x = b

Sensitivity theorem for the problem mina′x=b f(x). If b is
changed to b+∆b, the minimum x∗ will change to x∗+∆x.
Since b + ∆b = a′(x∗ + ∆x) = a′x∗ + a′∆x = b + a′∆x, we
have a′∆x = ∆b. Using the condition ∇f(x∗) = −λ∗a,

∆cost = f(x∗ + ∆x) − f(x∗) = ∇f(x∗)′∆x + o(∥∆x∥)

= −λ∗a′∆x + o(∥∆x∥)

Thus ∆cost = −λ∗∆b + o(∥∆x∥), so up to first order

λ∗ = −
∆cost

∆b
.

For multiple constraints a′
ix = bi, i = 1, . . . , n, we have

∆cost = −
m∑

i=1

λ∗
i ∆bi + o(∥∆x∥).
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Inequality Constrained 
Problems

6.252 NONLINEAR PROGRAMMING

LECTURE 13: INEQUALITY CONSTRAINTS

LECTURE OUTLINE

• Inequality Constrained Problems
• Necessary Conditions
• Sufficiency Conditions
• Linear Constraints

Inequality constrained problem

minimize f(x)

subject to h(x) = 0, g(x) ≤ 0

where f : ℜn #→ ℜ, h : ℜn #→ ℜm, g : ℜn #→ ℜr are
continuously differentiable. Here

h = (h1, ..., hm), g = (g1, ..., gr).



TREATING INEQUALITIES AS EQUATIONS

• Consider the set of active inequality constraints

A(x) =
{

j | gj(x) = 0
}

.

• If x∗ is a local minimum:
− The active inequality constraints at x∗ can be

treated as equations
− The inactive constraints at x∗ don’t matter

• Assuming regularity of x∗ and assigning zero
Lagrange multipliers to inactive constraints,

∇f(x∗) +

m∑

i=1

λ∗
i ∇hi(x

∗) +

r∑

j=1

µ∗
j∇gj(x

∗) = 0,

µ∗
j = 0, ∀ j /∈ A(x∗).

• Extra property: µ∗
j ≥ 0 for all j.

• Intuitive reason: Relax jth constraint, gj(x) ≤ uj .
Since ∆cost ≤ 0 if uj > 0, by the sensitivity theorem,
we have

µ∗
j = −(∆cost due to uj)/uj ≥ 0
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BASIC RESULTS

Kuhn-Tucker Necessary Conditions: Let x∗ be a lo-
cal minimum and a regular point. Then there exist
unique Lagrange mult. vectors λ∗ = (λ∗

1, . . . , λ∗
m),

µ∗ = (µ∗
1, . . . , µ∗

r), such that

∇xL(x∗, λ∗, µ∗) = 0,

µ∗
j ≥ 0, j = 1, . . . , r,

µ∗
j = 0, ∀ j /∈ A(x∗).

If f , h, and g are twice cont. differentiable,

y′∇2
xxL(x∗, λ∗, µ∗)y ≥ 0, for all y ∈ V (x∗),

where

V (x∗) =
{
y | ∇h(x∗)′y = 0, ∇gj(x

∗)′y = 0, j ∈ A(x∗)
}
.

• Similar sufficiency conditions and sensitivity re-
sults. They require strict complementarity, i.e.,

µ∗
j > 0, ∀ j ∈ A(x∗),

as well as regularity of x∗.
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GENERAL SUFFICIENCY CONDITION

Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r.

Let x∗ be feasible and µ∗ satisfy

µ∗
j ≥ 0, j = 1, . . . , r, µ∗

j = 0, ∀ j /∈ A(x∗),

x∗ = arg min
x∈X

L(x, µ∗).

Then x∗ is a global minimum of the problem.
Proof: We have

f(x∗) = f(x∗) + µ∗′g(x∗) = min
x∈X

{
f(x) + µ∗′g(x)

}

≤ min
x∈X, g(x)≤0

{
f(x) + µ∗′g(x)

}
≤ min

x∈X, g(x)≤0
f(x),

where the first equality follows from the hypothe-
sis, which implies that µ∗′g(x∗) = 0, and the last in-
equality follows from the nonnegativity of µ∗. Q.E.D.

• Special Case: Let X = ℜn, f and gj be con-
vex and differentiable. Then the 1st order Kuhn-
Tucker conditions are also sufficient for global op-
timality.
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