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Course setup

Welcome to the course on Convex Optimization, with a focus on
its ties to Statistics and Machine Learning!

Basic adminstrative details:

• Instructors: Pradeep Ravikumar, Aarti Singh

• Teaching assistants: Hao Gu, Devendra Sachan, Yifeng Tao,
Yichong Xu, Hongyang Zhang

• Course website:
http://www.cs.cmu.edu/~aarti/Class/10725_Fall17/

http://www.cs.cmu.edu/~pradeepr/convexopt/

• We will use Piazza for announcements and discussions
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Prerequisites: no formal ones, but class will be fairly fast paced

Assume working knowledge of/proficiency with:

• Real analysis, calculus, linear algebra

• Core problems in Stats/ML

• Programming (Matlab, Python, ...)

• Data structures, computational complexity

• Formal mathematical thinking

If you fall short on any one of these things, it’s certainly possible to
catch up; but don’t hesitate to talk to us

3



Evaluation:

• 5 homeworks - 45%

• 2 little in-class tests (Oct 16, Dec 6) - 25%

• 1 project (poster presentation Dec 13 1:30-4:30 pm) - 25%

• Many easy quizzes - 5%

Project: something useful/interesting with optimization. Groups of
3, milestones throughout the semester, details to come

Quizzes: due at midnight the day of each lecture. Should be very
short, very easy if you’ve attended lecture ...
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Auditors: welcome, please audit rather than just sitting in

Most important: work hard and have fun!
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Optimization problems are ubiquitous in Statistics and
Machine Learning

Optimization problems underlie most everything we do in Statistics
and Machine Learning. In many courses, you learn how to:

translate into P : min
x∈D

f(x)

Conceptual idea Optimization problem

Examples of this? Examples of the contrary?

This course:

• how to solve P , and also why this is important
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Let the solution to P be

f∗ = min
x∈D

f(x)

This course:

• how close is the solution obtained by different optimization
algorithms to f∗?

Not this course:

• Not focus on generalization: A good solution to P only
implies good generalization error if optimization problem is a
good empirical surrogate for true error (10-702 Statistical
Machine Learning)
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Example Optimization Problems in ML and Stat

Parametric (e.g. linear) Regression:

• Least squares
minβ

∑n
i=1(yi − x>i β)2

• Least absolute deviation
minβ

∑n
i=1 |yi − x>i β|

• Regularized least squares

Ridge minβ
∑n

i=1(yi − x>i β)2 + λ‖β‖22
Lasso minβ

∑n
i=1(yi − x>i β)2 + λ‖β‖1

De-noising:

• Least squares minθ
∑n

i=1(yi − θi)2
• Regularized least squares

Fused lasso minθ
1
2

∑n
i=1(yi − θi)2 + λ

∑
(i,j)∈E |θi − θj |
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Example: 2d fused lasso for denoising

The 2d fused lasso or 2d total variation denoising problem is:

min
θ

1

2

n∑
i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

This fits a piecewise constant function over an image, given data
yi, i = 1, . . . , n at pixels

3
4

5
6

7

True image Data Solution
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Example Optimization Problems in ML and Stat

Classification:

• Support vector machines (SVM)
- regularized hinge loss
minw,b ‖w‖2 + C

∑n
i=1(1− (w>xi + b)yi)+

• Logistic regression
- max conditional likelihood
maxw,b

∑n
i=1 P (yi|xi, w, b) where P (y = 0|x) = 1

1+exp(w>x+b)

Max Likelihood Estimation

Matrix completion/Factorization/Principal Component Analysis:

• PCA minA ‖X −A‖2F s.t. rank(A) = k

What ML and Stats problems are not optimization?
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Presumably, other people have already figured out how to solve

P : min
x∈D

f(x)

So why bother?

Many reasons. Here’s two:

1. Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

2. Studying P can actually give you a deeper understanding of
the statistical procedure in question

Optimization is a very current field. It can move quickly, but there
is still much room for progress, especially at the intersection with
Statistics and ML
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2d denoising problem: min
θ

1

2

n∑
i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

Algorithms:

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles
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What’s the message here?

So what’s the right conclusion here?

Is the alternating direction method of multipliers (ADMM) method
simply a better method than proximal gradient descent, coordinate
descent? ... No

In fact, different algorithms will work better in different situations.
We’ll learn details throughout the course

In the 2d fused lasso problem:

• Specialized ADMM: fast (structured subproblems)

• Proximal gradient: slow (poor conditioning)

• Coordinate descent: slow (large active set)
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Example: testing changepoints from the 1d fused lasso

In the 1d fused lasso or 1d total variation denoising problem

min
θ

1

2

n∑
i=1

(yi − θi)2 + λ

n−1∑
i=1

|θi − θi+1|

the parameter λ ≥ 0 is called a tuning parameter. As λ decreases,
we see more changepoints in the solution β̂
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Let’s look at the solution at λ = 0.41 a little more closely
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changepoints? Say, at
location 11?

Classically: take the av-
erage of data points in
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to what we expect if the
signal was flat

But this is incorrect, because location 11 was selected based on the
data, so of course the difference in averages looks high!
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What we want to do: compare our observed difference to that in
reference (null) data, in which the signal was flat and we happen
to select the same location 11 (and 50)
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Observed data Reference data
Abs. difference ≈ 0.088 Abs. difference ≈ 0.072

But it took 1222 simulated data sets to get one reference data set!
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The role of optimization: if we understand the 1d fused lasso, i.e.,
the way it selects changepoints (stems from KKT conditions), then
we can come up with a reference distribution without simulating
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Accordingly, we can
efficiently conduct
rigorous significance
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Example: Sparsity of Lasso solution

Lasso: minβ
∑n

i=1(yi − x>i β)2 + λ‖β‖1

Surrogate for: minβ
∑n

i=1(yi − x>i β)2 + λ‖β‖0

Desire solution β to be sparse aka with small ‖β‖0 i.e. few
non-zero coefficients.

Why? Only few features are relevant, require correspondingly few
data points, . . .

But is the lasso solution sparse?

Analysis of KKT (Karush-Kuhn-Tucker) conditions (satisfied by
solution to optimization problem) helps us understand when the
lasso solution is sparse.

(Wainwright, 2006 - Arxiv: math/0605740)
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Central concept: convexity

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems
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Books

Your supplementary textbooks for the course:

BV: Convex Optimization, Stephen Boyd and Lieven
Vandenberghe, (available online for free).

DB: Nonlinear Programming, Dimitri P. Bertsekas.

NW: Numerical Optimization, Jorge Nocedal and Stephen Wright.

YN: Introductory lectures on convex optimization: a basic course,
Yurii Nesterov.
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Convex sets and functions

Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 124 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Convex function: f : Rn → R such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.
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Convex optimization problems

Optimization problem:

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

hj(x) = 0, j = 1, . . . r

Here D = dom(f) ∩⋂m
i=1 dom(gi) ∩

⋂p
j=1 dom(hj), common

domain of all the functions

This is a convex optimization problem provided the functions f
and gi, i = 1, . . .m are convex, and hj , j = 1, . . . p are affine:

hj(x) = aTj x+ bj , j = 1, . . . p
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Local minima are global minima

For convex optimization problems, local minima are global minima

Local minimum: If x is feasible (x ∈ D, and satisfies all
constraints) and minimizes f in a local neighborhood,

f(x) ≤ f(y) for all feasible y, ‖x− y‖2 ≤ ρ,

For convex problems, x is also a global minimum

f(x) ≤ f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!
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