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Coordinate descent

We’ve seen some pretty sophisticated methods thus far

We now focus on a very simple technique that can be surprisingly
e�cient, scalable: coordinate descent, or more appropriately called
coordinatewise minimization

Q: Given convex, di↵erentiable f : Rn ! R, if we are at a point x
such that f(x) is minimized along each coordinate axis, then have

we found a global minimizer?

I.e., does f(x+ �e
i

) � f(x) for all �, i ) f(x) = min

z

f(z)?

(Here e
i

= (0, . . . , 1, . . . 0) 2 Rn, the ith standard basis vector)
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Q: Same question, but now for f convex, and not di↵erentiable?
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A: No! Look at the above counterexample

Q: Same question again, but now f(x) = g(x) +
P

n

i=1 hi(xi), with
g convex, di↵erentiable and each h

i

convex? (Here the nonsmooth
part is called separable)
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A: Yes! Proof: for any y,

f(y)� f(x) � rg(x)T (y � x) +
nX

i=1

[h
i

(y
i

)� h
i

(x
i

)]

=

nX

i=1

[r
i

g(x)(y
i

� x
i

) + h
i

(y
i

)� h
i

(x
i

)]| {z }
�0

� 0
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Coordinate descent

This suggests that for f(x) = g(x) +
P

n

i=1 hi(xi), with g convex,
di↵erentiable and each h

i

convex, we can use coordinate descent
to find a minimizer: start with some initial guess x(0), and repeat

x
(k)
1 2 argmin

x1

f
�
x1, x

(k�1)
2 , x

(k�1)
3 , . . . x(k�1)

n

�

x
(k)
2 2 argmin

x2

f
�
x
(k)
1 , x2, x

(k�1)
3 , . . . x(k�1)

n

�

x
(k)
3 2 argmin

x2

f
�
x
(k)
1 , x

(k)
2 , x3, . . . x

(k�1)
n

�

. . .

x(k)
n

2 argmin

x2

f
�
x
(k)
1 , x

(k)
2 , x

(k)
3 , . . . x

n

�

for k = 1, 2, 3, . . .. Important: after solving for x(k)
i

, we use its new
value from then on!
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Tseng (2001) proves that for such f (provided f is continuous on
compact set {x : f(x)  f(x(0))} and f attains its minimum), any
limit point of x(k), k = 1, 2, 3, . . . is a minimizer of f1

Notes:

• Order of cycle through coordinates is arbitrary, can use any
permutation of {1, 2, . . . n}

• Can everywhere replace individual coordinates with blocks of
coordinates

• “One-at-a-time” update scheme is critical, and “all-at-once”
scheme does not necessarily converge

• The analogy for solving linear systems: Gauss-Seidel versus
Jacobi method

1

Using real analysis, we know that x

(k)
has subsequence converging to x

?

(Bolzano-Weierstrass), and f(x(k)) converges to f

?
(monotone convergence)
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Example: linear regression

Given y 2 Rn, and X 2 Rn⇥p with columns X1, . . . Xp

, consider
linear regression:

min

�

1

2

ky �X�k22

Minimizing over �
i

, with all �
j

, j 6= i fixed:

0 = r
i

f(�) = XT

i

(X� � y) = XT

i

(X
i

�
i

+X�i

��i

� y)

i.e., we take

�
i

=

XT

i

(y �X�i

��i

)

XT

i

X
i

Coordinate descent repeats this update for i = 1, 2, . . . , p, 1, 2, . . .
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Coordinate descent vs gradient descent for linear regression: 100
instances with n = 100, p = 20
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Is it fair to compare 1 cycle of coordinate descent to 1 iteration of
gradient descent? Yes, if we’re clever

• Gradient descent: �  � + tXT

(y �X�), costs O(np) flops

• Coordinate descent, one coordinate update:

�
i

 XT

i

(y �X�i

��i

)

XT

i

X
i

=

XT

i

r

kX
i

k22
+ �

i

where r = y �X�

• Each coordinate costs O(n) flops: O(n) to update r, O(n) to
compute XT

i

r

• One cycle of coordinate descent costs O(np) operations, same
as gradient descent
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Same example, but
now with acceler-
ated gradient de-
scent for comparison

Is this contradicting the optimality of accelerated gradient descent?
No! Coordinate descent uses more than first-order information
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Example: lasso regression

Consider the lasso problem:

min

�

1

2

ky �X�k22 + �k�k1

Note that the nonsmooth part is separable: k�k1 =
P

p

i=1 |�i|

Minimizing over �
i

, with �
j

, j 6= i fixed:

0 = XT

i

X
i

�
i

+XT

i

(X�i

��i

� y) + �s
i

where s
i

2 @|�
i

|. Solution is simply given by soft-thresholding

�
i

= S
�/kXik22

✓
XT

i

(y �X�i

��i

)

XT

i

X
i

◆

Repeat this for i = 1, 2, . . . p, 1, 2, . . .
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Proximal gradient vs coordinate descent for lasso regression: 100
instances with n = 100, p = 20
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For same reasons as
before:

• All methods
use O(np)
flops per
iteration

• Coordinate
descent uses
much more
information
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Example: box-constrained QP

Given b 2 Rn, Q 2 Sn+, consider box-constrained quadratic program

min

x

1

2

xTQx+ bTx subject to l  x  u

Fits into our framework, as I{l  x  u} =

P
n

i=1 I{li  x
i

 u
i

}

Minimizing over x
i

with all x
j

, j 6= i fixed: same basic steps give

x
i

= T[li,ui]

✓
b
i

�
P

j 6=i

Q
ij

x
j

Q
ii

◆

where T[li,ui] is the truncation (projection) operator onto [l
i

, u
i

]:

T[li,ui](z) =

8
><

>:

u
i

if z > u
i

z if l
i

 z  u
i

l
i

if z < l
i
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Example: support vector machines

A coordinate descent strategy can be applied to the SVM dual:

min

↵

1

2

↵T

˜X ˜XT↵� 1

T↵ subject to 0  ↵  C1, ↵T y = 0

Sequential minimal optimization or SMO (Platt 1998) is basically
blockwise coordinate descent in blocks of 2. Instead of cycling, it
chooses the next block greedily

Recall the complementary slackness conditions

↵
i

�
1� ⇠

i

� (

˜X�)
i

� y
i

�0
�
= 0, i = 1, . . . n (1)

(C � ↵
i

)⇠
i

= 0, i = 1, . . . n (2)

where �,�0, ⇠ are the primal coe�cients, intercept, and slacks.
Recall that � =

˜XT↵, �0 is computed from (1) using any i such
that 0 < ↵

i

< C, and ⇠ is computed from (1), (2)
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SMO repeats the following two steps:

• Choose ↵
i

,↵
j

that do not satisfy complementary slackness,
greedily (using heuristics)

• Minimize over ↵
i

,↵
j

exactly, keeping all other variables fixed

Using equality constraint,
reduces to minimizing uni-
variate quadratic over an
interval (From Platt 1998)

Note this does not meet separability assumptions for convergence
from Tseng (2001), and a di↵erent treatment is required

Many further developments on coordinate descent for SVMs have
been made; e.g., a recent one is Hsiesh et al. (2008)
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Coordinate descent in statistics and ML

History in statistics:

• Idea appeared in Fu (1998), and again in Daubechies et al.
(2004), but was inexplicably ignored

• Three papers around 2007, especially Friedman et al. (2007),
really sparked interest in statistics and ML communities

Why is it used?

• Very simple and easy to implement

• Careful implementations can be near state-of-the-art

• Scalable, e.g., don’t need to keep full data in memory

Examples: lasso regression, lasso GLMs (under proximal Newton),
SVMs, group lasso, graphical lasso (applied to the dual), additive
modeling, matrix completion, regression with nonconvex penalties
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What’s in a name?

The name coordinate descent is confusing. For a smooth function
f , the method that repeats

x
(k)
1 = x

(k�1)
1 � t

k,1 ·r1f
�
x
(k�1)
1 , x

(k�1)
2 , x

(k�1)
3 , . . . x(k�1)

n

�

x
(k)
2 = x

(k�1)
2 � t

k,2 ·r2f
�
x
(k)
1 , x

(k�1)
2 , x

(k�1)
3 , . . . x(k�1)

n

�

x
(k)
3 = x

(k�1)
3 � t

k,3 ·r3f
�
x
(k)
1 , x

(k)
2 , x

(k�1)
3 , . . . x(k�1)

n

�

. . .

x(k)
n

= x(k�1)
n

� t
k,n

·r
n

f
�
x
(k)
1 , x

(k)
2 , x

(k)
3 , . . . x(k�1)

n

�

for k = 1, 2, 3, . . . is also (rightfully) called coordinate descent. If
f = g+ h, where g is smooth and h is separable, then the proximal
version of the above is also called coordinate descent

These versions are often easier to apply that exact coordinatewise
minimization, but the latter makes more progress per step
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Convergence analyses

Theory for coordinate descent moves quickly. The list given below
is incomplete (may not be the latest and greatest). Warning: some
references below treat coordinatewise minimization, some do not

• Convergence of coordinatewise minimization for solving linear
systems, the Gauss-Seidel method, is a classic topic. E.g., see
Golub and van Loan (1996), or Ramdas (2014) for a modern
twist that looks at randomized coordinate descent

• Nesterov (2010) considers randomized coordinate descent for
smooth functions and shows that it achieves a rate O(1/✏)
under a Lipschitz gradient condition, and a rate O(log(1/✏))
under strong convexity

• Richtarik and Takac (2011) extend and simplify these results,
considering smooth plus separable functions, where now each
coordinate descent update applies a prox operation
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• Saha and Tewari (2013) consider minimizing `1 regularized
functions of the form g(�) + �k�k1, for smooth g, and study
both cyclic coordinate descent and cyclic coordinatewise min.
Under (very strange) conditions on g, they show both methods
dominate proximal gradient descent in iteration progress

• Beck and Tetruashvili (2013) study cyclic coordinate descent
for smooth functions in general. They show that it achieves a
rate O(1/✏) under a Lipschitz gradient condition, and a rate
O(log(1/✏)) under strong convexity. They also extend these
results to a constrained setting with projections

• Nutini et al. (2015) analyze greedy coordinate descent (called
Gauss-Southwell rule), and show it achieves a faster rate than
randomized coordinate descent for certain problems

• Wright (2015) provides some unification and a great summary.
Also covers parallel versions (even asynchronous ones)

• General theory is still not complete; still unanswered questions
(e.g., are descent and minimization strategies the same?)
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Screening rules

In some problems, screening rules can be used in combination with
coordinate descent to further wittle down the active set. Screening
rules themselves have amassed a sizeable literature recently. Here
is an example, the SAFE rule for the lasso2:

|XT

i

y| < �� kX
i

k2kyk2
�
max

� �

�
max

) ˆ�
i

= 0, all i = 1, . . . p

where �
max

= kXT yk1 (the smallest value of � such that ˆ� = 0)

Note: this is not an if and only if statement! But it does give us a
way of eliminating features apriori, without solving the lasso

(There have been many advances in screening rules for the lasso,
but SAFE is the simplest, and was the first)

2

El Ghaoui et al. (2010), “Safe feature elimination in sparse learning”
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Why is the SAFE rule true? Construction comes from lasso dual:

max

u

g(u) subject to kXTuk1  �

where g(u) = 1
2kyk

2
2 � 1

2ky � uk22. Suppose that u0 is dual feasible
(e.g., take u0 = y · �/�

max

). Then � = g(u0) is a lower bound on
the dual optimal value, so dual problem is equivalent to

max

u

g(u) subject to kXTuk1  �, g(u) � �

Now consider computing

m
i

= max

u

|XT

i

u| subject to g(u) � �, for i = 1, . . . p

Then we would have

m
i

< � ) |XT

i

û| < � ) ˆ�
i

= 0, i = 1, . . . p

The last implication comes from the KKT conditions
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Another dual argument shows that

max

u

XT

i

u subject to g(u) � �

=min

µ>0
��µ+

1

µ
kµy �X

i

k22

=kX
i

k2
q
kyk22 � 2� �XT

i

y

where the last equality comes from direct calculation

Thus m
i

is given the maximum of the above quantity over ±X
i

,

m
i

= kX
i

k2
q
kyk22 � 2� + |XT

i

y|, i = 1, . . . p

Lastly, subtitute � = g(y · �/�
max

). Then m
i

< � is precisely the
safe rule given on previous slide
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