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Last time: convex sets and functions

“Convex calculus” makes it easy to check convexity. Tools:

e Definitions of convex sets and functions, classic examples
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e Key properties (e.g., first- and second-order characterizations
for functions)

e Operations that preserve convexity (e.g., affine composition)
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E.g., iS max {log <(aT(L'—|—b)7> s HA[E + bH?} Convex?



Outline

Today:
e Optimization terminology
e Properties and first-order optimality

e Equivalent transformations



Convex optimization problems

Optimization problem:

min f(@)

subject to  ¢g;(x) <0,i=1,...m

Here D = dom(f) N2, dom(g;) N(;—, dom(h;), common
domain of all the functions

This is a convex optimization problem provided the functions f
and g;,7 = 1,...m are convex, and h;,j = 1,...p are affine:

hj(:v):ajrqubj, j=1,...p



Optimization terminology
Reminder: a convex optimization problem (or program) is
' T
min f(@)
subject to  g;(x) <0,i=1,...m

where f and g;, i = 1,...m are all convex, hj, j=1,...,p are
affine, and the optimization domain is D (often we do not write
D) where D = dom(f) N (L, dom(g;) N(;—, dom(g;)
e f is called criterion or objective function
e g; is called inequality constraint function
e h; is called equality constraint function
elfxeD, gi(x) <0,i=1,...m,and hj(z)=0,j=1,...,p
then x is called a feasible point
e The minimum of f(z) over all feasible points x is called the
optimal value, written f*



e If = is feasible and f(x) = f*, then x is called optimal; also
called a solution, or a minimizer!

e If x is feasible and f(x) < f*+¢, then x is called e-suboptimal
e If z is feasible and g;(x) = 0, then we say g; is active at x
e Convex minimization can be reposed as concave maximization

mxin f(z) max — flz

)
subject to  g;(z) <0, « subject to gi(z) <0
1=1,...m 2:1,...m

Az =0b Axr =10

Both are called convex optimization problems

INote: a convex optimization problem need not have solutions, i.e., need
not attain its minimum, but we will not be careful about this



Convex solution sets

Let Xopt be the set of all solutions of convex problem, written

Xopt = argmin f(x)
subject to ¢g;(z) <0,i=1,...m
Ax =10

Key property: Xopt is a convex set

Proof: use definitions. If x,y are solutions, then for 0 <t <1,
etr+(1—t)jye D
o giltr + (1 —t)y) <tgi(z) + (1 —t)gi(y) <0
e Atz + (1 —t)y) =tAz+ (1 —t)Ay =0
o fltz+ (1 —t)y) <tf(x)+ (1 —-t)f(y) = f*

Therefore tx 4 (1 — t)y is also a solution

Another key property: if f is strictly convex, then the solution is
unique, i.e., Xopt contains one element



Example: lasso
Given y € R", X € R"*P, consider the lasso problem:
min ly — XBI2
subject to  [|5]l1 < s

Is this convex? What is the criterion function? The inequality and
equality constraints? Feasible set? Is the solution unique, when:

e n > pand X has full column rank?

e p > n ("high-dimensional” case)?



Example: lasso
Given y € R", X € R"*P, consider the lasso problem:
min ly — XBI2
subject to  [|5]l1 < s

Is this convex? What is the criterion function? The inequality and
equality constraints? Feasible set? Is the solution unique, when:

e n > pand X has full column rank?

e p > n ("high-dimensional” case)?

How do our answers change if we changed criterion to Huber loss:

82| — 6% else
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Example: support vector machines

Given y € {—1,1}", X € R"*P with rows z1,...x,, consider the
support vector machine or SVM problem:

1 9 n
min — +C .
o, QHﬂHg ;f
subject to & >0,i=1,...n

v B+B)>1—6&, i=1,...n

Is this convex? What is the criterion, constraints, feasible set? Is
the solution (3, B0, &) unique?



Local minima are global minima

For convex optimization problems, local minima are global minima

Local minimum: If z is feasible (z € D, and satisfies all
constraints) and minimizes f in a local neighborhood, i.e. for some
p>0

f(x) < f(y) for all feasible y, ||z —yll2 < p

10



Local minima are global minima
For convex optimization problems, local minima are global minima

Local minimum: If z is feasible (z € D, and satisfies all
constraints) and minimizes f in a local neighborhood, i.e. for some

p>0
f(x) < f(y) for all feasible y, ||z —yll2 < p

For convex problems, z is also a global minimum

f(z) < f(y) for all feasible y
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This is a very useful
fact and will save us
a lot of trouble!
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Rewriting constraints
The optimization problem
min f(x)
x

subject to  g;(x) <0,i=1,...m
Ar =1b

can be rewritten as

min f(x) subject to z € C
x

where C'={z:g;(x) <0, i=1,...m, Ax = b}, the feasible set.

Hence the above formulation is completely general

11



Rewriting constraints
The optimization problem
min f(x)
x

subject to  g;(x) <0,i=1,...m
Ar =1b

can be rewritten as
min f(x) subject to z € C
X

where C = {z : gi(z) <0, i=1,...m, Az = b}, the feasible set.
Hence the above formulation is completely general

With I¢ the indicator of C, we can write this in unconstrained form
min f(x)+ Ic(x)
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First-order optimality condition

For a convex problem
min f(z) subject to z € C
x
and differentiable f, a feasible point x is optimal if and only if

Vi) '(y—z)>0 forallyeC

This is called the first-order condition
for optimality

In words: all feasible directions from z
are aligned with gradient V f(x)
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First-order optimality condition

For a convex problem
min f(z) subject to z € C
x
and differentiable f, a feasible point x is optimal if and only if

Vi) '(y—z)>0 forallyeC

This is called the first-order condition
for optimality

In words: all feasible directions from z
are aligned with gradient V f(z)

T

5 V4
4

Important special case: if C' = R"™ (unconstrained optimization),
then optimality condition reduces to familiar V f(x) = 0
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Example: quadratic minimization
Consider minimizing the quadratic function
fz) = %xTQx +blz+c
where Q = 0. The first-order condition says that solution satisfies
Vix)=Qx+b=0

Cases:
e if @ = 0, then there is a unique solution z = —Q b
e if Q is singular and b ¢ col(Q), then there is no solution (i.e.,

min, f(x) = —0o0)
e if @ is singular and b € col(Q), then there are infinitely many
solutions

r=-Qb+2z =zcnulQ)

where Q7 is the pseudoinverse of Q
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Example: projection onto a convex set

Consider projection onto convex set C"
1 2 .
min §||a —z|3 subject to ze€C
x

First-order optimality condition says that the solution x satisfies

Vi) (y—z)=(x—-a)l(y—z)>0 forallyeC

Equivalently, this says that
a—1x € Ng(z)

where recall N¢(z) is the normal
cone to C at x
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Partial optimization

Reminder: g(z) = mingec f(z,y) is convex in x, provided that f
is convex in (x,y) and C' is a convex set

Therefore we can always partially optimize a convex problem and
retain convexity

E.g., if we decompose = = (x1,x2) € R™ "2 then

min f(x1,22) min f(z1)

Z1,22
—

subject to  g1(z1) <0 subject to  g1(z1) <0

g2(xz2) <0

where f(z1) = min{f(z1,z2) : g2(z2) < 0}. The right problem is
convex if the left problem is
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Example: hinge form of SVMs
Recall the SVM problem

min
B,80,€

subject to & > 0, yi(xiTB +B0)>1-&,i=1,...n

1 n
5”5“% + CZ&'
i=1

Rewrite the constraints as & > max{0,1 — y;(z! 8 + £o)}. Indeed
we can argue that we have = at solution

Therefore plugging in for optimal £ gives the hinge form of SVMs:

win S1818+ 0> [1 - T8+ 5o)]

i=1

where a4y = max{0,a} is called the hinge function

16



Transformations and change of variables

If h: R — R is a monotone increasing transformation, then
min f(z) subject to z € C
X

<= min h(f(x)) subject to =z € C

For example, maximizing log likelihood instead of maximizing
likelihood

If ¢ : R™ — R™ is one-to-one, and its image covers feasible set C,
then we can change variables in an optimization problem:

min f(x) subject to z € C
x

= min f(6(y)) subject to $(y) € C

17



Introducing slack variables
Simplifying inequality constraints. Given the problem

min f(z)
x
subject to  gi(x) <0,i=1,...m
Ax =10
we can transform the inequality constraints via
min f(zx)
s
subject to s; >0,71=1,...m
gi(x)+s;=0,1=1,...m
Ax =19

Note: this is no longer convex unless g;, t = 1,...,n are affine
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Example: SVM derivation (hard margin constraint)

The hard-margin SVM problem is originally cast as:

. Lo
min -
min 51813

subject to  y;(z7 B4+ Bo) >1,i=1,...n
Introducing slack variables &;, we get

. 1,
min —
nin 51812

subject to & >0, yi(zl B+ By)=1—-&,i=1,...n
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Relaxing nonaffine equality constraints
Given an optimization problem
n&in f(z) subject to ze€C
we can always take an enlarged constraint set C' O C' and consider
rr}ﬁcin f(z) subject to xe€C

This is called a relaxation and its optimal value is always smaller or
equal to that of the original problem

20



Relaxing nonaffine equality constraints
Given an optimization problem
n&in f(z) subject to ze€C
we can always take an enlarged constraint set C' O C' and consider
rr}ﬁcin f(z) subject to xe€C

This is called a relaxation and its optimal value is always smaller or
equal to that of the original problem

Important special case: relaxing nonaffine equality constraints, i.e.,
hj(x)=0,j=1,...r
where hj, j = 1,...r are convex but nonaffine, are replaced with

hj(x) <0,j=1,...r
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Example: principal components analysis
Given X € R™*P, consider the low rank approximation problem:

m]%n |X — R||% subject to rank(R) =k

25!
rank(A) denotes the rank of A. Also called principal components

analysis or PCA problem.

Here [|A]|%2 =30, 2521 A2 the entrywise squared ¢ norm, and

This problem is not convex. Why?

21



Example: principal components analysis
Given X € R™*P, consider the low rank approximation problem:

m}%n |X — R||% subject to rank(R) =k

Here [|A]|%2 =30, Py A?j, the entrywise squared ¢ norm, and
rank(A) denotes the rank of A. Also called principal components

analysis or PCA problem.
This problem is not convex. Why?

Given X = UDVT, singular value decomposition or SVD, the

solution is
R =U,D, V¥

where Uy, V. are the first k columns of U,V and Dy is the first k&
diagonal elements of D. l.e., R is reconstruction of X from its first
k principal components
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We can recast the PCA problem in a convex form. First rewrite as

énigr; |X — XZ||% subject to rank(Z) =k, Z is a projection
€

> max tr(SZ) subject to rank(Z) =k, Z is a projection
€

where S = XT X . Hence constraint set is the nonconvex set
C= {Z e N(Z) e {01}, i=1,...p, tr(Z) = k}

where \;(Z), i = 1,...n are the eigenvalues of Z. Solution in this
formulation is
ARA

where V}, gives first k columns of V

22



Now consider relaxing constraint set to i = conv(C'), its convex
hull. Note

Fro={Z2ecSP:\(Z2)c[0,1],i=1,...p, tr(Z) =k}
={ZeSP:0=2Z=1, tr(2) =k}

Recall this is called the Fantope of order k

Hence, the linear maximization over the Fantope, namely

max tr(SZ)
ZEFy

is convex. Remarkably, this is equivalent to the nonconvex PCA
problem (admits the same solution)!

(Famous result: Fan (1949), “On a theorem of Weyl conerning
eigenvalues of linear transformations”)
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