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Recall: standard form 
convex optimization problemConvex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex
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Recall: equivalent 
transformations

Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z

Convex optimization problems 4–11
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Recall: equivalent 
transformations

• introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m

Convex optimization problems 4–12



Recall: equivalent 
transformations

• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

• minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)

Convex optimization problems 4–13
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Outline
• Canonical Optimization Problems 

• Linear Programs (LP) 

• Quadratic Programs (QP) 

• Second Order Cone Programs (SOCP) 

• Semi-definite Programs (SDP) 

• Cone Programs 
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Hey, what about QPs?

Finally, our old friend QPs “sneak” into the hierarchy. Turns out
QPs are SOCPs, which we can see by rewriting a QP as

min

x,t

c

T

x+ t

subject to Dx  d,

1

2

x

T

Qx  t

Ax = b

Now write 1
2x

T

Qx  t () k( 1p
2
Q

1/2
x,

1
2(1� t))k2  1

2(1 + t)

Take a breath (phew!). Thus we have established the hierachy

LPs ✓ QPs ✓ SOCPs ✓ SDPs ✓ Conic programs

completing the picture we saw at the start
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Linear ProgramLinear program (LP)

minimize cTx+ d
subject to Gx ≼ h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c

Convex optimization problems 4–17



Linear Program

• First introduced by Kantorovich in the late 1930s and Dantzig 
in the 1940s  

• Dantzig’s simplex algorithm gives a direct (non-iterative) solver 
for LPs (later in the course we’ll see interior point methods)  

• Fundamental problem in convex optimization. Many diverse 
applications, rich history  

Linear program (LP)

minimize cTx+ d
subject to Gx ≼ h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c
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Example: Diets
Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj, contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax ≽ b, x ≽ 0

piecewise-linear minimization

minimize maxi=1,...,m(aTi x+ bi)

equivalent to an LP

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m

Convex optimization problems 4–18
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Example: Transportation
Example: transportation problem

Ship commodities from given sources to destinations at minimum
cost

min

x

mX

i=1

nX

j=1

c

ij

x

ij

subject to

nX

j=1

x

ij

 s

i

, i = 1, . . . ,m

mX

i=1

x

ij

� d

j

, j = 1, . . . , n, x � 0

Interpretation:

•
s

i

: supply at source i

•
d

j

: demand at destination j

•
c

ij

: per-unit shipping cost from i to j

•
x

ij

: units shipped from i to j

7

Example: transportation problem

Ship commodities from given sources to destinations at minimum
cost

min

x

mX

i=1

nX

j=1

c

ij

x

ij

subject to

nX

j=1

x

ij

 s

i

, i = 1, . . . ,m

mX

i=1

x

ij

� d

j

, j = 1, . . . , n, x � 0

Interpretation:

•
s

i

: supply at source i

•
d

j

: demand at destination j

•
c

ij

: per-unit shipping cost from i to j

•
x

ij

: units shipped from i to j

7



Example: Transportation
Example: transportation problem

Ship commodities from given sources to destinations at minimum
cost

min

x

mX

i=1

nX

j=1

c

ij

x

ij

subject to

nX

j=1

x

ij

 s

i

, i = 1, . . . ,m

mX

i=1

x

ij

� d

j

, j = 1, . . . , n, x � 0

Interpretation:

•
s

i

: supply at source i

•
d

j

: demand at destination j

•
c

ij

: per-unit shipping cost from i to j

•
x

ij

: units shipped from i to j

7

Example: transportation problem

Ship commodities from given sources to destinations at minimum
cost

min

x

mX

i=1

nX

j=1

c

ij

x

ij

subject to

nX

j=1

x

ij

 s

i

, i = 1, . . . ,m

mX

i=1

x

ij

� d

j

, j = 1, . . . , n, x � 0

Interpretation:

•
s

i

: supply at source i

•
d

j

: demand at destination j

•
c

ij

: per-unit shipping cost from i to j

•
x

ij

: units shipped from i to j

7

Example: transportation problem

Ship commodities from given sources to destinations at minimum
cost

min

x

mX

i=1

nX

j=1

c

ij

x

ij

subject to

nX

j=1

x

ij

 s

i

, i = 1, . . . ,m

mX

i=1

x

ij

� d

j

, j = 1, . . . , n, x � 0

Interpretation:

•
s

i

: supply at source i

•
d

j

: demand at destination j

•
c

ij

: per-unit shipping cost from i to j

•
x

ij

: units shipped from i to j

7



Quadratic ProgramsQuadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx ≼ h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)

Convex optimization problems 4–22



Example: Least Squares
Examples

least-squares
minimize ∥Ax− b∥22

• analytical solution x⋆ = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l ≼ x ≼ u

linear program with random cost

minimize c̄Tx+ γxTΣx = E cTx+ γ var(cTx)
subject to Gx ≼ h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)

Convex optimization problems 4–23



Example: Linear Program 
with random costLinear program (LP)

minimize cTx+ d
subject to Gx ≼ h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c

Convex optimization problems 4–17
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Example: Support Vector 
MachinesExample: support vector machines

Given y 2 {�1, 1}n, X 2 Rn⇥p having rows x1, . . . xn, recall the
support vector machine or SVM problem:

min

�,�0,⇠

1

2

k�k22 + C

nX

i=1

⇠

i

subject to ⇠

i

� 0, i = 1, . . . n

y

i

(x

T

i

� + �0) � 1� ⇠

i

, i = 1, . . . n

This is a quadratic program
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Second Order Cone 
Programming (SOCP)Second-order cone programming

minimize fTx
subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

• inequalities are called second-order cone (SOC) constraints:

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

• more general than QCQP and LP

Convex optimization problems 4–25

Second-order cone program

A second-order cone program or SOCP is an optimization problem
of the form:

min

x

c

T

x

subject to kD
i

x+ d

i

k2  e

T

i

x+ f

i

, i = 1, . . . p

Ax = b

This is indeed a cone program. Why? Recall the second-order cone

Q = {(x, t) : kxk2  t}
So we have

kD
i

x+ d

i

k2  e

T

i

x+ f

i

() (D

i

x+ d

i

, e

T

i

x+ f

i

) 2 Q

i

for second-order cone Q

i

or appropriate dimensions. Now take
K = Q1 ⇥ . . .⇥Q

p

24

Recall the definition of a second-order cone:



Second Order Cone 
Programming (SOCP)Second-order cone programming
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Example: Robust Linear 
Program

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

• stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

Convex optimization problems 4–26



Example: Robust Linear 
Program — Deterministicdeterministic approach via SOCP

• choose an ellipsoid as Ei:

Ei = {āi + Piu | ∥u∥2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

• robust LP

minimize cTx
subject to aTi x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āTi x+ ∥PT

i x∥2 ≤ bi, i = 1, . . . ,m

(follows from sup∥u∥2≤1(āi + Piu)Tx = āTi x+ ∥PT
i x∥2)

Convex optimization problems 4–27
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Example: Robust Linear 
Program — Stochasticstochastic approach via SOCP

• assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

• aTi x is Gaussian r.v. with mean āTi x, variance xTΣix; hence

prob(aTi x ≤ bi) = Φ

(
bi − āTi x

∥Σ1/2
i x∥2

)

where Φ(x) = (1/
√
2π)

∫ x
−∞ e−t2/2 dt is CDF of N (0, 1)

• robust LP

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āTi x+ Φ−1(η)∥Σ1/2
i x∥2 ≤ bi, i = 1, . . . ,m

Convex optimization problems 4–28
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Generalized Inequalities
Generalized inequalities

a convex cone K ⊆ Rn is a proper cone if

• K is closed (contains its boundary)

• K is solid (has nonempty interior)

• K is pointed (contains no line)

examples

• nonnegative orthant K = Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}

• positive semidefinite cone K = Sn
+

• nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t+ x3t
2 + · · ·+ xnt

n−1 ≥ 0 for t ∈ [0, 1]}

Convex sets 2–16



Generalized Inequalities
generalized inequality defined by a proper cone K:

x ≼K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ intK

examples

• componentwise inequality (K = Rn
+)

x ≼Rn
+
y ⇐⇒ xi ≤ yi, i = 1, . . . , n

• matrix inequality (K = Sn
+)

X ≼Sn
+
Y ⇐⇒ Y −X positive semidefinite

these two types are so common that we drop the subscript in ≼K

properties: many properties of ≼K are similar to ≤ on R, e.g.,

x ≼K y, u ≼K v =⇒ x+ u ≼K y + v

Convex sets 2–17



Generalized Inequality 
ProgramsGeneralized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) ≼Ki 0, i = 1, . . . ,m

Ax = b

• f0 : R
n → R convex; fi : R

n → Rki Ki-convex w.r.t. proper cone Ki

• same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx+ g ≼K 0

Ax = b

extends linear programming (K = Rm
+ ) to nonpolyhedral cones

Convex optimization problems 4–35



Conic Programs

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) ≼Ki 0, i = 1, . . . ,m

Ax = b

• f0 : R
n → R convex; fi : R

n → Rki Ki-convex w.r.t. proper cone Ki

• same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx+ g ≼K 0

Ax = b

extends linear programming (K = Rm
+ ) to nonpolyhedral cones

Convex optimization problems 4–35



Semidefinite ProgramsSemidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · ·+ xnFn +G ≼ 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

x1F̂1 + · · ·+ xnF̂n + Ĝ ≼ 0, x1F̃1 + · · ·+ xnF̃n + G̃ ≼ 0

is equivalent to single LMI

x1

[
F̂1 0
0 F̃1

]
+x2

[
F̂2 0
0 F̃2

]
+· · ·+xn

[
F̂n 0
0 F̃n

]
+

[
Ĝ 0
0 G̃

]
≼ 0

Convex optimization problems 4–36
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Conic program

A conic program is an optimization problem of the form:

min

x

c

T

x

subject to Ax = b

D(x) + d 2 K

Here:

•
c, x 2 Rn, and A 2 Rm⇥n, b 2 Rm

•
D : Rn ! Y is a linear map, d 2 Y , for Euclidean space Y

•
K ✓ Y is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For
LPs, K = Rn

+; for SDPs, K = Sn+
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Semidefinite ProgramsSemidefinite program (SDP)
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is equivalent to single LMI

x1

[
F̂1 0
0 F̃1

]
+x2

[
F̂2 0
0 F̃2

]
+· · ·+xn

[
F̂n 0
0 F̃n

]
+

[
Ĝ 0
0 G̃

]
≼ 0
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Example: Eigenvalue 
MinimizationEigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) ≼ tI

• variables x ∈ Rn, t ∈ R

• follows from
λmax(A) ≤ t ⇐⇒ A ≼ tI
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Example: Matrix Norm 
MinimizationMatrix norm minimization

minimize ∥A(x)∥2 =
(
λmax(A(x)TA(x))

)1/2

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Rp×q)

equivalent SDP

minimize t

subject to

[
tI A(x)

A(x)T tI

]
≽ 0

• variables x ∈ Rn, t ∈ R

• constraint follows from

∥A∥2 ≤ t ⇐⇒ ATA ≼ t2I, t ≥ 0

⇐⇒
[

tI A
AT tI

]
≽ 0

Convex optimization problems 4–39



Hierarchy

4



LPs, QPsConvex quadratic program

A convex quadratic program or QP is an optimization problem of
the form

min

x

c

T

x+

1

2

x

T

Qx

subject to Dx  d

Ax = b

where Q ⌫ 0, i.e., positive semidefinite

Note that this problem is not convex when Q 6⌫ 0

From now on, when we say quadratic program or QP, we implicitly
assume that Q ⌫ 0 (so the problem is convex)

12

Linear program

A linear program or LP is an optimization problem of the form

min

x

c

T

x

subject to Dx  d

Ax = b

Observe that this is always a convex optimization problem

• First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

• Dantzig’s simplex algorithm gives a direct (noniterative) solver
for LPs (later in the course we’ll see interior point methods)

• Fundamental problem in convex optimization. Many diverse
applications, rich history

5

LP QP

Hey, what about QPs?

Finally, our old friend QPs “sneak” into the hierarchy. Turns out
QPs are SOCPs, which we can see by rewriting a QP as

min

x,t

c

T

x+ t

subject to Dx  d,

1

2

x

T

Qx  t

Ax = b

Now write 1
2x

T

Qx  t () k( 1p
2
Q

1/2
x,

1
2(1� t))k2  1

2(1 + t)

Take a breath (phew!). Thus we have established the hierachy

LPs ✓ QPs ✓ SOCPs ✓ SDPs ✓ Conic programs

completing the picture we saw at the start
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SOCPs, SDPsObserve that every LP is an SOCP. Furthermore, every SOCP is an
SDP

Why? Turns out that

kxk2  t ()


tI x

x

T

t

�
⌫ 0

Hence we can write any SOCP constraint as an SDP constraint

The above is a special case of the Schur complement theorem:


A B

B

T

C

�
⌫ 0 () A�BC

�1
B

T ⌫ 0

for A,C symmetric and C � 0
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SDPs, Conic Programs

• LPs, SOCPs, QPs, SDPs all naturally can be written 
as Conic Programs for appropriate cones, as noted 
earlier

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) ≼Ki 0, i = 1, . . . ,m

Ax = b

• f0 : R
n → R convex; fi : R

n → Rki Ki-convex w.r.t. proper cone Ki

• same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx+ g ≼K 0

Ax = b

extends linear programming (K = Rm
+ ) to nonpolyhedral cones

Convex optimization problems 4–35



Hierarchy
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