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Recall: standard form
convex optimization problem

minimize  fo(x)
subject to  fi(x) <0, 1=1,..., m
aTx b;,, 1=1,..., D

e fo, f1, ..., fm are convex; equality constraints are affine

often written as

minimize  fo(x)
subject to  f;(x) <0, +1=1,..., m
Ax = b



Recall: equivalent
transtormations

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa



Recall: equivalent
transtormations

some common transformations that preserve convexity:

e eliminating equality constraints

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
Az =b

Is equivalent to

minimize (over z) fo(Fz + xg)
subject to filFz+x9) <0, 2=1,...,m

where F' and xg are such that

Ar=b <= 1z = Fz+ xy for some z



Recall: equivalent
transtormations

¢ Introducing equality constraints

minimize  fo(Aox + bo)
subject to  fi;(A;x+b;) <0, 1=1,...,m

Is equivalent to

minimize (over z, v;) fo(yo)
subject to fily;) <0, +=1,....,m

yZ:AZQJ—sz, i:O,l,...,m



Recall: equivalent
transtormations

e epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t

subject to fo(x) =t <0
f@(ﬂl’) < O, 1=1,..., m
Ax =10



Recall: equivalent
transtormations

e minimizing over some variables

minimize  fo(z1, 72)
subject to  fi(x1) <0, i=1,...,m

IS equivalent to

minimize  fo(21)
subject to  fi(x1) <0, i=1,...,m

where fo(x1) = infa, fo(z1, 72)



Recall: equivalent
transtormations

¢ introducing slack variables for linear inequalities

minimize  fo(x)
subject to aiT:zz <b, 1=1,....m

Is equivalent to

minimize (over z, s) fo(x)

subject to alx+s,=b;, 1=1,...

87;20, z:l,m



Outline

Canonical Optimization Problems
Linear Programs (LP)

Quadratic Programs (QP)

Second Order Cone Programs (SOCP)
Semi-definite Programs (SDP)

Cone Programs



Outline

LPs C QPs € SOCPs C SDPs C Conic programs

. e - - I — - R ————



L Inear Program

minimize clz+d
subject to Gz =X h
Ax =b
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron




L Inear Program

minimize clz+d
subject to Gz <X h
Axr = b

e First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

e Dantzig’s simplex algorithm gives a direct (non-iterative) solver
for LPs (later in the course we'll see interior point methods)

 Fundamental problem in convex optimization. Many diverse
applications, rich history



Example: Diets

diet problem: choose quantities x1, ..., z,, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient g

e healthy diet requires nutrient ¢ in quantity at least b;



Example: Diets

diet problem: choose quantities x1, ..., z,, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient g

e healthy diet requires nutrient ¢ in quantity at least b;

to find cheapest healthy diet,

minimize ¢!z

subjectto Ax >b, x>0



Example: [ransportation

Ship commodities from given sources to destinations at minimum
cost

e s; : supply at source ¢
e d; : demand at destination j
e c;; : per-unit shipping cost from ¢ to j

e x;; : units shipped from ¢ to j



Example: [ransportation

Ship commodities from given sources to destinations at minimum
cost

e s; : supply at source ¢
e d; : demand at destination j
e c;; : per-unit shipping cost from ¢ to j

e x;; : units shipped from ¢ to j

m n
min E E CijLij
x

i=1 j=1

n
subject to inj <s,1=1....m
j=1

m
injZdj,jzl,...,n, CIZZO
1=1



Quadratic Programs

minimize  (1/2)z! Pz +qlz+r
subject to Gzx X h
Ax =0
e P c S soobjective is convex quadratic

e minimize a convex quadratic function over a polyhedron




Example: Least Squares

minimize || Az — bl|3

e analytical solution z* = ATb (AT is pseudo-inverse)

e can add linear constraints, e.q., [ < x < u



Example: Linear Program
with random cost

Consider:
minimize clx+d
subject to Gz <X h
Axr = b

SUpPpPOoSse:

e c Is random vector with mean ¢ and covariance X

T T

e hence, ¢!z is random variable with mean &'z and variance 2z Xz



Example: Linear Program
with random cost

minimize c¢lx + vzl Yer = Eclx + vy var(c )

subjectto Gx <X h, Ax=05>

e c Is random vector with mean ¢ and covariance X

T

T2 is random variable with mean é! = and variance 21 Y«

e hence, c

e v > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)



Example: Support Vector
Machines

Given y € {—1,1}", X € R™*P having rows x1,... Ty, recall the
support vector machine or SVM problem:

1. &
min = +C -
B,BO,S 2"5”2 ;gz
subject to § >0, ¢1=1,...n

yi(@] B+ o) >1 =&, i=1,...n

This is a quadratic program



Second Order Cone
Programming (SOCP)

minimize flx
subject to  ||Asx +bills < clx+d;, i=1,....m
Fr=g
(A; € R"*" F e RP™™)

e inequalities are called second-order cone (SOC) constraints:

(Ajxz + b;, ¢! © + d;) € second-order cone in R

Recall the definition of a second-order cone: {(z,t) : ||z|2 < t}



Second Order Cone
Programming (SOCP)

minimize flx
subject to  ||Asx +bills < clx+d;, i=1,....m
Fr=g
(A; € R"*" F e RP™™)

e inequalities are called second-order cone (SOC) constraints:

(Ajxz + b;, ¢! © + d;) € second-order cone in R

e for n; = 0, reduces to an LP



Example: Robust Linear
Program

the parameters in optimization problems are often uncertain, e.g., in an LP
minimize ¢’z
subject to alx <b;, i=1,...,m,

there can be uncertainty in ¢, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize ¢!z

subject to alxz <b;foralla; €&, i=1,...,m,

e stochastic model: a; is random variable; constraints must hold with
probability n

minimize !z

subject to prob(alz <b;))>n, i=1,...,m



Example: Robust Linear
Program — Deterministic

e choose an ellipsoid as &;:
Ei={ai+Pullul2<1}  (a; eR", P eR™)
center is a;, semi-axes determined by singular values/vectors of P;

e robust LP

minimize ¢!z

subject to alx <b; Va; €&, i=1,...,m



Example: Robust Linear
Program — Deterministic

e choose an ellipsoid as &;:
Ei={ai+Pullul2<1}  (a; eR", P eR™)
center is a;, semi-axes determined by singular values/vectors of P;

e robust LP

minimize ¢!z

subject to alx <b; Va; €&, i=1,...,m

Is equivalent to the SOCP

minimize cl'x

subject to  alxz + ||Plx|2 <b;, i=1,...,m

(follows from supy,,<1(@; + Piu)' = = aj « + || P z|2)



Example: Robust Linear
Program — Stochastic

e assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N(a;, %))

e a!x is Gaussian r.v. with mean a}

b, — al
prob(a] xz < b;) = ® 1/37’ -
1225772

x, variance =1 Y,z hence

where ®(z) = (1/v/27) [*_e~t/2dt is CDF of N(0,1)



Example: Robust Linear
Program — Stochastic

e assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N(a;, %))

T

)

T

)

b, — al
prob(a] xz < b;) = ® 1/37’ -
1225772

e a!x is Gaussian r.v. with mean a! x, variance 1Y, x: hence

where ®(z) = (1/v/27) [*_e~t/2dt is CDF of N(0,1)

e robust LP

minimize iz

subject to prob(alz <b;)) >n, i=1,...,m,



Example: Robust Linear
Program — Stochastic

assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N(a;, 3;))

T

)

b, — al
prob(a] xz < b;) = ® ( i :1:)

al'x is Gaussian r.v. with mean a! z, variance 21 X;x; hence

RGP
where ®(z) = (1/v/2m) [*_ et /2 dt is CDF of N(0,1)

robust LP

minimize iz

subject to prob(alz <b;)) >n, i=1,...,m,

with n > 1/2, is equivalent to the SOCP

minimize cl'y

subject to  alx + <I>_1(77)HE;[/23:H2 <b, i=1,...,m



Generalized Inequalities

a convex cone K C R" is a proper cone if

e K is closed (contains its boundary)
e K is solid (has nonempty interior)

e K is pointed (contains no line)

examples
e nonnegative orthant K =R ={x e R" | z; >0, i=1,...,n}

e positive semidefinite cone K = S’}



Generalized Inequalities

generalized inequality defined by a proper cone K:
r gy <<= y—zxe€k, r<gy < y—xzecintk
examples
e componentwise inequality (X = R"})
ij:ty — x; vy, 1=1,....n
e matrix inequality (K =S’)
X 551 Y <= Y — X positive semidefinite

these two types are so common that we drop the subscript in <k

properties: many properties of <y are similar to < on R, e.g.,

gy, U=gvVv — TH+uUu=ky+v



Generalized Inequality
Programs

convex problem with generalized inequality constraints

minimize  fo(x)
subject to  fi(z) 2k, i=1,...,m
Ar =10

e fo:R" = R convex; f; : R" = R" K;-convex w.r.t. proper cone K

e same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)



Conic Programs

conic form problem: special case with affine objective and constraints

minimize clx

subject to Fr+ g <g 0
Ax =0

extends linear programming (K = R'") to nonpolyhedral cones



Semidefinite Programs

minimize c¢lx

subject to x1Fy + xoFo + - -+ x,, F + G =<0
Axr =0

with £, G € S”

e inequality constraint is called linear matrix inequality (LMI)



Semidefinite Programs

minimize c¢lx

subject to x1Fy + xoFo + - -+ x,, F + G =<0
Axr =0

with £, G € S”

e inequality constraint is called linear matrix inequality (LMI)

Both LPs and SDPs are special cases of conic programming. For
LPs, K = R%; for SDPs, K = 8"



Semidefinite Programs

minimize c¢lx

subject to x1Fy + xoFo + - -+ x,, F + G =<0
Axr =0

with £, G € S”

e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,

~

o Py 4+ x,F, éﬁ o1 F 4+ a,F, 4+ G =<0

Is equivalent to single LMI

Fl 0 FQ 0 Fn 0 é 0
- - ok, . o )
C’31[0 F1]+x2[o F2]+ ”[0 Fn]+[0 G]_



Example: Eigenvalue
MIinimization
minimize Apax(A(x))

where A(x) = Ag+ 141+ -+ - + 2, A, (with given A; € Sk)

equivalent SDP
minimize t
subject to A(x) S tl

e variables x € R", t € R

e follows from
Amax(A) <t <— A<Lt]



Example: Matrix Norm
Minimization
minimize || A(z)]2 = (Amax(A(z)TA(z)))"
where A(z) = Ag + 2141 + -+ + 2, Ay, (with given 4; € RP™9)
equivalent SDP
minimize t

subject to [ t Alz) ] ~ 0

A(x)l I

e variables z € R" t € R

e constraint follows from

[Alls <t <= ATA<I, t>0

tI A
[AT t[]to



Hierarchy




| Ps, QPs

LP QP
. T . T 1 T
mxm c X min c x+ 5:1:‘ Qx
subject to Dx < d subject to Dz < d
Ax = b Ar = b

LPs C QPs



QPs, SOCPs

Note that using tricks from equivalent transformations,
we can rewrite QPs as:

min Ly + 1
x,t

1
subject to Dz < d, §ZETQ£E <t

Axr = 0>

Now write 327 Qr <t < H(\%Ql/%}, s(L—1)2 < 5(1+1)

QPs C SOCPs



SOCPs, SDPs

tl «x
alls <t < {QCT t

-

Hence we can write any SOCP constraint as an SDP constraint

SOCPs C SDPs



SDPs, Conic Programs

conic form problem: special case with affine objective and constraints

minimize clx

subject to Fzxz+ g <0
Axr =0b

extends linear programming (/K = R'") to nonpolyhedral cones

* [ Ps, SOCPs, QPs, SDPs all naturally can be written
as Conic Programs for appropriate cones, as noted
earlier



Hierarchy

Take a breath (phew!). Thus we have established the hierachy

LPs C QPs € SOCPs C SDPs C Conic programs



