Convexity I: Sets and Functions

Lecturer: Aarti Singh

Co-instructor: Pradeep Ravikumar

Convex Optimization 10-725/36-725

See supplements for reviews of

- basic real analysis
- basic multivariate calculus
- basic linear algebra

Quiz: updated link

Auditors: need to complete quizzes.

Outline

Today:

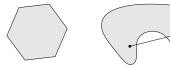
- Convex sets
- Examples
- Key properties
- Operations preserving convexity
- Same, for convex functions

Convex sets

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x, y \in C \implies tx + (1-t)y \in C \text{ for all } 0 \le t \le 1$$

In words, line segment joining any two elements lies entirely in set

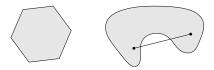


Convex sets

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x, y \in C \implies tx + (1-t)y \in C \text{ for all } 0 \le t \le 1$$

In words, line segment joining any two elements lies entirely in set



Convex combination of $x_1, \ldots x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \ldots + \theta_k x_k$$

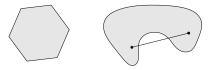
with $\theta_i \geq 0$, $i=1,\ldots k$, and $\sum_{i=1}^k \theta_i = 1$.

Convex sets

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x, y \in C \implies tx + (1-t)y \in C \text{ for all } 0 \le t \le 1$$

In words, line segment joining any two elements lies entirely in set



Convex combination of $x_1, \ldots x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \ldots + \theta_k x_k$$

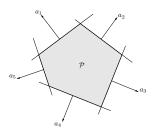
with $\theta_i \geq 0$, i = 1, ... k, and $\sum_{i=1}^k \theta_i = 1$.

Convex hull of a set C, $\operatorname{conv}(C)$, is all convex combinations of elements. Always convex. Smallest convex set that contains C.

Examples of convex sets

- Trivial ones: empty set, point, line
- Norm ball: $\{x : ||x|| \le r\}$, for given norm $||\cdot||$, radius r
- Hyperplane: $\{x: a^Tx = b\}$, for given a, b
- Halfspace: $\{x: a^T x \leq b\}$
- Affine space: $\{x: Ax = b\}$, for given A, b

• Polyhedron: $\{x: Ax \leq b\}$, where inequality \leq is interpreted componentwise. Note: the set $\{x: Ax \leq b, Cx = d\}$ is also a polyhedron (why?)



• Simplex: special case of polyhedra, given by $\operatorname{conv}\{x_0, \dots x_k\}$, where these points are affinely independent. The canonical example is the probability simplex,

$$conv{e_1, \dots e_n} = \{w : w \ge 0, 1^T w = 1\}$$

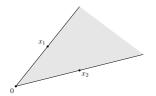
Cones

Cone: $C \subseteq \mathbb{R}^n$ such that

$$x \in C \implies tx \in C \text{ for all } t \ge 0$$

Convex cone: cone that is also convex, i.e.,

$$x_1, x_2 \in C \implies t_1x_1 + t_2x_2 \in C \text{ for all } t_1, t_2 \ge 0$$



Conic combination of $x_1, \ldots x_k \in \mathbb{R}^n$: any linear combination

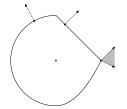
$$\theta_1 x_1 + \ldots + \theta_k x_k$$

with $\theta_i \geq 0$, i = 1, ...k. Conic hull collects all conic combinations

Examples of convex cones

- Norm cone: $\{(x,t): \|x\| \le t\}$, for a norm $\|\cdot\|$. Under ℓ_2 norm $\|\cdot\|_2$, called second-order cone
- Normal cone: given any set C and point $x \in C$, we can define

$$\mathcal{N}_C(x) = \{g : g^T x \ge g^T y, \text{ for all } y \in C\}$$

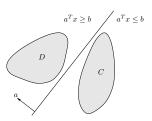


This is always a convex cone, regardless of ${\cal C}$

• Positive semidefinite cone: $\mathbb{S}^n_+ = \{X \in \mathbb{S}^n : X \succeq 0\}$, where $X \succeq 0$ means that X is positive semidefinite (and \mathbb{S}^n is the set of $n \times n$ symmetric matrices)

Key properties of convex sets

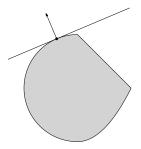
 Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them



Formally: if C, D are nonempty convex sets with $C \cap D = \emptyset$, then there exists a, b such that

$$C \subseteq \{x : a^T x \le b\}$$
$$D \subseteq \{x : a^T x > b\}$$

 Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it



Formally: if C is a nonempty convex set, and $x_0 \in \mathrm{bd}(C)$, then there exists a such that

$$C \subseteq \{x : a^T x \le a^T x_0\}$$

Both of the above theorems (separating and supporting hyperplane theorems) have partial converses; see Section 2.5 of BV

Operations preserving convexity

- Intersection: the intersection of convex sets is convex
- Scaling and translation: if C is convex, then

$$aC + b = \{ax + b : x \in C\}$$

is convex for any a, b

• Affine images and preimages: if f(x) = Ax + b and C is convex then

$$f(C) = \{f(x) : x \in C\}$$

is convex, and if D is convex then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

is convex

Example: linear matrix inequality solution set

Given $A_1, \ldots A_k, B \in \mathbb{S}^n$, a linear matrix inequality is of the form

$$x_1A_1 + x_2A_2 + \ldots + x_kA_k \leq B$$

for a variable $x \in \mathbb{R}^k$. Let's prove the set C of points x that satisfy the above inequality is convex

Approach 1: directly verify that $x,y\in C\Rightarrow tx+(1-t)y\in C.$ This follows by checking that, for any v,

$$v^{T} \Big(B - \sum_{i=1}^{k} (tx_{i} + (1-t)y_{i})A_{i} \Big) v \ge 0$$

Approach 2: let $f: \mathbb{R}^k \to \mathbb{S}^n$, $f(x) = B - \sum_{i=1}^k x_i A_i$. Note that $C = f^{-1}(\mathbb{S}^n_+)$, affine preimage of convex set

Example: Fantope

Given some integer $k \geq 0$, the Fantope of order k is

$$\mathcal{F}_k = \left\{ Z \in \mathbb{S}^n : 0 \le Z \le I, \ \operatorname{tr}(Z) = k \right\}$$

where recall the trace operator $\operatorname{tr}(Z) = \sum_{i=1}^n Z_{ii}$ is the sum of the diagonal entries. Let's prove that \mathcal{F}_k is convex

Approach 1: verify that $0 \leq Z, W \leq I$ and $\mathrm{tr}(Z) = \mathrm{tr}(W) = k$ implies the same for tZ + (1-t)W

Approach 2: recognize the fact that

$$\mathcal{F}_k = \{ Z \in \mathbb{S}^n : Z \succeq 0 \} \cap \{ Z \in \mathbb{S}^n : Z \preceq I \} \cap \{ Z \in \mathbb{S}^n : \operatorname{tr}(Z) = k \}$$

intersection of linear inequality and equality constraints (hence like a polyhedron but for matrices)

Convex functions

Convex function: $f: \mathbb{R}^n \to \mathbb{R}$ such that $\mathrm{dom}(f) \subseteq \mathbb{R}^n$ convex, and

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for $0 \le t \le 1$

and all $x, y \in dom(f)$

In words, f lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

$$f$$
 concave $\iff -f$ convex

Important modifiers:

- Strictly convex: f(tx + (1-t)y) < tf(x) + (1-t)f(y) for $x \neq y$ and 0 < t < 1. In words, f is convex and has greater curvature than a linear function
- Strongly convex with parameter m > 0: $f \frac{m}{2} ||x||_2^2$ is convex. In words, f is at least as convex as a quadratic function

Note: strongly convex \Rightarrow strictly convex \Rightarrow convex

(Analogously for concave functions)

Examples of convex functions

- Univariate functions:
 - **Exponential function**: e^{ax} is convex for any a over \mathbb{R}
 - Power function: x^a is convex for $a \ge 1$ or $a \le 0$ over \mathbb{R}_+ (nonnegative reals)
 - ▶ Power function: x^a is concave for $0 \le a \le 1$ over \mathbb{R}_+
 - ▶ Logarithmic function: $\log x$ is concave over \mathbb{R}_{++}
- Affine function: $a^Tx + b$ is both convex and concave
- Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \succeq 0$ (positive semidefinite)
- Least squares loss: $\|y-Ax\|_2^2$ is always convex (since A^TA is always positive semidefinite)

• Norm: ||x|| is convex for any norm; e.g., ℓ_p norms,

$$||x||_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$$
 for $p \ge 1$, $||x||_\infty = \max_{i=1,\dots n} |x_i|$

and also operator (spectral) and trace (nuclear) norms,

$$||X||_{\text{op}} = \sigma_1(X), \quad ||X||_{\text{tr}} = \sum_{i=1}^r \sigma_r(X)$$

where $\sigma_1(X) \geq \ldots \geq \sigma_r(X) \geq 0$ are the singular values of the matrix X

• Indicator function: if C is convex, then its indicator function

$$I_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

is convex

 Support function: for any set C (convex or not), its support function

$$I_C^*(x) = \max_{y \in C} x^T y$$

is convex

• Max function: $f(x) = \max\{x_1, \dots x_n\}$ is convex

Key properties of convex functions

- A function is convex if and only if its restriction to any line is convex
- Epigraph characterization: a function f is convex if and only if its epigraph

$$\operatorname{epi}(f) = \{(x, t) \in \operatorname{dom}(f) \times \mathbb{R} : f(x) \le t\}$$

is a convex set

• Convex sublevel sets: if *f* is convex, then its sublevel sets

$$\{x \in \text{dom}(f) : f(x) \le t\}$$

are convex, for all $t \in \mathbb{R}$. The converse is not true

• First-order characterization: if f is differentiable, then f is convex if and only if $\mathrm{dom}(f)$ is convex, and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x,y\in \mathrm{dom}(f)$. Therefore for a differentiable convex function $\nabla f(x)=0\iff x$ minimizes f

• First-order characterization: if f is differentiable, then f is convex if and only if $\mathrm{dom}(f)$ is convex, and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x,y \in \text{dom}(f)$. Therefore for a differentiable convex function $\nabla f(x) = 0 \iff x$ minimizes f

• Second-order characterization: if f is twice differentiable, then f is convex if and only if $\mathrm{dom}(f)$ is convex, and $\nabla^2 f(x) \succeq 0$ for all $x \in \mathrm{dom}(f)$

• First-order characterization: if f is differentiable, then f is convex if and only if dom(f) is convex, and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \text{dom}(f)$. Therefore for a differentiable convex function $\nabla f(x) = 0 \iff x$ minimizes f

- Second-order characterization: if f is twice differentiable, then f is convex if and only if $\mathrm{dom}(f)$ is convex, and $\nabla^2 f(x) \succeq 0$ for all $x \in \mathrm{dom}(f)$
- Jensen's inequality: if f is convex, and X is a random variable supported on $\mathrm{dom}(f)$, then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

Operations preserving convexity

- Nonnegative linear combination: $f_1, \ldots f_m$ convex implies $a_1 f_1 + \ldots + a_m f_m$ convex for any $a_1, \ldots a_m \geq 0$
- Pointwise maximization: if f_s is convex for any $s \in S$, then $f(x) = \max_{s \in S} f_s(x)$ is convex. Note that the set S here (number of functions f_s) can be infinite
- Partial minimization: if g(x,y) is convex in x,y, and C is convex, then $f(x)=\min_{y\in C}\ g(x,y)$ is convex

Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C under an arbitrary norm $\|\cdot\|$:

$$f(x) = \max_{y \in C} \|x - y\|$$

Let's check this is convex: $f_y(x) = ||x - y||$ is convex in x for any fixed y, so by pointwise maximization rule, f is convex

Now let C be convex, and consider the minimum distance to C:

$$f(x) = \min_{y \in C} \|x - y\|$$

Let's check this is convex: $g(x,y)=\|x-y\|$ is convex in x,y jointly, and C is assumed convex, so apply partial minimization rule

More operations preserving convexity

- Affine composition: f convex implies g(x) = f(Ax + b) convex
- General composition: suppose $f = h \circ g$, where $g : \mathbb{R}^n \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$, $f : \mathbb{R}^n \to \mathbb{R}$. Then:
 - lacksquare f is convex if h is convex and nondecreasing, g is convex
 - lacksquare f is convex if h is convex and nonincreasing, g is concave
 - lacksquare f is concave if h is concave and nondecreasing, g concave
 - lacksquare f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

Vector composition: suppose that

$$f(x) = h(g(x)) = h(g_1(x), \dots g_k(x))$$

where $g: \mathbb{R}^n \to \mathbb{R}^k$, $h: \mathbb{R}^k \to \mathbb{R}$, $f: \mathbb{R}^n \to \mathbb{R}$. Then:

- ▶ f is convex if h is convex and nondecreasing in each argument, g is convex
- ▶ f is convex if h is convex and nonincreasing in each argument, g is concave
- ► *f* is concave if *h* is concave and nondecreasing in each argument, *g* is concave
- ▶ f is concave if h is concave and nonincreasing in each argument, g is convex

Example: log-sum-exp function

Log-sum-exp function: $g(x) = \log(\sum_{i=1}^k e^{a_i^T x + b_i})$, for fixed a_i, b_i , i = 1, ...k. Often called "soft max", as it smoothly approximates $\max_{i=1,...k} (a_i^T x + b_i)$

How to show convexity? First, note it suffices to prove convexity of $f(x) = \log(\sum_{i=1}^n e^{x_i})$ (affine composition rule)

Now use second-order characterization. Calculate

$$\nabla_i f(x) = \frac{e^{x_i}}{\sum_{\ell=1}^n e^{x_\ell}}$$

$$\nabla^2_{ij} f(x) = \frac{e^{x_i}}{\sum_{\ell=1}^n e^{x_\ell}} 1\{i = j\} - \frac{e^{x_i} e^{x_j}}{(\sum_{\ell=1}^n e^{x_\ell})^2}$$

Write $\nabla^2 f(x) = \operatorname{diag}(z) - zz^T$, where $z_i = e^{x_i}/(\sum_{\ell=1}^n e^{x_\ell})$.

The matrix $H = \nabla^2 f(x) = \operatorname{diag}(z) - zz^T$, where $z_i = e^{x_i}/(\sum_{\ell=1}^n e^{x_\ell})$, is diagonally dominant,

$$H_{ii} \ge \sum_{j \ne i} |H_{ji}|,$$

hence positive semidefinite.

Infact, using composition rules, we have that $\log(\sum_{i=1}^k e^{g_i(x)})$ is convex whenever $g_i(x)$ are convex.

References and further reading

- S. Boyd and L. Vandenberghe (2004), "Convex optimization", Chapters 2 and 3
- J.P. Hiriart-Urruty and C. Lemarechal (1993), "Fundamentals of convex analysis", Chapters A and B
- R. T. Rockafellar (1970), "Convex analysis", Chapters 1–10,