
Conjugate Gradient Descent 



2 

Conjugate Direction Methods 



3 

Motivation 
Conjugate direction methods can be regarded as being between  
the method of steepest descent (first-order method that uses 
gradient) and Newton’s method (second-order method that uses 
Hessian as well).  

 

Motivation:  

!  steepest descent is slow. Goal: Accelerate it!  

! Newton method is fast… BUT: 
 we need to calculate the inverse of the Hessian 

matrix…  
  

Something between steepest descent and Newton method? 
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Conjugate Direction Methods 
Goal: 
•  Accelerate the convergence rate of steepest descent 
•  while avoiding the high computational cost of Newton’s 

method 

Originally developed for solving the quadratic problem: 

Equivalently, our goal is to solve: 

Conjugate direction methods can solve this problem at most n 
iterations (usually for large n less is enough) 
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Conjugate Direction Methods 

!  algorithm for the numerical solution of linear equations, whose 
matrix Q is symmetric and positive-definite. 

!  An iterative method, so it can be applied to systems that are too 
large to be handled by direct methods  
(such as the Cholesky decomposition.) 

 

!  Algorithm for seeking minima of nonlinear equations. 
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Numerical Experiments 

A comparison of 

 

* gradient descent with optimal step 
size (in green) and 

* conjugate vector (in red)  

 

for minimizing a quadratic function. 

 

 

Conjugate gradient converges in at 
most n steps (here n=2). 
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Conjugate directions 

!  In the applications that we consider, the matrix Q will be positive 
definite but this is not inherent in the basic definition.  

!  If Q = 0, any two vectors are conjugate.  

!  if Q = I, conjugacy is equivalent to the usual notion of orthogonality. 

Definition [Q-conjugate directions] 
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Linear independence lemma 

Lemma [Linear Independence] 

Proof: [Proof by contradiction] 
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Why is Q-conjugacy useful? 
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Quadratic problem 

Goal:   

the unique solution to this problem is also the unique solution to the linear 
equation: 
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Importance of Q-conjugancy 

Therefore, 

Standard orthogonality is not enough anymore, 

We need to use Q-conjugacy.  
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Importance of Q-conjugancy 

No need to do matrix inversion! We only need to calculate inner products. 

This can be generalized further such a way that the 
 starting point of the iteration can be arbitrary x0 

n - 1 n - 1 
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Conjugate Direction Theorem 

Theorem [Conjugate Direction Theorem] 

In the previous slide we had 

No need to do matrix inversion! We only need to calculate inner products. 

[update rule] 

[gradient of f] 
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Proof 

Therefore, it is enough to prove that with these αk values we have 
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Proof 

Therefore, 

We already know 

Q.E.D. 



16 

Another motivation for Q-conjugacy 

Goal:   

Therefore, 

n separate 1-dimensional optimization problems! 
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Expanding Subspace Theorem 
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Expanding Subspace Theorem 
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Expanding Subspace Theorem 
Theorem [Expanding Subspace Theorem] 
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Expanding Subspace Theorem 
Proof 
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Proof 

By definition, 

Therefore, 
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Proof 

We have proved 

By definition, 

Therefore, 
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Proof 

Since 

[By induction assumption], 

Therefore, 

Q.E.D. 

[We have proved this] 
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Corollary of Exp. Subs. Theorem 
Corollary 
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THE CONJUGATE GRADIENT METHOD 
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THE CONJUGATE GRADIENT METHOD 

!  The conjugate gradient method is a conjugate direction method 

!   Selects the successive direction vectors as a conjugate version of the 
successive gradients obtained as the method progresses.  

!  The conjugate directions are not specified beforehand, but rather are 
determined sequentially at each step of the iteration. 

Given d0,…, dn-1, we already have an update rule for αk  

How should we choose vectors d0,…, dn-1?  

The conjugate gradient method 
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THE CONJUGATE GRADIENT METHOD 

Advantages 

!  Simple update rule 

!  the directions are based on the gradients, therefore  the process makes 
good uniform progress toward the solution at every step.  
 

For arbitrary sequences of conjugate directions the progress may be 
slight until the final few steps 
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Conjugate Gradient Algorithm 

!  The CGA is only slightly more complicated to implement than the 
method of steepest descent but converges in a finite number of 
steps on quadratic problems.  

!  In contrast to Newton method, there is no need for matrix inversion. 

Conjugate Gradient Algorithm 
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Conjugate Gradient Theorem 

To verify that the algorithm is a conjugate direction algorithm, all we 
need is to verify that the vectors d0,…,dk are Q-orthogonal. 

Theorem [Conjugate Gradient Theorem] 

The conjugate gradient algorithm is a conjugate direction method. 

a) 

b) 

c) 

d) 

e) 

Only αk needs matrix Q in the algorithm! 
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Proofs 
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EXTENSION TO NONQUADRATIC PROBLEMS 
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EXTENSION TO NONQUADRATIC PROBLEMS 

Do quadratic approximation 

This is similar to Newton’s method.  
 [f is approximated by a quadratic function] 

!  When applied to nonquadratic problems, conjugate gradient 
methods will not usually terminate within n steps.  

!  After n steps, we can restart the process from this point and run 
the algorithm for another n steps… 

Goal: 
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Conjugate Gradient Algorithm 
for nonquadratic functions 

Step 1 

Step 2 

Step 3 
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Properties of CGA 

!  An attractive feature of the algorithm is that, just as in the pure 
form of Newton’s method, no line searching is required at any stage.  

!  The algorithm converges in a finite number of steps for a quadratic 
problem.  

!  The undesirable features are  that Hessian matrix must be evaluated 
at each point.  
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LINE SEARCH METHODS 
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Step 1 

Step 2 

Step 3 

Fletcher–Reeves method 
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Line search method 

 

Hessian is not used in the algorithm 

 

In the quadratic case it is identical to the original conjugate direction 
algorithm 

Fletcher–Reeves method 
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Polak–Ribiere method 

Again this leads to a value identical to the standard formula in the 
quadratic case.  

 

Experimental evidence seems to favor the Polak–Ribiere method over 
other methods of this general type. 

Same as Fletcher–Reeves method, BUT: 
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Convergence rate 
Under some conditions the line search method is globally convergent. 

 

Under some conditions, the rate is 

[since one complete n step cycle solves a quadratic problem similarly 

To the Newton method] 
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Acceleration 

Conjugate gradient method attempts to accelerate gradient descent by 
building in momentum. 

Recall:       

 

 

First one implies: 

 
 

Substituting last two into first one: 

 

dk�1 =
xk � xk�1

↵k�1

= xk � ↵kgk +
↵k�k�1

↵k�1
(xk � xk�1)

xk+1 = xk � ↵kgk + ↵k�k�1dk�1

Momentum term 
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Summary 

!  Conjugate Direction Methods 

 - conjugate directions 

!  Minimizing quadratic functions 

!  Conjugate Gradient Methods for nonquadratic functions 

 - Line search methods 

  * Fletcher–Reeves 

  * Polak–Ribiere 

   


