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Conjugate Direction Methods



Conjugate direction methods can be regarded as being between
the method of steepest descent (first-order method that uses

gradient) and Newton’s method (second-order method that uses
Hessian as well).

Motivation:

 steepest descent is slow. Goal: Accelerate it!

1 Newton method is fast... BUT:

we need to calculate the inverse of the Hessian
matrix...

Something between steepest descent and Newton method?



Conjugate Direction Methods

Goal:
o Accelerate the convergence rate of steepest descent

e while avoiding the high computational cost of Newton'’s
method

Originally developed for solving the quadratic problem:
1 7 T
Qg]IRr)% Ex Qr —b «x

Assume matrix Q € R**" is positive definite

Equivalently, our goal isto solve: (Qx = b, z € R"

Conjugate direction methods can solve this problem at most n
iterations (usually for large n less is enough)



Conjugate Direction Methods

A algorithm for the numerical solution of linear equations, whose
matrix Q is symmetric and positive-definite.

Q An iterative method, so it can be applied to systems that are too
large to be handled by direct methods
(such as the Cholesky decomposition.)

A Algorithm for seeking minima of nonlinear equations.



Numerical Experiments

A comparison of

* gradient descent with optimal step
size (in green) and

* conjugate vector (in red)

for minimizing a quadratic function.

Conjugate gradient converges in at

most n steps (here n=2). \ /
N\ /




Conjugate directions

Definition [Q-conjugate directions]
Let Q be a symmetric matrix.

{dq,d>,...,d} vectors (d; € R", d; # 0) are
@-orthogonal (conjugate) w.r.t Q, if

df'Qd; =0, Vi # j

d In the applications that we consider, the matrix Q will be positive
definite but this is not inherent in the basic definition.

Q If Q = 0, any two vectors are conjugate.

Q if Q = I, conjugacy is equivalent to the usual notion of orthogonality.



Linear independence lemma

Lemma [Linear Independence]
Let Q be positive definite.

If {d1,d>...,d;} vectors are (Q-conjugate, then
they are linearly independent.

Proof: [Proof by contradiction]
If dk = Oéldl 4+ ...+ ak—ldk—lr then

0 < dlQdp = diQ(ard1 + ...+ ap_1dk_1)

= a1d; Qd1 + ...+ oy _1dLQdy_1 =0 6
—— V"
O o



Why is Q-conjugacy useful?



Quadratic problem

. 1
Goal: min —wTQa: — bz
xER? 2

Assume matrix Q € R**" is positive definite

the unique solution to this problem is also the unique solution to the linear
equation:

Qxr =0b, x € R"

Let #* denote the solution.
Let {dg,dq1,...,d,—1} vectors be Q-conjugate.

Since {dg,dq,...,d,_1} vectors are independent,

r*=apdo+ ... +ayp_1d,_1
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Importance of Q-conjugancy

xr* =apdyo+ ... +ap_1d,_1
Therefore,

di Qz* = d} Q(agdy + ... + ap_1dn_1) = o4d] Qd;

T T
aj =ttt =
d; Qd;  d; Qd;
We don't need to know z* to get «;!

Standard orthogonality is not enough anymore,

We need to use Q-conjugacy.
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Importance of Q-conjugancy

xr* =apdyo+ ... +ap_1d,_1

dl'd
C\iz — T’l
di Qd;
L — Ay — T )

No need to do matrix inversion! We only need to calculate inner products.

The expansion for * can be considered to be the result of an
iterative process of n steps where at the ith step «;d; is added.

This can be generalized further such a way that the
starting point of the iteration can be arbitrary x,,
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Conjugate Direction Theorem

In the previous slide we had

dTb d—1 d—1 d%b
= -k Tt = apdy, = dy,
h d}, Qdy, kzzjo kzzjo dj; Qdj,

Theorem [Conjugate Direction Theorem]
Let {dg,dq1,...,d,_1} vectors be Q-conjugate.
xog € R™ be an arbitrary starting point.

Tp+1 — Tk —+ O‘kdk [update rule]

>—
g = ka — b [gradient of f]
oy = — gede _ (Qup—b)Tdy
di Qdy, di Qdy,

Then after n steps, =, = x*.

No need to do matrix inversion! We only need to calculate inner products. ;5



Since {dg,dq,...,d,_1} vectors are independent,

= x* — xo =oaodo+ ...+ ap_1d,_1
for some aq,...,a,_1

Using the x4 = x, + agd, update rules, we have

r1 = 0 T aodo
ro = xg + apdp

- aq1dq

T = o+ aodp +@1d1 + ... +ap_1dp_1

rn =20+ apdg +1d1 + ... +ap_1d,,_1 = z*

Therefore, it is enough to prove that with these o, values we have

. —

_ 9
di Qdy,
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We already know

x* — xg = apdp -
T — xg = agdg -
gk —
Therefore,

- ...t a,_1d,1q
— Oildl —|— .o —|— ak—ldk—l

Qzrp — b= Qx — Qr* = Q(xf, — =)

di Q(a* — xg) = di Q(apdo + - .. + ap_1dy—1) = oy dl Qdy,

di Q(z*—=z0)
= qp = k&
k di Qdy,

di Q(wp, — wo) = di. Q(apdo + 1d1 + ... + og_1d_1) =0

diQ(z* — z0) = di Q(a* — z, + z), — o) = d}, Q(z* — )

= di Q(z*—=z0) _ di Q(z*—wp) _
di Qdy,

di gx Q.E.D
di Qdy, di Qdy, e
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Another motivation for Q-conjugacy

. 1
Goal: min —wTQa: — bz
xER? 2

xr—xg=caodyg+ ...+ a,_1d,_1 fOr some {Oéi}?_l c R

Therefore,

n_

1 n—1 1 n—1
f(x) = 5[2130 + Zo a;d;] Qo + Oajdj] — b [zo + Z a;d;]
]:

Jj= 5=0
f@=ct+ 3 Slwo+t ajd;]" Qlzo + ajd;] — b' [xo + ajd]
]:

n separate 1-dimensional optimization problems! .



Expanding Subspace Theorem



Expanding Subspace Theorem
Let B, = span(dp,...,dp_1) C R"

[k-dimensional subspace of R"]

We will show as the method of conjugate directions progresses
each z; minimizes the objective f(z) = 327 Qx — b’z
both over zg + By and zj._1 + adp_1, o« € R

T arg min %:UTQLU —bl'x
T =21 T adg_1
acR

z, = argmin 327 Qx — b1z
r=xq+DB
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Expanding Subspace Theorem

Theorem [Expanding Subspace Theorem]

—_—

Let {d;},—; ! be a sequence of Q-conjugate vectors in R”

xo € R™ arbitrary

Th41 = Tf T oy

0 = — g5 di
di Qdy,
+(x) -
Tl = arg min %xTQa: — bl

T =1 T odg_1

é‘< a € R

z, = argmin 3z’ Qx —
r= xO—I—Bk
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Expanding Subspace Theorem

Proof

It is enough to show that X, + By
xp Mminimizes f on x = xg + B
since it contains the line:

T =xp_1+ adg_q

[By the definition of By] /

S

-('(Xo.\'- Ve - QXe - &

Since f is striclty convex,
it is enough to show that
gr = f'(z;.) is orthogonal to By

We prove g;. L B;. by induction.

20



We prove g;. L B;. by induction.

k=0: Bp is empty set.
Assume that g, L By, and prove that gi41 L Byyg

By definition,
Th4+1 = Tk T agdg
gr = Qg — b
Therefore,
gk+1 = Qrpyr1 — b= Q(z + agdy) — b
= (Qz — b) + . Qdy, = g1, + ;. Qdj,
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First let us prove that g4 L dj.

We have proved

Igk+1 = gk + o Qdy,

By definition,
o — g5 di
k di Qdy,
Therefore,

dLgrr1 = di(gp + apQdy) = digr —dig, =0

gk+1 L dg
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Now let us prove that g4 1 1 d;, ¢« <k.

Since

Ik+1 = 9k T+ o Qdy, [We have proved this]
gr L By, = span(dp,...,dg_1)
[By induction assumption],
Therefore,

di g1 = di (g5 + uQdy) = d} g, + apd! Qd, =0

9k+1 L d;, Vi <k

We have proved g1 L By+1  where By = span(dg,...,d)
Q.E.D.
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Corollary of Exp. Subs. Theorem

Corollary

g, L B, = span(dp,...,d;_1)
gld; =0vV0<i<k

D=BygC...CB,CBp,=R"

Since x;, minimizes f over xg + B,
= xp, IS the minimum of f in R™.
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THE CONJUGATE GRADIENT METHOD
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THE CONJUGATE GRADIENT METHOD

Given d,,..., d._;, we already have an update rule for o,

_ 9
di Qdy,

Oékz

How should we choose vectors d,,,..., d._;?

The conjugate gradient method

d The conjugate gradient method is a conjugate direction method

O Selects the successive direction vectors as a conjugate version of the
successive gradients obtained as the method progresses.

d The conjugate directions are not specified beforehand, but rather are
determined sequentially at each step of the iteration.
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THE CONJUGATE GRADIENT METHOD

Advantages

d Simple update rule

A the directions are based on the gradients, therefore the process makes
good uniform progress toward the solution at every step.

For arbitrary sequences of conjugate directions the progress may be
slight until the final few steps

27



Conjugate Gradient Algorithm

Let g € R™ be arbitrary.
dop = —go = b — Qxg

T
_ 9
o _
K di Qdy,
Tp41 = Tf T apdg —— Conjugate Gradient Algorithm
gr = Qxp — b

dip+1 = —9k+1 + Brdyg

T
5 _ gk_|_1Qdk
K di Qdy,

_—

O The CGA is only slightly more complicated to implement than the

method of steepest descent but converges in a finite number of
steps on quadratic problems.

A In contrast to Newton method, there is ho need for matrix inversion.
28



Conjugate Gradient Theorem

To verify that the algorithm is a conjugate direction algorithm, all we
need is to verify that the vectors d,,...,d, are Q-orthogonal.

Theorem [Conjugate Gradient Theorem]
The conjugate gradient algorithm is a conjugate direction method.

a) Span(QO).gla « . 7gk) — Span(907 QgOa SRR ngO)

b) Span(d07d17 “« . 7dk') — Span(gOanO7 . °7Qk90)
0 diQd; =0, Vi <k

T
oy, = 9i. 9k
d) di Qdy, Only o, needs matrix Q in the algorithm!
— Ik+19k+1
e) B, = +T

29
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EXTENSION TO NONQUADRATIC PROBLEMS
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EXTENSION TO NONQUADRATIC PROBLEMS

Goal: min f(az)
reR™

Do quadratic approximation
g = Vf(zr) Q= V3f(zy)

This is similar to Newton’s method.
[f is approximated by a quadratic function]

d When applied to nonquadratic problems, conjugate gradient
methods will not usually terminate within n steps.

A After n steps, we can restart the process from this point and run
the algorithm for another n steps...
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Conjugate Gradient Algorithm

for nonquadratic functions

Step 1
Starting at xg compute gog = Vf(xg) and set dg = —gp.
Step 2

For k=0,1,....n—1:

a) Set ry41 = 7 + ardy Where  qp =
b) Compute gp41 = Vf(Tr41)

c) Unless k =n — 1, setdp41 = —gr41 + Brdgwhere

gy
dL[V2 f(zy)]dy

B — Q]Z;|_1[v2f(37k)]dk
B T dT V2 (a)]dy

End for

Step 3
Replace zg by x, and go back to Step 1.
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Properties of CGA

d An attractive feature of the algorithm is that, just as in the pure
form of Newton’s method, no line searching is required at any stage.

d The algorithm converges in a finite number of steps for a quadratic
problem.

O The undesirable features are that Hessian matrix must be evaluated
at each point.
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LINE SEARCH METHODS
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Fletcher—Reeves method

Step 1
Starting at xg compute gog = Vf(zg) and set dg = —gp.
Step 2

For k=0,1,....n—1:

a) Set xp41 =z, + agdr Where oy, = arg ming f(xy, + ady,)
b) Compute gp41 = Vf(Tr41)

c) Unless k =n — 1, setdypy1 = —gg+1 + Brdipwhere

5k — g£+1gk+1
9% 9k

End for

Step 3
Replace zg by x, and go back to Step 1.
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Fletcher—Reeves method

Line search method

Hessian is not used in the algorithm

In the quadratic case it is identical to the original conjugate direction
algorithm
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Polak—Ribiere method

Same as Fletcher—Reeves method, BUT:

8, = (Ir+1—9%)" gt 1
93 9k

Again this leads to a value identical to the standard formula in the
quadratic case.

Experimental evidence seems to favor the Polak—Ribiere method over
other methods of this general type.
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Convergence rate

Under some conditions the line search method is globally convergent.

Under some conditions, the rate is
|2, — 2*|| < el — 2*]|2

[since one complete n step cycle solves a quadratic problem similarly
To the Newton method]
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Acceleration

Conjugate gradient method attempts to accelerate gradient descent by
building in momentum.

Recall:
Tp41 = T+ ogdg

dp4+1 = —gg4+1 + Brdyg

First one implies:

Substituting last two into first one:

Tht1 = Tk — Qkgr + Ok Pr—1dr_1
Oékﬁk—1(

O—1

Tk — T—1)
v 1
Momentum term 40

= Tk — Qg T




d Conjugate Direction Methods

- conjugate directions

d Minimizing quadratic functions

d Conjugate Gradient Methods for nonquadratic functions
- Line search methods

* Fletcher—Reeves

* Polak—Ribiere
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