
Barrier Methods
Lecturer: Pradeep Ravikumar 

Co-instructor: Aarti Singh 

Convex Optimization 10-725/36-725 



Optimization Methods Using 
Lagrange Multipliers



Optimization Methods Using 
Lagrange Multipliers

• Using a barrier, or a penalty function



Optimization Methods Using 
Lagrange Multipliers

• Using a barrier, or a penalty function

• constrained optimization problem is converted to a series of 
unconstrained optimization problems



Optimization Methods Using 
Lagrange Multipliers

• Using a barrier, or a penalty function

• constrained optimization problem is converted to a series of 
unconstrained optimization problems

• add a high cost to infeasibility or approaching boundary from interior



Optimization Methods Using 
Lagrange Multipliers

• Using a barrier, or a penalty function

• constrained optimization problem is converted to a series of 
unconstrained optimization problems

• add a high cost to infeasibility or approaching boundary from interior

• Barrier and Interior Point Methods



Optimization Methods Using 
Lagrange Multipliers

• Using a barrier, or a penalty function

• constrained optimization problem is converted to a series of 
unconstrained optimization problems

• add a high cost to infeasibility or approaching boundary from interior

• Barrier and Interior Point Methods

• Penalty and Augmented Lagrangian Methods



Optimization Methods Using 
Lagrange Multipliers

• Using a barrier, or a penalty function

• constrained optimization problem is converted to a series of 
unconstrained optimization problems

• add a high cost to infeasibility or approaching boundary from interior

• Barrier and Interior Point Methods

• Penalty and Augmented Lagrangian Methods

• That solve the necessary optimality conditions involving problem 
variables and Lagrange multipliers 



Optimization Methods Using 
Lagrange Multipliers

• Using a barrier, or a penalty function

• constrained optimization problem is converted to a series of 
unconstrained optimization problems

• add a high cost to infeasibility or approaching boundary from interior

• Barrier and Interior Point Methods

• Penalty and Augmented Lagrangian Methods

• That solve the necessary optimality conditions involving problem 
variables and Lagrange multipliers 

• Primal Dual Methods 



Inequality Constrained 
Problems

6.252 NONLINEAR PROGRAMMING

LECTURE 15: INTERIOR POINT METHODS

LECTURE OUTLINE

• Barrier and Interior Point Methods
• Linear Programs and the Logarithmic Barrier
• Path Following Using Newton’s Method

Inequality constrained problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where f and gj are continuous and X is closed.
We assume that the set

S =
{

x ∈ X | gj(x) < 0, j = 1, . . . , r
}

is nonempty and any feasible point is in the closure
of S.
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Inequality constrained problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where f and gj are continuous and X is closed.
We assume that the set

S =
{

x ∈ X | gj(x) < 0, j = 1, . . . , r
}

is nonempty and any feasible point is in the closure
of S.

S is the interior, relative to X, 
of the set defined by inequality constraints



Barrier MethodBARRIER METHOD

• Consider a barrier function, that is continuous
and goes to ∞ as any one of the constraints gj(x)
approaches 0 from negative values. Examples:

B(x) = −
r∑

j=1

ln
{
−gj(x)

}
, B(x) = −

r∑

j=1

1

gj(x)
.

• Barrier Method:

xk = arg min
x∈S

{
f(x) + ϵkB(x)

}
, k = 0, 1, . . . ,

where the parameter sequence {ϵk} satisfies 0 <
ϵk+1 < ϵk for all k and ϵk → 0.

S

Boundary of S Boundary of S

ε B(x)

ε ' B(x)
ε ' < ε
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Barrier & Interior Point 
Methods

• Barrier function is only defined on the interior set S 
(i.e. interior of set of all feasible points) 

• So if we start at an interior point, successive points 
will also be interior points 

• Hence also referred to as interior point methods
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Finding Interior Feasible 
Points

• Transformations of original optimization problem 
might have easily available feasible points
Example:

Equivalent, for c being a very large positive number:

For any x̄ infeasible for original problem, letting ȳ = max

r
j=1{a0j x̄� bj},

(x̄, ȳ + 1) is an interior feasible point.



ConvergenceCONVERGENCE

Every limit point of a sequence {xk} generated
by a barrier method is a global minimum of the
original constrained problem
Proof: Let {x} be the limit of a subsequence {xk}k∈K .
Since xk ∈ S and X is closed, x is feasible for the
original problem. If x is not a global minimum,
there exists a feasible x∗ such that f(x∗) < f(x)
and therefore also an interior point x̃ ∈ S such that
f(x̃) < f(x). By the definition of xk, f(xk)+ϵkB(xk) ≤
f(x̃) + ϵkB(x̃) for all k, so by taking limit

f(x) + lim inf
k→∞, k∈K

ϵkB(xk) ≤ f(x̃) < f(x)

Hence lim infk→∞, k∈K ϵkB(xk) < 0.
If x ∈ S, we have limk→∞, k∈K ϵkB(xk) = 0,

while if x lies on the boundary of S, we have by
assumption limk→∞, k∈K B(xk) = ∞. Thus

lim inf
k→∞

ϵkB(xk) ≥ 0,

– a contradiction.



Convergence
figure shows contours  
of f(x) + \epsilon B(x) 

Left:   \epsilon = 0.3 
Right: \epsilon = 0.03 

Optimal solution: 
x^* = (2,0)



LINEAR PROGRAMS/LOGARITHMIC BARRIER

• Apply logarithmic barrier to the linear programminimize c′x

subject to Ax = b, x ≥ 0,
(LP)

The method finds for various ϵ > 0,

x(ϵ) = arg min
x∈S

Fϵ(x) = arg min
x∈S

{
c′x − ϵ

n∑

i=1

ln xi

}
,

where S =
{

x | Ax = b, x > 0}. We assume that S is
nonempty and bounded.
• As ϵ → 0, x(ϵ) follows the central path

Point x(ε) on
central path

x∞

S

x* (ε = 0)

c

All central paths start at
the analytic center

x∞ = arg min
x∈S

{
−

n∑

i=1

ln xi

}
,

and end at optimal solu-
tions of (LP).
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PATH FOLLOWING W/ NEWTON’S METHOD

• Newton’s method for minimizing Fϵ:
x̃ = x + α(x − x),

where x is the pure Newton iterate

x = arg min
Az=b

{
∇Fϵ(x)′(z − x) + 1

2 (z − x)′∇2Fϵ(x)(z − x)
}

• By straightforward calculation

x = x − Xq(x, ϵ),

q(x, ϵ) =
Xz

ϵ
− e, e = (1 . . . 1)′, z = c − A′λ,

λ = (AX2A′)−1AX
(
Xc − ϵe

)
,

and X is the diagonal matrix with xi, i = 1, . . . , n
along the diagonal.
• View q(x, ϵ) as the Newton increment (x−x) trans-
formed by X−1 that maps x into e.
• Consider ∥q(x, ϵ)∥ as a proximity measure of the
current point to the point x(ϵ) on the central path.
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x = arg min
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Xz

ϵ
− e, e = (1 . . . 1)′, z = c − A′λ,

λ = (AX2A′)−1AX
(
Xc − ϵe

)
,

and X is the diagonal matrix with xi, i = 1, . . . , n
along the diagonal.
• View q(x, ϵ) as the Newton increment (x−x) trans-
formed by X−1 that maps x into e.
• Consider ∥q(x, ϵ)∥ as a proximity measure of the
current point to the point x(ϵ) on the central path.

q(x,\epsilon) = 0 iff 
x = x(\epsilon)



Path following
• x(\epsilon): solution of barrier problem with 

parameter \epsilon 

• \bar{x}: one Newton iterate from x 

• q(x,\epsilon): depends on one Newton iterate from 
x, approximates distance of x from x(\epsilon) 

• can be used to determine if we need more 
Newton iterations



KEY RESULTS

• It is sufficient to minimize Fϵ approximately, up
to where ∥q(x, ϵ)∥ < 1.

x∞

S

x*
Central Path

Set {x | ||q(x,ε0)|| < 1}

x(ε2)
x(ε1)

x(ε0)x0

x2

x1

If x > 0, Ax = b, and
∥q(x, ϵ)∥ < 1, then

c′x− min
Ay=b, y≥0

c′y ≤ ϵ
(
n+

√
n
)
.

• The “termination set”
{

x | ∥q(x, ϵ)∥ < 1
}

is part
of the region of quadratic convergence of the pure
form of Newton’s method. In particular, if ∥q(x, ϵ)∥ <
1, then the pure Newton iterate x = x − Xq(x, ϵ) is
an interior point, that is, x ∈ S. Furthermore, we
have ∥q(x, ϵ)∥ < 1 and in fact

∥q(x, ϵ)∥ ≤ ∥q(x, ϵ)∥2.
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SHORT STEP METHODS

S

x*
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Set {x | ||q(x,εk)|| < 1}

x∞

x(εk+1)

x(εk)xk 

xk+1 

Set {x | ||q(x,εk+1)|| < 1}

Following approximately the
central path by using a sin-
gle Newton step for each
ϵk. If ϵk is close to ϵk+1

and xk is close to the cen-
tral path, one expects that
xk+1 obtained from xk by
a single pure Newton step
will also be close to the
central path.

Proposition Let x > 0, Ax = b, and suppose that
for some γ < 1 we have ∥q(x, ϵ)∥ ≤ γ. Then if ϵ =
(1 − δn−1/2)ϵ for some δ > 0,

∥q(x, ϵ)∥ ≤
γ2 + δ

1 − δn−1/2
.

In particular, if
δ ≤ γ(1 − γ)(1 + γ)−1,

we have ∥q(x, ϵ)∥ ≤ γ.
• Can be used to establish nice complexity results;
but ϵ must be reduced VERY slowly.
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LONG STEP METHODS

• Main features:
− Decrease ϵ faster than dictated by complex-

ity analysis.
− Require more than one Newton step per (ap-

proximate) minimization.
− Use line search as in unconstrained New-

ton’s method.
− Require much smaller number of (approxi-

mate) minimizations.

S

x*
Central Path

x∞

x(εk+1)
x(εk)xk 

xk+1 
x(εk+2)xk+2 

(a) (b)
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• The methodology generalizes to quadratic pro-
gramming and convex programming.Short Step Method Long Step Method


