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* Using a barrier, or a penalty function

e constrained optimization problem is converted to a series of
unconstrained optimization problems

* add a high cost to infeasibility or approaching boundary from interior
* Barrier and Interior Point Methods
* Penalty and Augmented Lagrangian Methods

e [hat solve the necessary optimality conditions involving problem
variables and Lagrange multipliers

* Primal Dual Methods
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Inequality Constrained
Problems

Inequality constrained problem

minimize f(x)
subject to z € X, gi(x) <0, j=1,...,m

where f and g, are continuous and Xx is closed.
We assume that the set

S:{x€X|gj(x)<O,j:1,...,r}

IS nonempty and any feasible pointis in the closure
of s.

S is the interior, relative to X,
of the set defined by inequality constraints



Barrier Method
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Barrier Method

e Consider a bvarrier function, that is continuous
and goes to « as any one of the constraints g, (x)
approaches 0 from negative values. Examples:

T T

B(z) = — Zln{—gj(x)}, B(z) = — Z gji@.

g=1 g=1

e Barrier Method:
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Barrier Method

e Consider a bvarrier function, that is continuous
and goes to « as any one of the constraints g, (x)
approaches 0 from negative values. Examples:

T T

B(x)z—Zln{—gj(x)}, B(:U):—Zgjix).

g=1 g=1

e Barrier Method:

k . k
— B(x)Y,  k=0,1,...,
x arg :rcnelgl{f(a:) + € (a:)}

where the parameter sequence {<*} satisfies 0 <
e+l < ¢k for all k and & — o.

¢ B(x)

g'<e
e' B(x)

Boundary of S ” Boundary of S
o




Barrier & Interior Point
Methods

* Barrier function is only defined on the interior set S
(i.e. interior of set of all feasible points)

* SO If we start at an interior point, successive points
will also be interior points

* Hence also referred to as interior point methods
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might have easily available teasible points

Example:
minimize f(x)

subject to aix =b;, 1=1,...,m, x>0,

Equivalent, for ¢ being a very large positive number:
minimize f(z) + cy

subject to a;x + (b?;—Za@) y==b;,, 1=1,...,m, x>0, y >0,
Jj=1

x = 1,y = 1 is an interior feasible point.
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FInding Interior Feasible
Points

* Transformations of original optimization problem
might have easily available teasible points

Example:
minimize f(x)

subject to alx <b;, j=1,...,r7

Equivalent, for ¢ being a very large positive number:

minimize f(x) + cy

subject to a’z —y <b;, j=1,...,7, y=>0,

For any 7 infeasible for original problem, letting § = max’_,{a’Z — b;},
(z,y + 1) is an interior feasible point.



Convergence

Every limit point of a sequence {z*!} generated
by a barrier method is a global minimum of the
original constrained problem



Convergence

figure shows contours
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minimize f(x) = %(m% + :r:%)
subject to 2 < z1,

with optimal solution z* = (2, 0). For the case of the logarithmic barrier function
B(z) = —In(x1 — 2), we have

z® = arg min {%(mf—l—r%) —-ekln(:cl—.?)}: (1+\/1+ek,0),

T1>2
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LINEAR PROGRAMS/LOGARITHMIC BARRIER

o Apply logarithmic barrier to the linear program
minimize c'x (LP)

subjectto Az =0, x>0,

The method finds for various ¢ > o,
— . Fe — . ' — 1 ) )
x(€) arg min () arg min {c:z: ez nx }
i=1

where S = {z | Az =b, = > 0}. We assume that s is
nonempty and bounded.

o AS e — 0, z(e) follows the central path

All central paths start at
the analytic center

n
S xoo:argmig —E Inxz; p,
Tre
1=1

and end at optimal solu-
tions of (LP).

Point x(¢) on
central path
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e Newton’s method for minimizing F.:

T=x+ a(x —x),
where 7z is the pure Newton iterate
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o Consider |q(z,€)|| as a prozimity measure Of the
current point to the point z(¢) on the central path.



PATH FOLLOWING W/ NEWTON’S METHOD

e Newton’s method for minimizing F.:

T=x+ a(x —x),

where 7z is the pure Newton iterate

T = arg min {VFE(CC),(Z — )+ L(z —2) V°F.(z)(z — ac)}

Az=b
o By straightforward calculation

T=x— Xq(z,e€),

X
q(a:,e):—z—e, e=(1...1), z=c— A\,
€

A= (AX?A)TTAX (Xc — ee),

and x is the diagonal matrix with z;, i = 1,...,n
along the diagonal.

o View q(z, ¢) as the Newton increment (z—7z) trans-
formed by x—! that maps z into e.

o Consider |q(z,€)|| as a prozimity measure Of the
current point to the point z(¢) on the central path.

g(x,\epsilon) = O iff
X = x(\epsilon)



Path following

X(\epsilon): solution of barrier problem with
parameter \epsilon

\bar{x}: one Newton iterate from x

g(x,\epsilon): depends on one Newton iterate from
X, approximates distance of x from x(\epsilon)

e can be used to determine if we need more
Newton iterations



KEY RESULTS

o It is sufficient to minimize F. approximately, up
to where ||q(z, ¢)|| < 1.

r\_Central Path

\

If « > 07 Ax = b, and
lq(z, €)]| < 1, then

cdx— min Cdy< e(n—k\/ﬁ).
Ay=b,y>0

Set {x | lilg(x,%)ll <1}



KEY RESULTS

o It is sufficient to minimize F. approximately, up
to where ||q(z, ¢)|| < 1.

Central Path

If « > 07 Ax = b, and
lq(z, €)]| < 1, then

cdx— min Cdy< e(n—h/ﬁ).
Ay=b,y>0

Set {x | lilg(x,%)ll <1}

o The “termination set” {z | |lq(z,¢)|| < 1} is part

of the region of quadratic convergence of the pure
form of Newton’s method. In particular, if ||¢(x, €)|| <
1, then the pure Newton iterate z = = — Xq(z,¢) IS
an interior point, that is, z ¢ 5. Furthermore, we
have |q(z, )| < 1 and in fact

la(@, o)l < lla(z, )||*.



SHORT STEP METHODS

Following approximately the
central path by using a sin-

gle Newton step for each

ek, If € is close to eFt1
and z” is close to the cen-
tral path, one expects that
zF+1 obtained from z* by
a single pure Newton step
will also be close to the

central path.

Central Path

Set {x | llg(x,ek+ M)l

Set {x | llq(x,eK



SHORT STEP METHODS

Following approximately the
central path by using a sin-
gle Newton step for each
ek, If € is close to eFt1

and zF is close to the cen-

Central Path

Set {x | llg(x,ek+ M)l

Set{x I llq(x,eK
stixtlialx tral path, one expects that

zF+1 obtained from z* by
a single pure Newton step
will also be close to the
central path.

Proposition Let z > 0, Az = b, and suppose that
for some v < 1 we have |q(z,¢)|| < ~v. Thenif e =
(1 —sn—1/2)e fOor some § > 0,

v+

In particular, if
§ <A1 =1+
we have ||¢(z,9)|| < 7.

o Can be usedto establish nice complexity results;
but e must be reduced VERY slowly.



LONG STEP METHODS

o Main features:
— Decrease ¢ faster than dictated by complex-
ity analysis.
— Require more than one Newton step per (ap-
proximate) minimization.

— Use line search as in unconstrained New-
ton’s method.

— Require much smaller number of (approxi-
mate) minimizations.

Central Path
\
1
¢

1
xk+2 ¢ @ x(¢k+2)
xk+18 @ x(ck+1)

xk x(eX)
Xy

(a) (b)

Short Step Method Long Step Method



