Barrier Methods

Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh

Convex Optimization 10-725/36-725

• Using a **barrier**, or a **penalty** function

- Using a **barrier**, or a **penalty** function
 - constrained optimization problem is converted to a series of unconstrained optimization problems

- Using a **barrier**, or a **penalty** function
 - constrained optimization problem is converted to a series of unconstrained optimization problems
 - add a high cost to infeasibility or approaching boundary from interior

- Using a **barrier**, or a **penalty** function
 - constrained optimization problem is converted to a series of unconstrained optimization problems
 - add a high cost to infeasibility or approaching boundary from interior
 - Barrier and Interior Point Methods

- Using a **barrier**, or a **penalty** function
 - constrained optimization problem is converted to a series of unconstrained optimization problems
 - add a high cost to infeasibility or approaching boundary from interior
 - Barrier and Interior Point Methods
 - Penalty and Augmented Lagrangian Methods

- Using a **barrier**, or a **penalty** function
 - constrained optimization problem is converted to a series of unconstrained optimization problems
 - add a high cost to infeasibility or approaching boundary from interior
 - Barrier and Interior Point Methods
 - Penalty and Augmented Lagrangian Methods
- That solve the necessary optimality conditions involving problem variables and Lagrange multipliers

- Using a **barrier**, or a **penalty** function
 - constrained optimization problem is converted to a series of unconstrained optimization problems
 - add a high cost to infeasibility or approaching boundary from interior
 - Barrier and Interior Point Methods
 - Penalty and Augmented Lagrangian Methods
- That solve the necessary optimality conditions involving problem variables and Lagrange multipliers
 - Primal Dual Methods

Inequality Constrained Problems

Inequality constrained problem

minimize f(x)subject to $x \in X$, $g_j(x) \le 0, \ j = 1, \dots, r$,

where f and g_j are continuous and X is closed.

Inequality Constrained Problems

Inequality constrained problem

minimize f(x)subject to $x \in X$, $g_j(x) \le 0, \ j = 1, \dots, r$,

where f and g_j are continuous and X is closed. We assume that the set

$$S = \left\{ x \in X \mid g_j(x) < 0, \, j = 1, \dots, r \right\}$$

is nonempty and any feasible point is in the closure of *S*.

S is the **interior**, **relative to X**, of the set defined by inequality constraints

Barrier Method

• Consider a *barrier function*, that is continuous and goes to ∞ as any one of the constraints $g_j(x)$ approaches 0 from negative values. Examples:

$$B(x) = -\sum_{j=1}^{r} \ln\left\{-g_j(x)\right\}, \quad B(x) = -\sum_{j=1}^{r} \frac{1}{g_j(x)}.$$

Barrier Method

• Consider a *barrier function*, that is continuous and goes to ∞ as any one of the constraints $g_j(x)$ approaches 0 from negative values. Examples:

$$B(x) = -\sum_{j=1}^{r} \ln\left\{-g_j(x)\right\}, \quad B(x) = -\sum_{j=1}^{r} \frac{1}{g_j(x)}.$$

• Barrier Method:

 $x^{k} = \arg\min_{x \in S} \left\{ f(x) + \epsilon^{k} B(x) \right\}, \qquad k = 0, 1, \dots,$

where the parameter sequence $\{\epsilon^k\}$ satisfies $0 < \epsilon^{k+1} < \epsilon^k$ for all k and $\epsilon^k \to 0$.

Barrier Method

• Consider a *barrier function*, that is continuous and goes to ∞ as any one of the constraints $g_j(x)$ approaches 0 from negative values. Examples:

$$B(x) = -\sum_{j=1}^{r} \ln\left\{-g_j(x)\right\}, \quad B(x) = -\sum_{j=1}^{r} \frac{1}{g_j(x)}.$$

• Barrier Method:

 $x^{k} = \arg\min_{x \in S} \left\{ f(x) + \epsilon^{k} B(x) \right\}, \qquad k = 0, 1, \dots,$

where the parameter sequence $\{\epsilon^k\}$ satisfies $0 < \epsilon^{k+1} < \epsilon^k$ for all k and $\epsilon^k \to 0$.

Barrier & Interior Point Methods

- Barrier function is only defined on the interior set S (i.e. interior of set of all feasible points)
- So if we start at an interior point, successive points will also be interior points
- Hence also referred to as interior point methods

 Transformations of original optimization problem might have easily available feasible points

Example:

minimize
$$f(x)$$

subject to $a'_i x = b_i, \quad i = 1, \dots, m, \qquad x \ge 0,$

 Transformations of original optimization problem might have easily available feasible points

Example:

minimize
$$f(x)$$

subject to $a'_i x = b_i, \quad i = 1, \dots, m, \qquad x \ge 0,$

Equivalent, for c being a very large positive number:

minimize f(x) + cysubject to $a'_i x + \left(b_i - \sum_{j=1}^n a_{ij}\right) y = b_i, \quad i = 1, \dots, m, \quad x \ge 0, \ y \ge 0,$

 Transformations of original optimization problem might have easily available feasible points

Example:

minimize
$$f(x)$$

subject to $a'_i x = b_i, \quad i = 1, \dots, m, \qquad x \ge 0,$

Equivalent, for c being a very large positive number:

minimize
$$f(x) + cy$$

subject to $a'_i x + \left(b_i - \sum_{j=1}^n a_{ij}\right) y = b_i, \quad i = 1, \dots, m, \quad x \ge 0, \ y \ge 0,$

 $\bar{x} = \mathbf{1}, \bar{y} = 1$ is an interior feasible point.

 Transformations of original optimization problem might have easily available feasible points

Example:

minimize f(x)subject to $a'_j x \leq b_j, \quad j = 1, \dots, r,$

 Transformations of original optimization problem might have easily available feasible points

Example:

minimize f(x)subject to $a'_j x \leq b_j$, $j = 1, \dots, r$,

Equivalent, for c being a very large positive number:

minimize f(x) + cysubject to $a'_j x - y \le b_j, \quad j = 1, \dots, r, \quad y \ge 0,$

 Transformations of original optimization problem might have easily available feasible points

Example:

minimize f(x)subject to $a'_j x \leq b_j, \quad j = 1, \dots, r,$

Equivalent, for c being a very large positive number:

minimize f(x) + cysubject to $a'_j x - y \le b_j, \quad j = 1, \dots, r, \quad y \ge 0,$

For any \bar{x} infeasible for original problem, letting $\bar{y} = \max_{j=1}^{r} \{a'_j \bar{x} - b_j\}, (\bar{x}, \bar{y} + 1)$ is an interior feasible point.

Convergence

Every limit point of a sequence $\{x^k\}$ generated by a barrier method is a global minimum of the original constrained problem

Convergence

figure shows contours of f(x) + epsilon B(x)

Left: $\ensuremath{\mathsf{epsilon}} = 0.3$ Right: $\ensuremath{\mathsf{epsilon}} = 0.03$

Optimal solution: $x^* = (2,0)$

minimize $f(x) = \frac{1}{2} \left(x_1^2 + x_2^2 \right)$ subject to $2 \le x_1$,

with optimal solution $x^* = (2, 0)$. For the case of the logarithmic barrier function $B(x) = -\ln(x_1 - 2)$, we have

$$x^{k} = \arg\min_{x_{1}>2} \left\{ \frac{1}{2} \left(x_{1}^{2} + x_{2}^{2} \right) - \epsilon^{k} \ln\left(x_{1} - 2 \right) \right\} = \left(1 + \sqrt{1 + \epsilon^{k}} , 0 \right),$$

LINEAR PROGRAMS/LOGARITHMIC BARRIER

• Apply logarithmic barrier to the linear program minimize c'x

(LP)

subject to Ax = b, $x \ge 0$,

LINEAR PROGRAMS/LOGARITHMIC BARRIER

• Apply logarithmic barrier to the linear program minimize c'x (LP)

subject to Ax = b, $x \ge 0$,

The method finds for various $\epsilon > 0$,

$$x(\epsilon) = \arg\min_{x\in S} F_{\epsilon}(x) = \arg\min_{x\in S} \left\{ c'x - \epsilon \sum_{i=1}^{n} \ln x_i \right\},\$$

where $S = \{x \mid Ax = b, x > 0\}$. We assume that *S* is nonempty and bounded.

LINEAR PROGRAMS/LOGARITHMIC BARRIER

• Apply logarithmic barrier to the linear program minimize c'x (LP)

subject to Ax = b, $x \ge 0$,

The method finds for various $\epsilon > 0$,

$$x(\epsilon) = \arg\min_{x\in S} F_{\epsilon}(x) = \arg\min_{x\in S} \left\{ c'x - \epsilon \sum_{i=1}^{n} \ln x_i \right\},\$$

where $S = \{x \mid Ax = b, x > 0\}$. We assume that *S* is nonempty and bounded.

• As $\epsilon \to 0$, $x(\epsilon)$ follows the *central path*

All central paths start at the *analytic center*

$$x_{\infty} = \arg\min_{x\in S} \left\{ -\sum_{i=1}^{n} \ln x_i \right\},$$

and end at optimal solutions of (LP).

• Newton's method for minimizing F_{ϵ} :

 $\tilde{x} = x + \alpha(\overline{x} - x),$

where \overline{x} is the pure Newton iterate

$$\overline{x} = \arg\min_{Az=b} \left\{ \nabla F_{\epsilon}(x)'(z-x) + \frac{1}{2}(z-x)'\nabla^2 F_{\epsilon}(x)(z-x) \right\}$$

• Newton's method for minimizing F_{ϵ} :

 $\tilde{x} = x + \alpha(\overline{x} - x),$

where \overline{x} is the pure Newton iterate

$$\overline{x} = \arg\min_{Az=b} \left\{ \nabla F_{\epsilon}(x)'(z-x) + \frac{1}{2}(z-x)'\nabla^2 F_{\epsilon}(x)(z-x) \right\}$$

• By straightforward calculation

$$\overline{x} = x - Xq(x,\epsilon),$$

$$q(x,\epsilon) = \frac{Xz}{\epsilon} - e, \quad e = (1\dots1)', \quad z = c - A'\lambda,$$
$$\lambda = (AX^2A')^{-1}AX(Xc - \epsilon e),$$

and X is the diagonal matrix with x_i , i = 1, ..., n along the diagonal.

• Newton's method for minimizing F_{ϵ} :

 $\tilde{x} = x + \alpha(\overline{x} - x),$

where \overline{x} is the pure Newton iterate

$$\overline{x} = \arg\min_{Az=b} \left\{ \nabla F_{\epsilon}(x)'(z-x) + \frac{1}{2}(z-x)'\nabla^2 F_{\epsilon}(x)(z-x) \right\}$$

• By straightforward calculation

$$\overline{x} = x - Xq(x,\epsilon),$$

$$q(x,\epsilon) = \frac{Xz}{\epsilon} - e, \quad e = (1\dots1)', \quad z = c - A'\lambda,$$
$$\lambda = (AX^2A')^{-1}AX(Xc - \epsilon e),$$

and X is the diagonal matrix with x_i , i = 1, ..., n along the diagonal.

- View $q(x, \epsilon)$ as the Newton increment $(x-\overline{x})$ transformed by X^{-1} that maps x into e.
- Consider $||q(x,\epsilon)||$ as a *proximity measure* of the current point to the point $x(\epsilon)$ on the central path.

• Newton's method for minimizing F_{ϵ} :

 $\tilde{x} = x + \alpha(\overline{x} - x),$

where \overline{x} is the pure Newton iterate

$$\overline{x} = \arg\min_{Az=b} \left\{ \nabla F_{\epsilon}(x)'(z-x) + \frac{1}{2}(z-x)'\nabla^2 F_{\epsilon}(x)(z-x) \right\}$$

• By straightforward calculation

$$\overline{x} = x - Xq(x,\epsilon),$$

$$q(x,\epsilon) = \frac{Xz}{\epsilon} - e, \quad e = (1\dots1)', \quad z = c - A'\lambda,$$
$$\lambda = (AX^2A')^{-1}AX(Xc - \epsilon e),$$

and X is the diagonal matrix with x_i , i = 1, ..., n along the diagonal.

- View $q(x, \epsilon)$ as the Newton increment $(x \overline{x})$ transformed by X^{-1} that maps x into e.
- Consider $||q(x, \epsilon)||$ as a *proximity measure* of the current point to the point $x(\epsilon)$ on the central path.

q(x, epsilon) = 0 iff x = x(epsilon)

Path following

- x(\epsilon): solution of barrier problem with parameter \epsilon
- \bar{x}: one Newton iterate from x
- q(x,\epsilon): depends on one Newton iterate from x, approximates distance of x from x(\epsilon)
 - can be used to determine if we need more Newton iterations

KEY RESULTS

• It is sufficient to minimize F_{ϵ} approximately, up to where $||q(x, \epsilon)|| < 1$.

If
$$x > 0$$
, $Ax = b$, and $||q(x,\epsilon)|| < 1$, then

$$c'x - \min_{Ay=b, y \ge 0} c'y \le \epsilon \left(n + \sqrt{n}\right).$$

KEY RESULTS

• It is sufficient to minimize F_{ϵ} approximately, up to where $||q(x, \epsilon)|| < 1$.

If
$$x > 0$$
, $Ax = b$, and $||q(x,\epsilon)|| < 1$, then

$$c'x - \min_{Ay=b, y \ge 0} c'y \le \epsilon \left(n + \sqrt{n}\right).$$

• The "termination set" $\{x \mid ||q(x,\epsilon)|| < 1\}$ is part of the region of quadratic convergence of the pure form of Newton's method. In particular, if $||q(x,\epsilon)|| <$ 1, then the pure Newton iterate $\overline{x} = x - Xq(x,\epsilon)$ is an interior point, that is, $\overline{x} \in S$. Furthermore, we have $||q(\overline{x},\epsilon)|| < 1$ and in fact

$$\|q(\overline{x},\epsilon)\| \le \|q(x,\epsilon)\|^2.$$

SHORT STEP METHODS

Following approximately the central path by using a single Newton step for each ϵ^k . If ϵ^k is close to ϵ^{k+1} and x^k is close to the central path, one expects that x^{k+1} obtained from x^k by a single pure Newton step will also be close to the central path.

SHORT STEP METHODS

Following approximately the central path by using a single Newton step for each ϵ^k . If ϵ^k is close to ϵ^{k+1} and x^k is close to the central path, one expects that x^{k+1} obtained from x^k by a single pure Newton step will also be close to the central path.

Proposition Let x > 0, Ax = b, and suppose that for some $\gamma < 1$ we have $||q(x, \epsilon)|| \le \gamma$. Then if $\overline{\epsilon} = (1 - \delta n^{-1/2})\epsilon$ for some $\delta > 0$,

$$|q(\overline{x},\overline{\epsilon})|| \le \frac{\gamma^2 + \delta}{1 - \delta n^{-1/2}}$$

In particular, if

$$\delta \le \gamma (1 - \gamma) (1 + \gamma)^{-1},$$

we have $||q(\overline{x}, \overline{\epsilon})|| \leq \gamma$.

Can be used to establish nice complexity results;
but *ε* must be reduced VERY slowly.

LONG STEP METHODS

- Main features:
 - Decrease ϵ faster than dictated by complexity analysis.
 - Require more than one Newton step per (approximate) minimization.
 - Use line search as in unconstrained Newton's method.
 - Require much smaller number of (approximate) minimizations.

Short Step Method

Long Step Method