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Based on slides from Recht, Tibshirani



Gradient Descent

e Recall Gradient Descent:
Lk+1 — L — Ok Vf(l‘k)

e One caveat is that it relies too much on local information to
decide direction, and hence might be too slow




Gradient Descent

 Recall Gradient Descent:

Lk+1 — L — Ok Vf(l‘k)

e One caveat is that it relies too much on local information to decide
direction, and hence might be too slow

e With an additional “momentum” term, it might be less slow




Heavy Ball Method

e (Gradient Descent + Momentum:
Tri1 =T —ap Vf(xr) + Bk (T — Trp_1)
 When t is quadratic, this is the Chebyshev lterative Method

« Momentum prevents oscillation due to local-driven i.e.
gradient direction

 Can be re-written as a purely descent-type method:

pr = —Vf(zr) + Br pr—1
Tkt+1 = Tk + Ok Pk



Heavy Ball

Gradient Step
Lk+1 — Tk — onf(xk)

Lhk+1 = a:k—onf(xk)—l—ﬁ(xk—xk_l)
Vf(wk> T

/
/

xk—l./

Extrapolation Step



Need not be a descent
direction




Convergence Analysis

Consider m-strongly convex functions, with L-Lipshitz gradients

Let k := L/m be the condition number.

Gradient descent with optimal step size has linear convergence
with rate:

k
o= a'lla < (1= 5 ) llea ="l

Heavy Ball with optimal step sizes has linear convergence with

rate:
|zo — 272

)

e — 2 ls < (1 _

Seemingly similar, but the square root makes a huge difference!



Convergence Analysis

e To yield ||zp — z*||2 < €||lzg — 2|2, wWe need:

k> glog(l /e) for gradient descent

v

k> 7% log(1/€) for heavy ball

e A factor of \/k difference entails that if x = 100, heavy ball needs 10 times
fewer steps (i.e. is 10 times faster)



Recall: Conjugate Gradients

e Has similar form to heavy ball:

pr = —Vf(xr) + Bk Pr—1
T+l = Tk + Ok Pk

 Choose \beta_k to ensure p_k is conjugate to
{p_1, ..., 0_{k-1}}

e Choose \alpha_k by line search
e PRO:

e Systematic approach to select parameters in heavy ball
e« CON:

* Does not achieve better rate than heavy ball, and convergence rates not
completely resolved

* Most ideal for quadratic rather than general functions



Optimality of Heavy Ball

- For strongly convex functions with Lipshitz gradient, rate of heavy ball is optimal

= Xi +Z — Xe1)? + 2 — 2x1 + | XII3

ul = V2f(x) = (4 + p)l kel + —

e start at x[0] = eq.
e after k steps, x|[j] = 0 for j>k+1

* norm of the optimal solution on the unseen
coordinates tends to (Y£)*




Optimality of Heavy Ball

+ For strongly convex functions with Lipshitz
gradient, rate of heavy ball is optimal

- For convex functions with Lipshitz gradient,
optimality unclear



Nesterov's Optimal Method

pr = —Vf(xr + Bk (x — Tr—-1)) + Br Pr—1
Tk+1 = Tk 1 Ok Dk Nesterovy, 1983, 2004

 Heavy Ball, but interchanging order of computing
momentum and gradient terms

 Compute momentum and then compute gradient

e Standard settings of parameters:



Nesterov Momentum
Welghts

Momentum weights:
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Acceleration can really help
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Nesterov's Optimal Method

pr = —Vf(xr + Bk (x — Tr—-1)) + Br Pr—1
Tk+1 = Tk 1 Ok Dk Nesterovy, 1983, 2004

 Heavy Ball, but interchanging order of computing
momentum and gradient terms

 Compute momentum and then compute gradient

e Standard settings of parameters:

1
- é Line Search also achieves
b =777 optimal rate modulo log factors



Convergence Analysis

Consider convex functions, with L-Lipshitz gradients

Gradient descent with optimal step size has convergence with

rate: OL |l — 2*|2
flaw) = f(a%) < =

Nesterov’s Optimal Method has convergence with rate:

2L ||wo — &*|5
(k +2)2

flag) — f(27) <

Seemingly similar, the square makes a huge difference!



Convergence Analysis

o To yield f(xr) — f(x*) < €, we need:

2L ||lzo — 2¥|3
€
2L ||lzo — z||3

/e

k> — 4 for gradient descent

k> — 2 for Nesterov’s optimal method

o A factor of /e difference entails that if € = 1074, optimal method needs
100 times fewer steps (i.e. is 100 times faster)



