
Acceleration
Lecturer: Pradeep Ravikumar

Co-instructor: Aarti Singh

Convex Optimization 10-725/36-725

Based on slides from Recht, Tibshirani

Gradient Descent
• Recall Gradient Descent:

• One caveat is that it relies too much on local information to
decide direction, and hence might be too slow

xk+1 = xk � ↵k rf(xk)

Gradient Descent
• Recall Gradient Descent:

• One caveat is that it relies too much on local information to decide
direction, and hence might be too slow

• With an additional “momentum” term, it might be less slow

xk+1 = xk � ↵k rf(xk)

Heavy Ball Method
• Gradient Descent + Momentum:

• When f is quadratic, this is the Chebyshev Iterative Method

• Momentum prevents oscillation due to local-driven i.e.
gradient direction

• Can be re-written as a purely descent-type method:

xk+1 = xk � ↵k rf(xk) + �k (xk � xk�1)

pk = �rf(xk) + �k pk�1

xk+1 = xk + ↵k pk

Heavy Ball
64 Optimization Algorithms: An Overview Chap. 2

xk

xk−1

αk∇f(xk)

Gradient Step Extrapolation Step

Gradient Step Extrapolation Step
xk+1 = xk − α∇f(xk)

xk+1 = xk−α∇f(xk)+β(xk−xk−1)

Figure 2.1.2. Illustration of the heavy ball method (2.12), where αk ≡ α and
βk ≡ β.

A method with similar structure as (2.12), proposed in [Nes83], has
received a lot of attention because it has optimal iteration complexity prop-
erties under certain conditions, including Lipschitz continuity of ∇f . As
we will see in Section 6.2, it improves on the O(1/k) error estimate (2.9)
of the gradient method by a factor of 1/k. The iteration of this method,
when applied to unconstrained minimization of a differentiable function f
is commonly described in two steps: first an extrapolation step, to compute

yk = xk + βk(xk − xk−1)

with βk chosen in a special way so that βk → 1, and then a gradient step
with constant stepsize α, and gradient calculated at yk,

xk+1 = yk − α∇f(yk).

Compared to the method (2.12), it reverses the order of gradient calculation
and extrapolation, and uses ∇f(yk) in place of ∇f(xk).

Conjugate Gradient Methods

There is an interesting connection between the extrapolation method (2.12)
and the conjugate gradient method for unconstrained differentiable opti-
mization. This is a classical method, with an extensive theory, and the dis-
tinctive property that it minimizes an n-dimensional convex quadratic cost
function in at most n iterations, each involving a single line minimization.
Fast progress is often obtained in much less than n iterations, depending
on the eigenvalue structure of the quadratic cost [see e.g., [Ber82a] (Section
1.3.4), or [Lue84] (Chapter 8)]. The method can be implemented in several
different ways, for which we refer to textbooks such as [Lue84], [Ber99].
It is a member of the more general class of conjugate direction methods ,
which involve a sequence of exact line searches along directions that are
orthogonal with respect to some generalized inner product.

Need not be a descent
direction

62 Optimization Algorithms: An Overview Chap. 2

xk − α∇f(xk)

xk

α∇f(xk)

X <
π

2

Level sets of f

) xk−αDk∇f(xk)

Figure 2.1.1. Illustration of descent directions. Any direction of the form

dk = −Dk∇f(xk),

where Dk is a positive definite matrix, is a descent direction because d′k∇f(xk) =
−d′kDkdk < 0. In this case dk makes an angle less than π/2 with −∇f(xk).

Scaling is a major concept in the algorithmic theory of nonlinear pro-
gramming. It is motivated by the idea of modifying the “effective condition
number” of the problem through a linear change of variables of the form

x = D1/2
k y. In particular, the iteration (2.11) may be viewed as a steepest

descent iteration

yk+1 = yk − α∇hk(yk)

for the equivalent problem of minimizing the function hk(y) = f
(

D1/2
k y

)

.
For a quadratic problem, where f(x) = 1

2x
′Qx− b′x, the condition number

of hk is the ratio of largest to smallest eigenvalue of the matrix D1/2
k QD1/2

k
(rather than Q).

Much of unconstrained nonlinear programming methodology deals
with ways to compute “good” scaling matrices Dk, i.e., matrices that result
in fast convergence rate. The “best” scaling in this sense is attained with

Dk =
(

∇2f(xk)
)−1

,

assuming that the inverse above exists and is positive definite, which asymp-
totically leads to an “effective condition number” of 1. This is Newton’s
method, which will be discussed shortly. A simpler alternative is to use a
diagonal approximation to the Hessian matrix ∇2f(xk), i.e., the diagonal

Convergence Analysis
• Consider m-strongly convex functions, with L-Lipshitz gradients

• Gradient descent with optimal step size has linear convergence
with rate:

• Heavy Ball with optimal step sizes has linear convergence with
rate:

• Seemingly similar, but the square root makes a huge difference!

Let := L/m be the condition number.

kxk � x

⇤k2
✓
1� 2

+ 1

◆k

kx0 � x

⇤k2

kxk � x

⇤k2
✓
1� 2p

+ 1

◆k

kx0 � x

⇤k2

Convergence Analysis
• To yield kxk � x

⇤k2 ✏ kx0 � x

⇤k2, we need:

k >

2

log(1/✏) for gradient descent

k >

p

2

log(1/✏) for heavy ball

• A factor of

p
 di↵erence entails that if = 100, heavy ball needs 10 times

fewer steps (i.e. is 10 times faster)

Recall: Conjugate Gradients
• Has similar form to heavy ball:

• Choose \beta_k to ensure p_k is conjugate to  
{p_1, …,p_{k-1}}

• Choose \alpha_k by line search

• PRO:

• Systematic approach to select parameters in heavy ball

• CON:

• Does not achieve better rate than heavy ball, and convergence rates not
completely resolved

• Most ideal for quadratic rather than general functions

pk = �rf(xk) + �k pk�1

xk+1 = xk + ↵k pk

Optimality of Heavy Ballwhy “optimal?”

• start at x[0] = e1.
• after k steps, x[j] = 0 for j>k+1

• norm of the optimal solution on the unseen
coordinates tends to

G(Y) = Y�� +
O���

J=�

(YJ � YJ+�)
� + Y�O � �Y� + ç�Y���

you can’t beat the heavy ball convergence rate using
only gradients and function evaluations.

(
�

����
�+�)�L

ç* � ��G(Y) � (� + ç)* � � � +
�
ç

• For strongly convex functions with Lipshitz gradient, rate of heavy ball is optimal

Optimality of Heavy Ball
• For strongly convex functions with Lipshitz

gradient, rate of heavy ball is optimal

• For convex functions with Lipshitz gradient,
optimality unclear

Nesterov’s Optimal Method

• Heavy Ball, but interchanging order of computing
momentum and gradient terms

• Compute momentum and then compute gradient

• Standard settings of parameters:

pk = �rf(xk + �k (xk � xk�1)) + �k pk�1

xk+1 = xk + ↵k pk Nesterov, 1983, 2004

↵k =
1

L

�k =
k � 2

k + 1

Nesterov Momentum
Weights
Momentum weights:

●

●

●

●

●

●

●
●
●
●
●●
●●
●●
●●●

●●●●
●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

−0
.5

0.
0

0.
5

1.
0

k

(k
 −

 2
)/(

k
+

1)

23

Acceleration can really helpBack to lasso example: acceleration can really help!

0 200 400 600 800 1000

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

k

f−
fs

ta
r

Subgradient method
Proximal gradient
Nesterov acceleration

Note: accelerated proximal gradient is not a descent method
(“Nesterov ripples”)

24

• Accelerated
gradient is
not strictly a
descent
method

• Notice the
“Nesterov
Ripples”

Nesterov’s Optimal Method

• Heavy Ball, but interchanging order of computing
momentum and gradient terms

• Compute momentum and then compute gradient

• Standard settings of parameters:

pk = �rf(xk + �k (xk � xk�1)) + �k pk�1

xk+1 = xk + ↵k pk Nesterov, 1983, 2004

↵k =
1

L

�k =
k � 2

k + 1

Line Search also achieves
optimal rate modulo log factors

Convergence Analysis
• Consider convex functions, with L-Lipshitz gradients

• Gradient descent with optimal step size has convergence with
rate:

• Nesterov’s Optimal Method has convergence with rate:

• Seemingly similar, the square makes a huge difference!

f(xk)� f(x⇤) 2L kx0 � x

⇤k22
k + 4

f(xk)� f(x⇤) 2L kx0 � x

⇤k22
(k + 2)2

Convergence Analysis
• To yield f(xk)� f(x

⇤
) < ✏, we need:

k >

2L kx0 � x

⇤k22
✏

� 4 for gradient descent

k >

2L kx0 � x

⇤k22p
✏

� 2 for Nesterov’s optimal method

• A factor of

p
✏ di↵erence entails that if ✏ = 10

�4
, optimal method needs

100 times fewer steps (i.e. is 100 times faster)

