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Newton method for finding a root



Newton method for finding a root

d Newton method: originally developed for finding a root of a function

3 also known as the Newton—Raphson method

»:R—R
¢p(z*) =0

Tt =7



Newton Method for Finding a Root

Goal: gb 'R — R
¢(z*) =0
Tt =7

Linear Approximation (15t order Taylor approx):

(x4 Br) = ¢(2) + ¢/ (@) Az + o(| Az))

¥
q)(xk\ =0
Therefore, 0 ~ ¢(w) + qg/(x)Ax
e s
Tt —x = Az = cb’(af;?)




[llustration of Newton’s method

Goal: finding a root f(x) = f(zo) + f/(CUO)(fl? — z0)

In the next step we will linearize here in x



Example: Finding a Root
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http://en.wikipedia.org/wiki/Newton%?27s_method



Newton Method for Finding a Root

This can be generalized to multivariate functions

F . R" - R™
Om = F(z*) = F(z+ Az) = F(x) + VF(x)ég + o(|Ax|)
K\m!n n.)\n T
Therefore, Véceeer

Om = F(x) + VF(x)Ax

Ax = —[VF(z)] 1F(z)
[Pseudo inverse if there is no inverse]
Axr = Th+4+1 — Tk and thus
Tpt1 = T — [VF(zp)] 1 F (zp)
n n NnNXM M
2\ m A
Newton method: Start from zg and iterate.
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Newton method for minimization

Newton’'s method for the optimization problem

mljn f(x)

is the same as Newton's method for finding a root of

Vf(x)=0.

History: The work of Newton (1685) and Raphson (1690) originally
focused on finding roots of polynomials. Simpson (1740) applied this
idea to general nonlinear equations and minimization.
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Newton method for minimization

fR" — R, fis twice differentiable

min f(x i
min f(z) unconstrained

We need to find the roots of Vf(z) = 0y
Vf:R*"— R"

Newton system: Vf(z) + V2f(z)Az = 0,

Newton step: Az = x4 — ) = —[V2f()]" IV Ff(2)

Iterate until convergence, or max number of iterations exceeded

(divergence, loops, division by zero might happen...)
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Motivation with Quadratic Approximation
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Motivation with Quadratic Approximation

fR" — R, fis twice differentiable

min f(x i
min f(z) unconstrained

Second order Taylor approximation:
Let ¢(z) = f(ar) + VI f(wp) (@ —2p) + 5(x — 2) V2 f(2p) (z — )
Assume that

V2f(z) > 0 [i.e. ¢ has strict global minimum]

Now, if z;4 1 is the global minimum of the quadratic function ¢,
then

On = Vo(zpt1) = VI(ag) + V2f () (Thg1 — o)
Newton step:

Az =y — 2 = —[V2f(2)] 71V f(2) *



Motivation with Quadratic Approximation

Quadratic approaximation is good, when z is close to =*

F(2) = f(@) + V(@) (z — 2) + 5(z — 2)TV2f(2) (2 — )
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Comparison with Gradient Descent

15



Comparison with Gradient Descent

Newton's method: choose initial z(?) € R™ and

e ®) = 261 _ (V2 f(E-D) TV kD) k=1,2,3,. ..

Compare to gradient descent: choose initial (%) € R™, and
e F) = k1) _ ¢  VFEFY), k=1,2,3,...

Newton method is obtained by minimizing over quadratic
approximation:

f) ~ f@) + V@ () + 5 — 2 V(@) — 2

Gradient descent uses a different quadratic approximation:

flu) ~ F(@) + V@) — ) + o1y — =3

16



Comparison with Gradient Descent

For f(x) = (1022 + 23)/2 + 5log(1 + e~¥17%2)  compare gradient
descent (black) to Newton's method (blue), where both take steps
of roughly same length

& -




How good is the Newton method?



Descent direction

Lemma [Descent direction]

If sz = 0, then Newton step is a descent direction.

Proof:

We know that if a vector has negative inner product with the gradient
vector, then that direction is a descent direction

Newton step: Az =41 — o = —[V2f ()] 1V f(2)

= Vi) ar = -Vi()T[V2f(2)]"1Vf(z) <0 @
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Pre-Conditioning for Gradient descent

Recall convergence rate for gradient descent:
fa®) = f* < F |20 — 2*3

Constant ¢ depends adversely on condition number L/m (higher
condition number = slower rate)

Can we convert it into well-conditioned problem by changing
coordinates?

let x = Ay and g(y) = f(Ay)
Vo(y) = ATV f(Ay), V2g(y) = ATV?f(Ay)A
Canget VZg(y) =1 if A= [V2f(z)]"

20



Pre-Conditioning for Gradient descent

Can we convert it into well-conditioned problem by changing
coordinates?

let z = Ay and g(y) = f(Ay)

Can getV2g(y) = I if A=[V2f(x)] /2

Running gradient descent for g(y), gives best descent
direction and convergence rate.

vy =y —nVg(y)
=y —nA'V f(Ay),
Ay, = Ay —nAATV f(Ay)
r, =z —nAATVf(z).

Equivalent to Newton step on f(x). 21



Affine Invariance

Important property Newton's method: affine invariance.

Assume f : R™ — R is twice differentiable and A € R™*" is
nonsingular. Let g(y) := f(Ay).

Newton step for g starting from v is

vt =y — (V2e(y)) 'Vo(v).

It turns out that the Newton step for f starting from = = Ay is
rxt = Ay™T.

Therefore progress is independent of problem scaling. By contrast,
this is not true of gradient descent.

[Proof: HW3] 5



Affine Invariant stopping criterion

Stopping criterion for gradient descent:
IVf(z)llz <€

Not affine-invariant

Stopping criterion for Newton method:

X ()
2

< €

/2

where A(x) = (V£()T (V2f(2) 'V()) " isthe

Newton decrement.

Note that the Newton decrement, like the Newton steps, are affine
invariant; i.e., if we defined g(y) = f(Ay) for nonsingular A, then
Ag(y) would match A¢(z) at z = Ay
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Affine Invariant stopping criterion

This relates to the difference between f(x) and the minimum of its
quadratic approximation:

()~ min () + V1@~ 2) + 50 - V@)~ 2))

= SV (V21 (@) V@) = SA@)

1
2
Therefore can think of A?(x)/2 as an approximate bound on the
suboptimality gap f(z) —

Another interpretation of Newton decrement: if Newton direction

is v =—(V2f(z))"Vf(x), then

Mz) = (WVTV2f(z)v) % = [v]|92 £ ()

I.e., A(x) is the length of the Newton step in the norm defined by
the Hessian V2 f(x) 24



Newton method properties

 Quadratic convergence in the neighborhood of a
strict local minimum [under some conditions].

d It can break down if f“(x,) is degenerate.
[no inverse]

It can diverge.
It can be trapped in a loop.

It can converge to a loop...
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Damped Newton’s Method

We have seen pure Newton's method, which need not converge. In

practice, we instead use damped Newton's method (i.e., Newton's
method), which repeats

rt =1 — t(VQf(CE))_IVf(Z)

Note that the pure method uses t =1

26



Backtracking line search

rt =1 — t(VQf(:c))_IVf(a:)

Step sizes here typically are chosen by backtracking search, with
parameters 0 < a < 1/2, 0 < B < 1. At each iteration, we start
with £ = 1 and while

f(x+tv) > f(z) +atVf(z)v

we shrink t = [3t, else we perform the Newton update. Note that

here v = —(V2f(z))" 1V f(z), so Vf(z)Tv = —-)\2(x)
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Convergence Rate

28



Local convergence for finding root

Theorem: Assume F' : R™ — R"™ is continuously differentiable
and x* € R™ is a root of F', that is, F'(z*) = 0 such that F'(z*)
is non-singular. Then

(a) There exists § > 0 such that if ||z(®) — z*|| < 6 then
Newton's method is well defined and

||:l?(k+1) L :lt*”

lim = ().

k— o0 ||:r(k) — ;1;*”
IS Lipschitz continuous In 2 neighborhnood of ™ then
b) If F' is Lipschi ' ' ighborhood of z* th

there exists X > 0 such that

Quadratic
|z*+D) — 2% < K||=®) — 2*||2. convergence

29



Convergence analysis

Assume that f convex, twice differentiable, having dom(f) = R",
and additionally

e Vf is Lipschitz with parameter L
e f is strongly convex with parameter m

e V?f is Lipschitz with parameter M

Theorem: Newton's method with backtracking line search sat-
isfies the following two-stage convergence bounds

(f(@O) = f*) =~k if k< ko
f($(k)) —f* < o3 /1 2k—Fo+1

= (3) if ke > ko

Here v = aﬁQan/Lz, n = min{1,3(1 — 2a)}m2/1\-/[, and kg is
the number of steps until ||V f(z*o+1)|y < 5

30



Convergence analysis

In more detail, convergence analysis reveals v > 0, 0 < n < m?/M
such that convergence follows two stages

e Damped phase: ||V f(z*)|2 > 5, and
fa®+)) — f(z®)) < —

e Pure phase: ||V f(z(®)||2 < 1, backtracking selects t = 1, and

M M 2
— |V ,(k+1) < | — ||V (k)
9m2 IV f(z )|[2 < (2 5|V F(z )||2)

Note that once we enter pure phase, we won't leave, because

2132(2]:2")2 <1

when n < m?/M 31



Convergence analysis

To reach f(z®)) — f* <€, we need at most

f®) - r

S + log log(€eg/€)

iterations, where eg = 2m? /M?

e This is called quadratic convergence. Compare this to linear

convergence (which, recall, is what gradient descent achieves
under strong convexity)

e The above result is a local convergence rate, i.e., we are only

guaranteed quadratic convergence after some number of steps

ko, where kg < f(x(O;)—f*

e Somewhat bothersome may be the fact that the above bound
depends on L, m, M, and yet the algorithm itself does not

Analysis can be improved e.g. for self-concordant functions 32



Comparison to first-order methods

33



Comparison to first-order methods

Memory: each iteration of Newton's method requires O(n?)
storage (n X n Hessian); each gradient iteration requires O(n)
storage (n-dimensional gradient)

Computation: each Newton iteration requires O(n?) flops
(solving a dense n X n linear system); each gradient iteration
requires O(n) flops (scaling/adding n-dimensional vectors)

Backtracking: backtracking line search has roughly the same
cost, both use O(n) flops per inner backtracking step

Conditioning: Newton's method is not affected by a problem’s
conditioning, but gradient descent can seriously degrade

Fragility: Newton's method may be empirically more sensitive
to bugs/numerical errors, gradient descent is more robust
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Example: Logistic regression

Logistic regression example, with n = 500, p = 100: we compare
gradient descent and Newton's method, both with backtracking

—— Gradient descent
— Newton's method

1e+03
|

1e-01
|

f-fstar
1e-05
|

1e-09
|

1e-13
|

Newton’'s method has a different regime of convergence.
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Example: Logistic regression

Back to logistic regression example: now x-axis is parametrized in
terms of time taken per iteration

—— Gradient descent
—— Newton's method

1e+03
|

f-fstar
1e-05 1e-01
| |

1e-09
|

1e-13
|
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Time

Each gradient descent step is O(p), but each Newton step is O(p?) 36





