Gradient Descent

Lecturer: Pradeep Ravikumar
Co-instructor: Aarti Singh

Convex Optimization 10-725/36-725

Based on slides from Vandenberghe, Tibshirani



Gradient Descent

Consider unconstrained, smooth convex optimization

min f(x)

X

i.e., f is convex and differentiable with dom(f) = R™. Denote the
optimal criterion value by f* = min, f(x), and a solution by x*

Gradient descent: choose initial point 2(9) € R”, repeat:
p k) = =D g Vf(:c(k_l)), k=1,2,3,...

Stop at some point
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Quadratic Example

1
f(z) =521 +yw3)  (withy > 1)

with exact line search and starting point (®) = (~, 1)

||x(k) _ :C*H2 B ('Y . 1>k
o S —
|20 — 2| v+ 1 a0l

gradient method is often slow; convergence very dependent on scaling



Non-differentiable Example

]2 2
xr) = /a7 +vyxs5 for|ze| < x4,

_ T + v|x2|

for |xo| > x
- 22| > 24

with exact line search, starting point 2(0) = v, 1), converges to non-optimal point

2

gradient method does not handle nondifferentiable problems



Descent-type algorithms
with better guarantees

Methods with improved convergence

e quasi-Newton methods
e conjugate gradient method

e accelerated gradient method

Methods for nondifferentiable or constrained problems

e subgradient method
e proximal gradient method
e smoothing methods

e cutting-plane methods



Gradient Descent

 Now that we have seen how horrible gradient descent
'S, and how there are so many methods with better
guarantees, let's now go ahead and study gradient
descent more closely
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Gradient Descent

 Now that we have seen how horrible gradient descent
'S, and how there are so many methods with better
guarantees, let's now go ahead and study gradient
descent more closely

e Why?

 For unconstrained problems, gradient descent still
empirically preferred (more robust, less tuning)

* [For constrained, non-differentiable problems,
algorithms are “variants” of gradient descent



Function Approximation
INnterpretation

At each iteration, consider the expansion

F() ~ F(@) + V@) ) + oy — ol

1

Quadratic approximation, replacing usual Hessian V2 f(x) by o1

f(x) + Vi) (y—2) linear approximation to f

=y — x| proximity term to x, with weight 1/(2¢)

Choose next point y = ™ to minimize quadratic approximation:

vt =2 —tVf()



Function Approximation
INnterpretation

Blue point is x, red point is

. 1
rt = argmin f(a:)+Vf(a:)T(y—:U)—|—ﬂﬂy—wﬂg
y



Gradient Descent

* How to choose step size

* Convergence Analysis



Fixed Step Size: Too Big

Simply take t, =t forall k =1,2,3,..., can diverge if t is too big.
Consider f(x) = (10z% + x3)/2, gradient descent after 8 steps:
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Fixed Step Size: Too Small

Can be slow if £ is too small. Same example, gradient descent after
100 steps:
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Fixed Step Size: Just Right

Converges nicely when t is “just right”. Same example, gradient
descent after 40 steps:

10
I

-10

-20 -10 0 10 20

Convergence analysis later will give us a precise idea of “just right”



Step-Size: Backtracking
Line Search

e First fix parameters 0 < S <land 0 < <1/2

e At each iteration, start with t = ¢;;+, and while

flz =tV f(z)) > f(z) — at||Vf(2)]3
shrink ¢ = 3t. Else perform gradient descent update

v =2 —tVf(x)



Backtracking

Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):
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Here o = 5 = 0.5



Exact Line Search

Could also choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin f(x — sV f(x))
s>0

Usually not possible to do this minimization exactly

Approximations to exact line search are often not as efficient as
backtracking, and it's usually not worth it



Convergence Analysis:
Convexity

Assume that f convex and differentiable, with dom(f) = R"”, and
additionally

IVf(z) = VIl < Lz —yll2 forany z,y

l.e., V f is Lipschitz continuous with constant L > 0
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Convergence Analysis:
Convexity

Assume that f convex and differentiable, with dom(f) = R", and
additionally

IVf(z) = VIl < Lz —yll2 forany z,y

l.e., V f is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size t < 1/L satisfies

(0) _ x]|2
F@®) ==

We say gradient descent has convergence rate O(1/k)

le., to get f(z®)) — f* < ¢, we need O(1/¢) iterations



Proof

Key steps:
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Proof

Key steps:

e Vf Lipschitz with constant L =

F(0) < F@) + V@) o)+ Sy —2[3 all 2.y

e Plugginginy=2a2" =2 —tVf(x),

fat) < fla) — (1= 2V 5@)]3

e Taking 0 <t < 1/L, and using convexity of f,

Ft) < f 4 V@) (@ - ) — 2|V ()]

1
= 1"+ o (Il = 2" 3 — [l - 2*]3)



Proof Contd.



Proof Contd.

e Summing over iterations:

1

S (@) = 1) < o (12 — 23 - 2 - 23)
1=1
1 *
< 2 — 27|

e Since f(z®) is nonincreasing,

k
o1 Hw(O) — 2|3
(k) - 2
@ k g — 2tk



Convergence Analysis:

Backtracking

Same assumptions, f is convex and differentiable, dom(f) = R",

and V f is Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satis-

fies 0) ,
(k)y _ e < 12 =273
O e

where tnin = min{l, 5/L}

If 3 is not too small, then we don't lose much compared to fixed
step size (8/L vs 1/L)



Convergence Analysis:
Strong Convexity

Reminder: strong convexity of f means f(x) — rngH% is convex for
some m > 0. If f is twice differentiable, then this is equivalent to

F) > f@) + V@ =)+ 5y~ 2l all 2y

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t < 2/(m + L)
or with backtracking line search search satisfies

. L

=1 — 23

f@™) = <c

where 0 < c <1




| inear Convergence

l.e., rate with strong convexity is O(c"), exponentially fast!

l.e., to get f(x*)) — f* <, need O(log(1/€)) iterations

104

102

Called linear convergence, = 1 | .
_ =, \@zcact l.s.
because looks linear on a =
semi-log plot 1073
backtracking L.s.
10~ ‘ ‘ —
0 50 100 150 200

k

(From B & V page 487)

Constant ¢ depends adversely on condition number L/m (higher
condition number = slower rate)



A ook at the conditions so far

A look at the conditions for a simple problem, f(3) = 5|ly — X 5]|3

Lipschitz continuity of V f:
e This means V?f(z) X LI
e As V2f(B) = X1 X, we have L = o2

MaXx

(X)

Strong convexity of f:
e This means V2f(z) = ml
e As V2f(8) = X' X, we have m = 02, (X)

min
o If X is wide—i.e., X is n x p with p > n—then onjn(X) =0,
and f can't be strongly convex

e Even if omin(X) > 0, can have a very large condition number
L/m — J?nax(X)/O-r%ﬂn(X)



A ook at the conditions so far

A function f having Lipschitz gradient and being strongly convex
satisfies:
ml < V*f(x) = LI for all z € R",

for constants L > m > 0

Think of f being sandwiched between two quadratics



A ook at the conditions so far

A function f having Lipschitz gradient and being strongly convex
satisfies:

ml < V*f(x) = LI for all z € R",

for constants L > m > 0
Think of f being sandwiched between two quadratics

May seem like a strong condition to hold globally (for all x € R").
But a careful look at the proofs shows that we only need Lipschitz
gradients/strong convexity over the sublevel set

S={z: f(z) < f(=')}

This is less restrictive (especially if S is compact)



Practicalities

Stopping rule: stop when ||V f(z)||2 is small
o Recall Vf(z*) =0 at solution z*

e If f is strongly convex with parameter m, then

IVf(x)]2 <V2me = f(x) — f* < e um)

Pros and cons of gradient descent:
e Pro: simple idea, and each iteration is cheap (usually)
e Pro: fast for well-conditioned, strongly convex problems

e Con: can often be slow, because many interesting problems
aren't strongly convex or well-conditioned

e Con: can't handle nondifferentiable functions



Can we do better?

Gradient descent has O(1/¢) convergence rate over problem class
of convex, differentiable functions with Lipschitz gradients

First-order method: iterative method, updates (%) in

z + span{V f(2(?), Vf(z1),... V f(z#~1)}

Theorem (Nesterov): For any £ < (n — 1)/2 and any starting
point (%) there is a function f in the problem class such that
any first-order method satisfies

3L|| 2O — %3

) _ g
Je) =1 2 v 1y

Can attain rate O(1/k?), or O(1/+/€)? Answer: yes (we'll see)!



Proof: Convergence Analysis
for Strong Convexity

Analysis for constant step size

fzt =2 —tVf(x)and0 <t <2/(m+ L):

|z — 273

r =tV f(z) — 2|3
v — 2|3 - 2tV f(2)T (x — z*) + 3|V f(2)]|3




Proof: Convergence Analysis
for Strong Convexity

f(x) is m-strongly convex, and with L-Lipshitz gradients

mL
m + L

1

— IV f() VI w)3

= (Vf(z) - Viy)" (z—y) > |z —yl3+

= V) (e —a) > -

> V(@)

|z — 7|3 +




Proof: Convergence Analysis
for Strong Convexity

Analysis for constant step size

fzt =2 —tVf(x)and0 <t <2/(m+ L):

|z — 273

<

<

r =tV f(z) — 2|3
v — 2|3 - 2tV f(2)T (x — z*) + 3|V f(2)]|3

2mL 5
e IV £(2)

2mL
m + L

2
1 -1 r—x*||5+t(t —

+L)

(1—1 )z — 2|3




Proof Contd.

Distance to optimum

2mL
m + L

|2 — 2|3 < 2! —a*|3, e=1-t

e implies (linear) convergence

2
W |
o fort =2/ (m+L),getc=|—— ] withy=L/m
/( ), 9 <7+1> v=1L/

Bound on function value

L FL
fa®) = 1 < Sla® — a3 < =)0 — 23



