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Gradient Descent
Gradient descent

Consider unconstrained, smooth convex optimization

min

x

f(x)

i.e., f is convex and di↵erentiable with dom(f) = Rn. Denote the
optimal criterion value by f?

= min

x

f(x), and a solution by x?

Gradient descent: choose initial point x(0) 2 Rn, repeat:

x(k)
= x(k�1) � t

k

· rf(x(k�1)
), k = 1, 2, 3, . . .

Stop at some point
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Quadratic Example
Quadratic example

f(x) =
1

2

(x2

1

+ �x2

2

) (with � > 1)

with exact line search and starting point x(0)

= (�, 1)

kx(k) � x?k
2

kx(0) � x?k
2

=

✓
� � 1

� + 1

◆
k

≠10 0 10
≠4

0

4

x1

x

2

gradient method is often slow; convergence very dependent on scaling
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Non-differentiable ExampleNondi�erentiable example

f(x) =
q

x2

1

+ �x2

2

for |x
2

|  x
1

, f(x) =
x
1

+ �|x
2

|p
1 + �

for |x
2

| > x
1

with exact line search, starting point x(0)

= (�, 1), converges to non-optimal point

≠2 0 2 4≠2

0

2

x1

x

2

gradient method does not handle nondi�erentiable problems
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Descent-type algorithms 
with better guaranteesFirst-order methods

address one or both disadvantages of the gradient method

Methods with improved convergence

• quasi-Newton methods

• conjugate gradient method

• accelerated gradient method

Methods for nondi�erentiable or constrained problems

• subgradient method

• proximal gradient method

• smoothing methods

• cutting-plane methods
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Gradient Descent
• Now that we have seen how horrible gradient descent 

is, and how there are so many methods with better 
guarantees, let’s now go ahead and study gradient 
descent more closely
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Gradient Descent
• Now that we have seen how horrible gradient descent 

is, and how there are so many methods with better 
guarantees, let’s now go ahead and study gradient 
descent more closely

• Why?

• For unconstrained problems, gradient descent still 
empirically preferred (more robust, less tuning)

• For constrained, non-differentiable problems, 
algorithms are “variants” of gradient descent



Function Approximation 
Interpretation

Gradient descent interpretation

At each iteration, consider the expansion

f(y) ⇡ f(x) + rf(x)

T

(y � x) +

1

2t
ky � xk22

Quadratic approximation, replacing usual Hessian r2f(x) by 1
t

I

f(x) + rf(x)

T

(y � x) linear approximation to f

1
2tky � xk22 proximity term to x, with weight 1/(2t)

Choose next point y = x+ to minimize quadratic approximation:

x+
= x � trf(x)
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Function Approximation 
Interpretation

●

●

Blue point is x, red point is

x+
= argmin

y

f(x) + rf(x)

T

(y � x) +

1

2t
ky � xk22
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Gradient Descent

• How to choose step size 

• Convergence Analysis



Fixed Step Size: Too Big
Fixed step size

Simply take t
k

= t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x2

1 + x2
2)/2, gradient descent after 8 steps:
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Fixed Step Size: Too Small
Can be slow if t is too small. Same example, gradient descent after
100 steps:

−20 −10 0 10 20

−2
0

−1
0

0
10

20 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

*

10



Fixed Step Size: Just Right
Converges nicely when t is “just right”. Same example, gradient
descent after 40 steps:
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Convergence analysis later will give us a precise idea of “just right”
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Step-Size: Backtracking 
Line Search

Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

• First fix parameters 0 < � < 1 and 0 < ↵  1/2

• At each iteration, start with t = t
init

, and while

f(x � trf(x)) > f(x) � ↵tkrf(x)k22

shrink t = �t. Else perform gradient descent update

x+
= x � trf(x)

Simple and tends to work well in practice (further simplification:
just take ↵ = 1/2)
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Backtracking
Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):
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Here ↵ = � = 0.5

14



Exact Line SearchExact line search

Could also choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin

s�0
f(x � srf(x))

Usually not possible to do this minimization exactly

Approximations to exact line search are often not as e�cient as
backtracking, and it’s usually not worth it
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Convergence Analysis: 
ConvexityConvergence analysis

Assume that f convex and di↵erentiable, with dom(f) = Rn, and
additionally

krf(x) � rf(y)k2  Lkx � yk2 for any x, y

I.e., rf is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size t  1/L satisfies

f(x(k)
) � f?  kx(0) � x?k22

2tk

We say gradient descent has convergence rate O(1/k)

I.e., to get f(x(k)
) � f?  ✏, we need O(1/✏) iterations
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Proof
Proof

Key steps:

• rf Lipschitz with constant L )

f(y)  f(x) + rf(x)

T

(y � x) +

L

2

ky � xk22 all x, y

• Plugging in y = x+
= x � trf(x),

f(x+
)  f(x) �

⇣
1 � Lt

2

⌘
tkrf(x)k22

• Taking 0 < t  1/L, and using convexity of f ,

f(x+
)  f?

+ rf(x)

T

(x � x?

) � t

2

krf(x)k22

= f?

+

1

2t

�
kx � x?k22 � kx+ � x?k22

�
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Proof Contd.
f(x(i))� f

⇤  1

2t

⇣
kx(i�1) � x

⇤k22 � kx(i) � x

⇤k22
⌘



Proof Contd.

• Summing over iterations:

kX

i=1

(f(x(i)
) � f?

)  1

2t

�
kx(0) � x?k22 � kx(k) � x?k22

�

 1

2t
kx(0) � x?k22

• Since f(x(k)
) is nonincreasing,

f(x(k)
) � f?  1

k

kX

i=1

�
f(x(i)

) � f?

�
 kx(0) � x?k22

2tk
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Convergence Analysis: 
BacktrackingConvergence analysis for backtracking

Same assumptions, f is convex and di↵erentiable, dom(f) = Rn,
and rf is Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satis-
fies

f(x(k)
) � f?  kx(0) � x?k22

2t
min

k

where t
min

= min{1, �/L}

If � is not too small, then we don’t lose much compared to fixed
step size (�/L vs 1/L)
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Convergence Analysis: 
Strong Convexity

Convergence analysis under strong convexity

Reminder: strong convexity of f means f(x) � 2
2kxk22 is convex for

some m > 0. If f is twice di↵erentiable, then this is equivalent to

f(y) � f(x) + rf(x)

T

(y � x) +

m

2

ky � xk22 all x, y

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t  2/(m + L)

or with backtracking line search search satisfies

f(x(k)
) � f?  ck

L

2

kx(0) � x?k22

where 0 < c < 1

20
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Linear Convergence
I.e., rate with strong convexity is O(ck), exponentially fast!

I.e., to get f(x(k)
) � f?  ✏, need O(log(1/✏)) iterations

Called linear convergence,
because looks linear on a
semi-log plot

9.3 Gradient descent method 473
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Figure 9.6 Error f(x(k))�p� versus iteration k for the gradient method with
backtracking and exact line search, for a problem in R100.

These experiments suggest that the e�ect of the backtracking parameters on the

convergence is not large, no more than a factor of two or so.

Gradient method and condition number

Our last experiment will illustrate the importance of the condition number of

r2f(x) (or the sublevel sets) on the rate of convergence of the gradient method.

We start with the function given by (9.21), but replace the variable x by x = T x̄,

where

T = diag((1, �1/n, �2/n, . . . , �(n�1)/n
)),

i.e., we minimize

¯f(x̄) = cT T x̄ �
mX

i=1

log(bi � aT
i T x̄). (9.22)

This gives us a family of optimization problems, indexed by �, which a�ects the

problem condition number.

Figure 9.7 shows the number of iterations required to achieve

¯f(x̄(k)
)�p̄� < 10

�5

as a function of �, using a backtracking line search with ↵ = 0.3 and � = 0.7. This

plot shows that for diagonal scaling as small as 10 : 1 (i.e., � = 10), the number of

iterations grows to more than a thousand; for a diagonal scaling of 20 or more, the

gradient method slows to essentially useless.

The condition number of the Hessian r2
¯f(x̄�

) at the optimum is shown in

figure 9.8. For large and small �, the condition number increases roughly as

max{�2, 1/�2}, in a very similar way as the number of iterations depends on �.

This shows again that the relation between conditioning and convergence speed is

a real phenomenon, and not just an artifact of our analysis.

(From B & V page 487)

Constant c depends adversely on condition number L/m (higher
condition number ) slower rate)
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A look at the conditions so far
A look at the conditions

A look at the conditions for a simple problem, f(�) =

1
2ky � X�k22

Lipschitz continuity of rf :

• This means r2f(x) � LI

• As r2f(�) = XTX, we have L = �2
max

(X)

Strong convexity of f :

• This means r2f(x) ⌫ mI

• As r2f(�) = XTX, we have m = �2
min

(X)

• If X is wide—i.e., X is n ⇥ p with p > n—then �
min

(X) = 0,
and f can’t be strongly convex

• Even if �
min

(X) > 0, can have a very large condition number
L/m = �2

max

(X)/�2
min

(X)
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A look at the conditions so far

A function f having Lipschitz gradient and being strongly convex
satisfies:

mI � r2f(x) � LI for all x 2 Rn,

for constants L > m > 0

Think of f being sandwiched between two quadratics

May seem like a strong condition to hold globally (for all x 2 Rn).
But a careful look at the proofs shows that we only need Lipschitz
gradients/strong convexity over the sublevel set

S = {x : f(x)  f(x(0)
)}

This is less restrictive (especially if S is compact)
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PracticalitiesPracticalities

Stopping rule: stop when krf(x)k2 is small

• Recall rf(x?

) = 0 at solution x?

• If f is strongly convex with parameter m, then

krf(x)k2 
p

2m✏ =) f(x) � f?  ✏

Pros and cons of gradient descent:

• Pro: simple idea, and each iteration is cheap (usually)

• Pro: fast for well-conditioned, strongly convex problems

• Con: can often be slow, because many interesting problems
aren’t strongly convex or well-conditioned

• Con: can’t handle nondi↵erentiable functions
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Can we do better?
Can we do better?

Gradient descent has O(1/✏) convergence rate over problem class
of convex, di↵erentiable functions with Lipschitz gradients

First-order method: iterative method, updates x(k) in

x(0)
+ span{rf(x(0)

), rf(x(1)
), . . . rf(x(k�1)

)}

Theorem (Nesterov): For any k  (n � 1)/2 and any starting
point x(0), there is a function f in the problem class such that
any first-order method satisfies

f(x(k)
) � f? � 3Lkx(0) � x?k22

32(k + 1)

2

Can attain rate O(1/k2
), or O(1/

p
✏)? Answer: yes (we’ll see)!
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Proof: Convergence Analysis 
for Strong Convexity

Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on p. 1-20

Analysis for constant step size

if x+

= x� trf(x) and 0 < t  2/(m+ L):

kx+ � x?k2
2

= kx� trf(x)� x?k2
2

= kx� x?k2
2

� 2trf(x)T (x� x?

) + t2krf(x)k2
2

 (1� t
2mL

m+ L
)kx� x?k2

2

+ t(t� 2

m+ L
)krf(x)k2

2

 (1� t
2mL

m+ L
)kx� x?k2

2

(step 3 follows from result on p. 1-19)
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Proof: Convergence Analysis 
for Strong Convexity

Analysis for constant step size

if x+

= x� trf(x) and 0 < t  2/(m+ L):

kx+ � x?k2
2

= kx� trf(x)� x?k2
2

= kx� x?k2
2

� 2trf(x)T (x� x?

) + t2krf(x)k2
2

2mL 2

Extension of co-coercivity

• if f is strongly convex and rf is Lipschitz continuous, then the function

g(x) = f(x)� m

2

kxk2
2

is convex and rg is Lipschitz continuous with parameter L�m

• co-coercivity of g gives

(rf(x)�rf(y))
T

(x� y) � mL

m+ L
kx� yk2

2

+

1

m+ L
krf(x)�rf(y)k2

2

for all x, y 2 dom f

Gradient method 1-19

) rf(x)T (x� x

⇤) � mL

m+ L

kx� x

⇤k22 +
1

m+ L

krf(x)k22

)

f(x) is m-strongly convex, and with L-Lipshitz gradients



Proof: Convergence Analysis 
for Strong Convexity

Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on p. 1-20

Analysis for constant step size

if x+

= x� trf(x) and 0 < t  2/(m+ L):

kx+ � x?k2
2

= kx� trf(x)� x?k2
2

= kx� x?k2
2

� 2trf(x)T (x� x?

) + t2krf(x)k2
2

 (1� t
2mL

m+ L
)kx� x?k2

2

+ t(t� 2

m+ L
)krf(x)k2

2

 (1� t
2mL

m+ L
)kx� x?k2

2

(step 3 follows from result on p. 1-19)
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Proof Contd.
Distance to optimum

kx(k) � x?k2
2

 ckkx(0) � x?k2
2

, c = 1� t
2mL

m+ L

• implies (linear) convergence

• for t = 2/(m+ L), get c =

✓
� � 1

� + 1

◆
2

with � = L/m

Bound on function value (from page 1-14)

f(x(k)

)� f?  L

2

kx(k) � x?k2
2

 ckL

2

kx(0) � x?k2
2

Conclusion: number of iterations to reach f(x(k)

)� f?  ✏ is O(log(1/✏))
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