Duality and Discrete
Optimization

Lecturer. Pradeep Ravikumar
Co-instructor: Aarti Singh

Convex Optimization 10-725/36-725

Discrete Optimization

minimize f(x)
subjectto =z € X, gi(z) <0, j=1,..., T,

where X IS a finite Set.

Discrete Optimization

minimize f(x)
subjectto =z € X, gi(z) <0, jg=1,...,m,

where X IS a finite Set.
e Example: 0-1 Integer programming:

X:{(wl,...,xnﬂxi:OOr 1,2':1,...,77,}.

Example: Network Flow

e Think of:

— Nodes i with s; > 0 and s; < 0 as production
and consumption points, respectively.

— s; supply or demand of node s.

— Arcs (i,) as transportation links with flow ca-
pacity c;; and cost per unit flow a;;

— Problem is to accomplish a minimum cost
transfer from the supply to the demand points.

o Important special cases: Shortest path, max-
flow, transportation, assignment problems.

Example: Network Flow

o Given a directed graph with set of nodes A and
set of arcs (i, j) € A, the (integer constrained) min-
imum cost network flow problem is

minimize E Qg 5L

(2,7)€A
subject to the constraints

E Tij — E Tj; = Sj, \V/iEN,

{Jl(2,5) €A} {J1(,0)eA}

bij < x5 < G, i (Z,]) c A, Tij integer,

where a;;, b;;, cij, and s; are given scalars.

Example: Network Flow

e The minimum cost flow problem has an inter-
esting property: If the s; and ¢;; are integer, the
optimal solutions of the integer-constrained prob-
lem also solve the relazed problem, obtained when
the integer constraints are neglected.

o Great practical significance, since the relaxed
problem can be solved using efficient linear (not
integer) programming algorithms.

Unimodularity

o This is special case of unimodularity:

— A square matrix A with integer components
IS unimodular If 1tS determinant is 0, 1, or -1.

Unimodularity

o This is special case of unimodularity:

— A square matrix A with integer components
IS unimodular If 1tS determinant is 0, 1, or -1.

— If Aisinvertible and unimodular, by Kramer’s
rule, the inverse matrix A—! has integer com-
ponents. Hence, the solution « of the system
Az = b IS Integer for every integer vector ».

Unimodularity

o This is special case of unimodularity:

— A square matrix A with integer components
IS unimodular If 1tS determinant is 0, 1, or -1.

— If Aisinvertible and unimodular, by Kramer’s
rule, the inverse matrix A—! has integer com-
ponents. Hence, the solution « of the system
Az = b IS Integer for every integer vector ».

— Arectangular matrix with integer components
IS called totally unimodular if €each of its square
submatrices is unimodular.

Unimodularity

o This is special case of unimodularity:

— A square matrix A with integer components
IS unimodular If 1tS determinant is 0, 1, or -1.

— If Aisinvertible and unimodular, by Kramer’s
rule, the inverse matrix A—! has integer com-
ponents. Hence, the solution « of the system
Az = b IS Integer for every integer vector ».

— Arectangular matrix with integer components
IS called totally unimodular if €each of its square
submatrices is unimodular.

e A polyhedron {z | Ex =d, b < 2 < ¢} has integer
extreme points if E is totally unimodular and », ¢,
and 4 have integer components.

e The matrix E corresponding to the minimum cost
flow problem is totally unimodular.

Non-unimodular Problems

o Unimodularity is an exceptional property.

o Nonunimodular example (Traveling salesman
problem): A salesman wants to find a minimum
cost tour that visits each of ~v given cities exactly
once and returns to the starting city.

Example of Non-Unimodular Problem:
Traveling Salesman Problem

e Let a;;: cost of going from city i to city j, and
let =;; be a variable that takes the value 1 if the
salesman visits city j immediately following city i,
and the value 0 otherwise.

Example of Non-Unimodular Problem:
Traveling Salesman Problem

e Let a;;: cost of going from city i to city j, and
let =;; be a variable that takes the value 1 if the
salesman visits city j immediately following city i,
and the value O otherwise The problem is

minimize E g AijLij

1=1 .] 1,...,
J#z

subject to g x;; = 1, 1=1,..., N,
j=1,..., N
J#1
E Liqs — 1, J = 17 7N7
i=1,..., N

(]
plus the constraints =;; = 0 or 1, and that the set
of arcs {(i,5) | z;; = 1} forms a connected tour

Example of Non-Unimodular Problem:
Traveling Salesman Problem

e Let a;;: cost of going from city i to city j, and
let =;; be a variable that takes the value 1 if the
salesman visits city j immediately following city i,
and the value O otherwise The problem is

minimize E g AijLij

1=1 .] 1,...,
J#z

subject to g x;; = 1, 1=1,..., N,
j=1,..., N
J#1
E Liqs — 1, J = 17 7N7
i=1,..., N

1#£]
plus the constraints =;; = 0 or 1, and that the set
of arcs {(i,4) | =;; = 1} forms a connected tour, i.e.,

Y (wi+z) >2, v proper subsets s of cities.
1€S, ¢S

Example: Graphical Model
Inference

Consider a random vector X = (X1,...,X,) with distribution:

P(X) Z 0s(xs) + Z Ost(Ts,) ¢

seV(G) (s,t)eE(G)

i.e. X follows a pairwise graphical model distribution with graph G =
(V, E).

An important “inference” problem in graphical models is to solve:

arg max P(x)

= arg max Z Os(xs) + Z Ost (s, xt)

L1y.-3Tp SEV(G) (S,t)EE(G)

Called the Maximum A Posteriori (MAP) problem, this is an integer pro-
gram when the values taken by the random variables lies in a discrete set

e.g. {0,1}.

A large class of combinatorial optimization problems can be cast graphical
model MAP problems, including satisfiability problems, decoding audio
signals, among others.

Approaches to Integer
Programming

e Enumeration of the finite set of all feasible (in-
teger) solutions, and comparison to obtain an op-
timal solution (this is rarely practical).

Approaches to Integer
Programming

e Enumeration of the finite set of all feasible (in-
teger) solutions, and comparison to obtain an op-
timal solution (this is rarely practical).

o Constraint relaxation and heuristic rounding.

— Neglect the integer constraints

— Solve the problem using linear/nonlinear pro-
gramming methods

— If a noninteger solution is obtained, round it
to integer using a heuristic

— Sometimes, with favorable structure, clever
problem formulation, and good heuristics,
this works remarkably well

Approaches to Integer
Programming

o Implicit enumeration (or branch-and-bound):
— Combines the preceding two approaches

— |t uses constraint relaxation and solution of
noninteger problems to obtain certain lower
bounds that are used to discard large por-
tions of the feasible set.

— In principle it can find an optimal (integer)
solution, but this may require unacceptable
long time.

— In practice, usually it is terminated with a
heuristically obtained integer solution, often
derived by rounding a noninteger solution.

Principle of Branch &
Bound

e Bounding Principle: Consider minimizing f(x)
over afinite setz € X. Lety; and v, be two subsets
of X, and suppose that we have bounds

f, < min f(z), fy > min f(2).

— a:EYl QZEYQ

Then, if f, < f_, the solutions in y; may be disre-

garded since their cost cannot be smaller than the
cost of the best solution in Y.

Branch & Bound

e The branch-and-bound method uses suitable
upper and lower bounds, and the bounding prin-
ciple to eliminate substantial portions of x.

o It uses a tree, with nodes that correspond to
subsets of X, usually obtained by binary partition.

X={1,2,3,4,5}

/

Feasible Solutionx v | ¥ = {1:2:3} {4,5)

N\

Yy ={1,2} Yo ={3} {4} {5}

PN

{1} 2}

Lower Bound fy

Branch and Bound Iree

Nodes of graph correspond to a collection X of subsets of feasible set X

— The nodes of tree from root to leaves specity a progressively finer

partition of X

The set of all solutions is the root node: X € X.

All feasible solutions x € X are leaf nodes: {z} € X.

If a set Y € X has more than one solution, then there exist disjoint sets

Yi,...,Y, € X, such that:

— Set Y is called the parent of Y7,....,Y,,.

— Yi,...,Y, are called children of Y.

Each set in X other than X has a parent

Lower Bound_fY

Feasible Solution x €Y

X ={1,2,3,4,5}

Y ={1,2,3}

{1}

/

Yo ={3}

{4}

{4,5}

{5}

Branch & Bound:
Key Ingredient

e For every non-terminal node Y, there is an algorithm that
calculates:

(a) A lower bound f,, to the minimum cost over Y

fo < min f(z).

=Y = ey

(b) A feasible solution Z € Y, whose cost f(Z) can serve as an upper
bound to the minimum cost over Y (as well as over X).

Branch & Bound:
Key Ingredient

e These bounds are used to save computation by discarding nodes Y of
tree (and all its descendants) that have no chance of containing a solution
better than current best solution

e For any node Y in the tree, check if the lower bound f ., is larger than best
available upper bound (minimal f(Z) over feasible solutions & considered
so far)

e If so, we know Y cannot contain optimal solution, so Y and descendants
can be safely discarded.

Branch and Bound Algorithm

e The algorithm maintains a node list called OPEN,
and a scalar called UPPER, which is equal to the
minimal cost over feasible solutions found so far.
Initially, OPEN= {x}, and UPPER= ~ or to the
cost f(z) of some feasible solution z € X.

Branch and Bound Algorithm

e The algorithm maintains a node list called OPEN,
and a scalar called UPPER, which is equal to the
minimal cost over feasible solutions found so far.
Initially, OPEN= {x}, and UPPER= ~ or to the
cost f(z) of some feasible solution z € X.

e Step 1: Remove a node vy from OPEN. For
each child v; of v, do the following: Find the lower
bound s, and a feasible solution z c v;. If

f,, < UPPER,

place v; in OPEN. If in addition
f(@) < UPPER,

set UPPER = f(z) and mark z as the best solution
found so far.

Branch and Bound Algorithm

e The algorithm maintains a node list called OPEN,
and a scalar called UPPER, which is equal to the
minimal cost over feasible solutions found so far.
Initially, OPEN= {x}, and UPPER= ~ or to the
cost f(z) of some feasible solution z € X.

e Step 1: Remove a node vy from OPEN. For
each child v; of v, do the following: Find the lower
bound s, and a feasible solution z c v;. If

f,, < UPPER,

place v; in OPEN. If in addition
f(@) < UPPER,

set UPPER = f(z) and mark z as the best solution
found so far.

Step 2: (Termination Test) If OPEN is nonempty,
go to step 1. Otherwise, terminate; the best solu-
tion found so far is optimal.

Termination

e Termination with a global minimum is guaran-
teed, but the number of nodes to be examined may
be huge. In practice, the algorithm is terminated
when an e-optimal solution is obtained.

o Tight lower bounds s . are important for quick
termination.

Lower Bounds

o One method to obtain lower bounds in the branch-
and-bound method is by constraint relaxation (e.g.,
replace z; € {0,1} by 0 < 2; < 1)

Lower Bounds

e Another method, called Lagrangian relazation, 1S
based on weak duality. If the subproblem of a
node of the branch-and-bound tree has the form

minimize f(x)
subject to g;(x) <0, 7=1,...,m7,
r e X,

use as lower bound the optimal dual value

q° = maxq(u),
pu=0

where

;

q(n) = min < f(x) + Zujgj(w)} :
j=1

reX

\

o Essential for applying Lagrangian relaxation is
that the dual problem is easy to solve

