
Duality and Discrete 
Optimization

Lecturer: Pradeep Ravikumar

Co-instructor: Aarti Singh


Convex Optimization 10-725/36-725




Discrete Optimization

6.252 NONLINEAR PROGRAMMING

LECTURE 21: DISCRETE OPTIMIZATION

LECTURE OUTLINE

• Discrete Constraints and Integer Programming
• Examples of Discrete Optimization Problems
• Constraint Relaxation and Rounding
• Branch-and-Bound
• Lagrangian Relaxation

********************************

• Consider

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X is a finite set.
• Example: 0-1 Integer programming:

X =
{

(x1, . . . , xn) | xi = 0 or 1, i = 1, . . . , n
}

.



Discrete Optimization

6.252 NONLINEAR PROGRAMMING

LECTURE 21: DISCRETE OPTIMIZATION

LECTURE OUTLINE

• Discrete Constraints and Integer Programming
• Examples of Discrete Optimization Problems
• Constraint Relaxation and Rounding
• Branch-and-Bound
• Lagrangian Relaxation

********************************

• Consider

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X is a finite set.
• Example: 0-1 Integer programming:

X =
{

(x1, . . . , xn) | xi = 0 or 1, i = 1, . . . , n
}

.



Example: Network Flow

EXAMPLES OF DISCRETE PROBLEMS

• Given a directed graph with set of nodes N and
set of arcs (i, j) ∈ A, the (integer constrained) min-
imum cost network flow problem is

minimize
∑

(i,j)∈A

aijxij

subject to the constraints
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀ i ∈ N ,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A, xij : integer,
where aij , bij , cij , and si are given scalars.
• Think of:

− Nodes i with si > 0 and si < 0 as production
and consumption points, respectively.

− si supply or demand of node i.
− Arcs (i, j) as transportation links with flow ca-

pacity cij and cost per unit flow aij

− Problem is to accomplish a minimum cost
transfer from the supply to the demand points.

• Important special cases: Shortest path, max-
flow, transportation, assignment problems.



Example: Network Flow
EXAMPLES OF DISCRETE PROBLEMS

• Given a directed graph with set of nodes N and
set of arcs (i, j) ∈ A, the (integer constrained) min-
imum cost network flow problem is

minimize
∑

(i,j)∈A

aijxij

subject to the constraints
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀ i ∈ N ,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A, xij : integer,
where aij , bij , cij , and si are given scalars.
• Think of:

− Nodes i with si > 0 and si < 0 as production
and consumption points, respectively.

− si supply or demand of node i.
− Arcs (i, j) as transportation links with flow ca-

pacity cij and cost per unit flow aij

− Problem is to accomplish a minimum cost
transfer from the supply to the demand points.

• Important special cases: Shortest path, max-
flow, transportation, assignment problems.



Example: Network Flow
UNIMODULARITY PROPERTY

• The minimum cost flow problem has an inter-
esting property: If the si and cij are integer, the
optimal solutions of the integer-constrained prob-
lem also solve the relaxed problem, obtained when
the integer constraints are neglected.
• Great practical significance, since the relaxed
problem can be solved using efficient linear (not
integer) programming algorithms.
• This is special case of unimodularity:

− A square matrix A with integer components
is unimodular if its determinant is 0, 1, or -1.

− If A is invertible and unimodular, by Kramer’s
rule, the inverse matrix A−1 has integer com-
ponents. Hence, the solution x of the system
Ax = b is integer for every integer vector b.

− A rectangular matrix with integer components
is called totally unimodular if each of its square
submatrices is unimodular.

• A polyhedron {x | Ex = d, b ≤ x ≤ c} has integer
extreme points if E is totally unimodular and b, c,
and d have integer components.
• The matrix E corresponding to the minimum cost
flow problem is totally unimodular.



Unimodularity

UNIMODULARITY PROPERTY

• The minimum cost flow problem has an inter-
esting property: If the si and cij are integer, the
optimal solutions of the integer-constrained prob-
lem also solve the relaxed problem, obtained when
the integer constraints are neglected.
• Great practical significance, since the relaxed
problem can be solved using efficient linear (not
integer) programming algorithms.
• This is special case of unimodularity:

− A square matrix A with integer components
is unimodular if its determinant is 0, 1, or -1.

− If A is invertible and unimodular, by Kramer’s
rule, the inverse matrix A−1 has integer com-
ponents. Hence, the solution x of the system
Ax = b is integer for every integer vector b.

− A rectangular matrix with integer components
is called totally unimodular if each of its square
submatrices is unimodular.

• A polyhedron {x | Ex = d, b ≤ x ≤ c} has integer
extreme points if E is totally unimodular and b, c,
and d have integer components.
• The matrix E corresponding to the minimum cost
flow problem is totally unimodular.



Unimodularity

UNIMODULARITY PROPERTY

• The minimum cost flow problem has an inter-
esting property: If the si and cij are integer, the
optimal solutions of the integer-constrained prob-
lem also solve the relaxed problem, obtained when
the integer constraints are neglected.
• Great practical significance, since the relaxed
problem can be solved using efficient linear (not
integer) programming algorithms.
• This is special case of unimodularity:

− A square matrix A with integer components
is unimodular if its determinant is 0, 1, or -1.

− If A is invertible and unimodular, by Kramer’s
rule, the inverse matrix A−1 has integer com-
ponents. Hence, the solution x of the system
Ax = b is integer for every integer vector b.

− A rectangular matrix with integer components
is called totally unimodular if each of its square
submatrices is unimodular.

• A polyhedron {x | Ex = d, b ≤ x ≤ c} has integer
extreme points if E is totally unimodular and b, c,
and d have integer components.
• The matrix E corresponding to the minimum cost
flow problem is totally unimodular.



Unimodularity

UNIMODULARITY PROPERTY

• The minimum cost flow problem has an inter-
esting property: If the si and cij are integer, the
optimal solutions of the integer-constrained prob-
lem also solve the relaxed problem, obtained when
the integer constraints are neglected.
• Great practical significance, since the relaxed
problem can be solved using efficient linear (not
integer) programming algorithms.
• This is special case of unimodularity:

− A square matrix A with integer components
is unimodular if its determinant is 0, 1, or -1.

− If A is invertible and unimodular, by Kramer’s
rule, the inverse matrix A−1 has integer com-
ponents. Hence, the solution x of the system
Ax = b is integer for every integer vector b.

− A rectangular matrix with integer components
is called totally unimodular if each of its square
submatrices is unimodular.

• A polyhedron {x | Ex = d, b ≤ x ≤ c} has integer
extreme points if E is totally unimodular and b, c,
and d have integer components.
• The matrix E corresponding to the minimum cost
flow problem is totally unimodular.



Unimodularity

UNIMODULARITY PROPERTY

• The minimum cost flow problem has an inter-
esting property: If the si and cij are integer, the
optimal solutions of the integer-constrained prob-
lem also solve the relaxed problem, obtained when
the integer constraints are neglected.
• Great practical significance, since the relaxed
problem can be solved using efficient linear (not
integer) programming algorithms.
• This is special case of unimodularity:

− A square matrix A with integer components
is unimodular if its determinant is 0, 1, or -1.

− If A is invertible and unimodular, by Kramer’s
rule, the inverse matrix A−1 has integer com-
ponents. Hence, the solution x of the system
Ax = b is integer for every integer vector b.

− A rectangular matrix with integer components
is called totally unimodular if each of its square
submatrices is unimodular.

• A polyhedron {x | Ex = d, b ≤ x ≤ c} has integer
extreme points if E is totally unimodular and b, c,
and d have integer components.
• The matrix E corresponding to the minimum cost
flow problem is totally unimodular.



Non-unimodular Problems
EXAMPLES OF NONUNIMODULAR PROBLEMS

• Unimodularity is an exceptional property.
• Nonunimodular example (Traveling salesman
problem): A salesman wants to find a minimum
cost tour that visits each of N given cities exactly
once and returns to the starting city.
• Let aij : cost of going from city i to city j, and
let xij be a variable that takes the value 1 if the
salesman visits city j immediately following city i,
and the value 0 otherwise. The problem is

minimize

N∑

i=1

∑

j=1,...,N
j ̸=i

aijxij

subject to
∑

j=1,...,N
j ̸=i

xij = 1, i = 1, . . . , N,

∑

i=1,...,N
i̸=j

xij = 1, j = 1, . . . , N,

plus the constraints xij = 0 or 1, and that the set
of arcs {(i, j) | xij = 1} forms a connected tour, i.e.,

∑

i∈S, j /∈S

(xij+xji) ≥ 2, ∀ proper subsets S of cities.



Example of Non-Unimodular Problem: 
Traveling Salesman Problem

EXAMPLES OF NONUNIMODULAR PROBLEMS

• Unimodularity is an exceptional property.
• Nonunimodular example (Traveling salesman
problem): A salesman wants to find a minimum
cost tour that visits each of N given cities exactly
once and returns to the starting city.
• Let aij : cost of going from city i to city j, and
let xij be a variable that takes the value 1 if the
salesman visits city j immediately following city i,
and the value 0 otherwise. The problem is

minimize

N∑

i=1

∑

j=1,...,N
j ̸=i

aijxij

subject to
∑

j=1,...,N
j ̸=i

xij = 1, i = 1, . . . , N,

∑

i=1,...,N
i̸=j

xij = 1, j = 1, . . . , N,

plus the constraints xij = 0 or 1, and that the set
of arcs {(i, j) | xij = 1} forms a connected tour, i.e.,

∑

i∈S, j /∈S

(xij+xji) ≥ 2, ∀ proper subsets S of cities.



Example of Non-Unimodular Problem: 
Traveling Salesman Problem

EXAMPLES OF NONUNIMODULAR PROBLEMS

• Unimodularity is an exceptional property.
• Nonunimodular example (Traveling salesman
problem): A salesman wants to find a minimum
cost tour that visits each of N given cities exactly
once and returns to the starting city.
• Let aij : cost of going from city i to city j, and
let xij be a variable that takes the value 1 if the
salesman visits city j immediately following city i,
and the value 0 otherwise. The problem is

minimize

N∑

i=1

∑

j=1,...,N
j ̸=i

aijxij

subject to
∑

j=1,...,N
j ̸=i

xij = 1, i = 1, . . . , N,

∑

i=1,...,N
i̸=j

xij = 1, j = 1, . . . , N,

plus the constraints xij = 0 or 1, and that the set
of arcs {(i, j) | xij = 1} forms a connected tour, i.e.,

∑

i∈S, j /∈S

(xij+xji) ≥ 2, ∀ proper subsets S of cities.



Example of Non-Unimodular Problem: 
Traveling Salesman Problem

EXAMPLES OF NONUNIMODULAR PROBLEMS

• Unimodularity is an exceptional property.
• Nonunimodular example (Traveling salesman
problem): A salesman wants to find a minimum
cost tour that visits each of N given cities exactly
once and returns to the starting city.
• Let aij : cost of going from city i to city j, and
let xij be a variable that takes the value 1 if the
salesman visits city j immediately following city i,
and the value 0 otherwise. The problem is

minimize

N∑

i=1

∑

j=1,...,N
j ̸=i

aijxij

subject to
∑

j=1,...,N
j ̸=i

xij = 1, i = 1, . . . , N,

∑

i=1,...,N
i̸=j

xij = 1, j = 1, . . . , N,

plus the constraints xij = 0 or 1, and that the set
of arcs {(i, j) | xij = 1} forms a connected tour, i.e.,

∑

i∈S, j /∈S

(xij+xji) ≥ 2, ∀ proper subsets S of cities.



Example: Graphical Model 
Inference

• Consider a random vector X = (X1, . . . , Xp

) with distribution:

P (X) /

8
<

:
X

s2V (G)

✓

s

(x

s

) +

X

(s,t)2E(G)

✓

st

(x

s

, x

t

)

9
=

; ,

i.e. X follows a pairwise graphical model distribution with graph G =

(V,E).

• An important “inference” problem in graphical models is to solve:

arg max

x1,...,xp

P (x)

⌘ arg max

x1,...,xp

8
<

:
X

s2V (G)

✓

s

(x

s

) +

X

(s,t)2E(G)

✓

st

(x

s

, x

t

)

9
=

;

• Called the Maximum A Posteriori (MAP) problem, this is an integer pro-

gram when the values taken by the random variables lies in a discrete set

e.g. {0, 1}.

• A large class of combinatorial optimization problems can be cast graphical

model MAP problems, including satisfiability problems, decoding audio

signals, among others.



Approaches to Integer 
ProgrammingAPPROACHES TO INTEGER PROGRAMMING

• Enumeration of the finite set of all feasible (in-
teger) solutions, and comparison to obtain an op-
timal solution (this is rarely practical).
• Constraint relaxation and heuristic rounding.

− Neglect the integer constraints
− Solve the problem using linear/nonlinear pro-

gramming methods
− If a noninteger solution is obtained, round it

to integer using a heuristic
− Sometimes, with favorable structure, clever

problem formulation, and good heuristics,
this works remarkably well

• Implicit enumeration (or branch-and-bound):
− Combines the preceding two approaches
− It uses constraint relaxation and solution of

noninteger problems to obtain certain lower
bounds that are used to discard large por-
tions of the feasible set.

− In principle it can find an optimal (integer)
solution, but this may require unacceptable
long time.

− In practice, usually it is terminated with a
heuristically obtained integer solution, often
derived by rounding a noninteger solution.



Approaches to Integer 
ProgrammingAPPROACHES TO INTEGER PROGRAMMING

• Enumeration of the finite set of all feasible (in-
teger) solutions, and comparison to obtain an op-
timal solution (this is rarely practical).
• Constraint relaxation and heuristic rounding.

− Neglect the integer constraints
− Solve the problem using linear/nonlinear pro-

gramming methods
− If a noninteger solution is obtained, round it

to integer using a heuristic
− Sometimes, with favorable structure, clever

problem formulation, and good heuristics,
this works remarkably well

• Implicit enumeration (or branch-and-bound):
− Combines the preceding two approaches
− It uses constraint relaxation and solution of

noninteger problems to obtain certain lower
bounds that are used to discard large por-
tions of the feasible set.

− In principle it can find an optimal (integer)
solution, but this may require unacceptable
long time.

− In practice, usually it is terminated with a
heuristically obtained integer solution, often
derived by rounding a noninteger solution.



Approaches to Integer 
Programming

APPROACHES TO INTEGER PROGRAMMING

• Enumeration of the finite set of all feasible (in-
teger) solutions, and comparison to obtain an op-
timal solution (this is rarely practical).
• Constraint relaxation and heuristic rounding.

− Neglect the integer constraints
− Solve the problem using linear/nonlinear pro-

gramming methods
− If a noninteger solution is obtained, round it

to integer using a heuristic
− Sometimes, with favorable structure, clever

problem formulation, and good heuristics,
this works remarkably well

• Implicit enumeration (or branch-and-bound):
− Combines the preceding two approaches
− It uses constraint relaxation and solution of

noninteger problems to obtain certain lower
bounds that are used to discard large por-
tions of the feasible set.

− In principle it can find an optimal (integer)
solution, but this may require unacceptable
long time.

− In practice, usually it is terminated with a
heuristically obtained integer solution, often
derived by rounding a noninteger solution.



Principle of Branch & 
BoundPRINCIPLE OF BRANCH-AND-BOUND

• Bounding Principle: Consider minimizing f(x)
over a finite set x ∈ X. Let Y1 and Y2 be two subsets
of X, and suppose that we have bounds

f
1
≤ min

x∈Y1
f(x), f2 ≥ min

x∈Y2
f(x).

Then, if f2 ≤ f
1
, the solutions in Y1 may be disre-

garded since their cost cannot be smaller than the
cost of the best solution in Y2.
• The branch-and-bound method uses suitable
upper and lower bounds, and the bounding prin-
ciple to eliminate substantial portions of X.
• It uses a tree, with nodes that correspond to
subsets of X, usually obtained by binary partition.

X = {1,2,3,4,5}

{4}

Y = {1,2,3} {4,5}

{4} {5}

{1}

Y1 = {1,2} Y2 = {3}

Lower Bound fY_ _
Feasible Solution x  ∈ Y

{2}



Branch & Bound

PRINCIPLE OF BRANCH-AND-BOUND

• Bounding Principle: Consider minimizing f(x)
over a finite set x ∈ X. Let Y1 and Y2 be two subsets
of X, and suppose that we have bounds

f
1
≤ min

x∈Y1
f(x), f2 ≥ min

x∈Y2
f(x).

Then, if f2 ≤ f
1
, the solutions in Y1 may be disre-

garded since their cost cannot be smaller than the
cost of the best solution in Y2.
• The branch-and-bound method uses suitable
upper and lower bounds, and the bounding prin-
ciple to eliminate substantial portions of X.
• It uses a tree, with nodes that correspond to
subsets of X, usually obtained by binary partition.

X = {1,2,3,4,5}

{4}

Y = {1,2,3} {4,5}

{4} {5}

{1}

Y1 = {1,2} Y2 = {3}

Lower Bound fY_ _
Feasible Solution x  ∈ Y

{2}



Branch and Bound Tree
• Nodes of graph correspond to a collection X of subsets of feasible set X

– The nodes of tree from root to leaves specify a progressively finer

partition of X

• The set of all solutions is the root node: X 2 X .

• All feasible solutions x 2 X are leaf nodes: {x} 2 X .

• If a set Y 2 X has more than one solution, then there exist disjoint sets

Y1, . . . , Yn 2 X , such that:

[n
i=1 Yi = Y.

– Set Y is called the parent of Y1, . . . , Yn.

– Y1, . . . , Yn are called children of Y .

• Each set in X other than X has a parent

PRINCIPLE OF BRANCH-AND-BOUND

• Bounding Principle: Consider minimizing f(x)
over a finite set x ∈ X. Let Y1 and Y2 be two subsets
of X, and suppose that we have bounds

f
1
≤ min

x∈Y1
f(x), f2 ≥ min

x∈Y2
f(x).

Then, if f2 ≤ f
1
, the solutions in Y1 may be disre-

garded since their cost cannot be smaller than the
cost of the best solution in Y2.
• The branch-and-bound method uses suitable
upper and lower bounds, and the bounding prin-
ciple to eliminate substantial portions of X.
• It uses a tree, with nodes that correspond to
subsets of X, usually obtained by binary partition.

X = {1,2,3,4,5}

{4}

Y = {1,2,3} {4,5}

{4} {5}

{1}

Y1 = {1,2} Y2 = {3}

Lower Bound fY_ _
Feasible Solution x  ∈ Y

{2}



Branch & Bound:  
Key Ingredient

• For every non-terminal node Y, there is an algorithm that 
calculates:



Branch & Bound:  
Key Ingredient

• These bounds are used to save computation by discarding nodes Y of

tree (and all its descendants) that have no chance of containing a solution

better than current best solution

• For any node Y in the tree, check if the lower bound f

Y
is larger than best

available upper bound (minimal f(x̄) over feasible solutions x̄ considered

so far)

• If so, we know Y cannot contain optimal solution, so Y and descendants

can be safely discarded.



Branch and Bound AlgorithmBRANCH-AND-BOUND ALGORITHM

• The algorithm maintains a node list called OPEN,
and a scalar called UPPER, which is equal to the
minimal cost over feasible solutions found so far.
Initially, OPEN= {X}, and UPPER= ∞ or to the
cost f(x) of some feasible solution x ∈ X.
• Step 1: Remove a node Y from OPEN. For
each child Yj of Y , do the following: Find the lower
bound f

Yj
and a feasible solution x ∈ Yj . If

f
Yj

< UPPER,

place Yj in OPEN. If in addition
f(x) < UPPER,

set UPPER = f(x) and mark x as the best solution
found so far.
Step 2: (Termination Test) If OPEN is nonempty,
go to step 1. Otherwise, terminate; the best solu-
tion found so far is optimal.
• Termination with a global minimum is guaran-
teed, but the number of nodes to be examined may
be huge. In practice, the algorithm is terminated
when an ϵ-optimal solution is obtained.
• Tight lower bounds f

Yj
are important for quick

termination.



Branch and Bound AlgorithmBRANCH-AND-BOUND ALGORITHM

• The algorithm maintains a node list called OPEN,
and a scalar called UPPER, which is equal to the
minimal cost over feasible solutions found so far.
Initially, OPEN= {X}, and UPPER= ∞ or to the
cost f(x) of some feasible solution x ∈ X.
• Step 1: Remove a node Y from OPEN. For
each child Yj of Y , do the following: Find the lower
bound f

Yj
and a feasible solution x ∈ Yj . If

f
Yj

< UPPER,

place Yj in OPEN. If in addition
f(x) < UPPER,

set UPPER = f(x) and mark x as the best solution
found so far.
Step 2: (Termination Test) If OPEN is nonempty,
go to step 1. Otherwise, terminate; the best solu-
tion found so far is optimal.
• Termination with a global minimum is guaran-
teed, but the number of nodes to be examined may
be huge. In practice, the algorithm is terminated
when an ϵ-optimal solution is obtained.
• Tight lower bounds f

Yj
are important for quick

termination.



Branch and Bound AlgorithmBRANCH-AND-BOUND ALGORITHM

• The algorithm maintains a node list called OPEN,
and a scalar called UPPER, which is equal to the
minimal cost over feasible solutions found so far.
Initially, OPEN= {X}, and UPPER= ∞ or to the
cost f(x) of some feasible solution x ∈ X.
• Step 1: Remove a node Y from OPEN. For
each child Yj of Y , do the following: Find the lower
bound f

Yj
and a feasible solution x ∈ Yj . If

f
Yj

< UPPER,

place Yj in OPEN. If in addition
f(x) < UPPER,

set UPPER = f(x) and mark x as the best solution
found so far.
Step 2: (Termination Test) If OPEN is nonempty,
go to step 1. Otherwise, terminate; the best solu-
tion found so far is optimal.
• Termination with a global minimum is guaran-
teed, but the number of nodes to be examined may
be huge. In practice, the algorithm is terminated
when an ϵ-optimal solution is obtained.
• Tight lower bounds f

Yj
are important for quick

termination.



Termination

BRANCH-AND-BOUND ALGORITHM

• The algorithm maintains a node list called OPEN,
and a scalar called UPPER, which is equal to the
minimal cost over feasible solutions found so far.
Initially, OPEN= {X}, and UPPER= ∞ or to the
cost f(x) of some feasible solution x ∈ X.
• Step 1: Remove a node Y from OPEN. For
each child Yj of Y , do the following: Find the lower
bound f

Yj
and a feasible solution x ∈ Yj . If

f
Yj

< UPPER,

place Yj in OPEN. If in addition
f(x) < UPPER,

set UPPER = f(x) and mark x as the best solution
found so far.
Step 2: (Termination Test) If OPEN is nonempty,
go to step 1. Otherwise, terminate; the best solu-
tion found so far is optimal.
• Termination with a global minimum is guaran-
teed, but the number of nodes to be examined may
be huge. In practice, the algorithm is terminated
when an ϵ-optimal solution is obtained.
• Tight lower bounds f

Yj
are important for quick

termination.



Lower Bounds
LAGRANGIAN RELAXATION

• One method to obtain lower bounds in the branch-
and-bound method is by constraint relaxation (e.g.,
replace xi ∈ {0, 1} by 0 ≤ xi ≤ 1)
• Another method, called Lagrangian relaxation, is
based on weak duality. If the subproblem of a
node of the branch-and-bound tree has the form

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,

x ∈ X,

use as lower bound the optimal dual value
q∗ = max

µ≥0
q(µ),

where

q(µ) = min
x∈X

{
f(x) +

r∑

j=1

µjgj(x)

}
.

• Essential for applying Lagrangian relaxation is
that the dual problem is easy to solve (e.g., the
dual is a simple linear program, or it involves use-
ful structure, such as separability).



Lower Bounds
LAGRANGIAN RELAXATION

• One method to obtain lower bounds in the branch-
and-bound method is by constraint relaxation (e.g.,
replace xi ∈ {0, 1} by 0 ≤ xi ≤ 1)
• Another method, called Lagrangian relaxation, is
based on weak duality. If the subproblem of a
node of the branch-and-bound tree has the form

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,

x ∈ X,

use as lower bound the optimal dual value
q∗ = max

µ≥0
q(µ),

where

q(µ) = min
x∈X

{
f(x) +

r∑

j=1

µjgj(x)

}
.

• Essential for applying Lagrangian relaxation is
that the dual problem is easy to solve (e.g., the
dual is a simple linear program, or it involves use-
ful structure, such as separability).


