Duality and Discrete Optimization

Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh

Convex Optimization 10-725/36-725

Discrete Optimization

minimize f(x)subject to $x \in X$, $g_j(x) \le 0$, $j = 1, \dots, r$,

where *X* is a *finite* set.

Discrete Optimization

minimize f(x)subject to $x \in X$, $g_j(x) \le 0$, $j = 1, \dots, r$,

where *X* is a *finite* set.

• Example: 0-1 Integer programming:

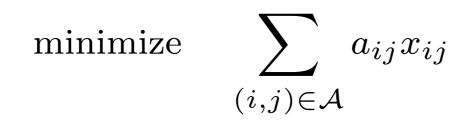
$$X = \{ (x_1, \dots, x_n) \mid x_i = 0 \text{ or } 1, i = 1, \dots, n \}.$$

Example: Network Flow

- Think of:
 - Nodes *i* with $s_i > 0$ and $s_i < 0$ as production and consumption points, respectively.
 - s_i supply or demand of node *i*.
 - Arcs (i, j) as transportation links with flow capacity c_{ij} and cost per unit flow a_{ij}
 - Problem is to accomplish a minimum cost transfer from the supply to the demand points.
- Important special cases: Shortest path, max-flow, transportation, assignment problems.

Example: Network Flow

• Given a directed graph with set of nodes N and set of arcs $(i, j) \in A$, the (integer constrained) minimum cost network flow problem is



subject to the constraints

$$\sum_{\{j|(i,j)\in\mathcal{A}\}} x_{ij} - \sum_{\{j|(j,i)\in\mathcal{A}\}} x_{ji} = s_i, \qquad \forall i\in\mathcal{N},$$

 $b_{ij} \leq x_{ij} \leq c_{ij}, \quad \forall (i,j) \in \mathcal{A}, \qquad x_{ij}: \text{ integer},$

where a_{ij} , b_{ij} , c_{ij} , and s_i are given scalars.

Example: Network Flow

• The minimum cost flow problem has an interesting property: If the s_i and c_{ij} are integer, the optimal solutions of the integer-constrained problem also solve the *relaxed* problem, obtained when the integer constraints are neglected.

• Great practical significance, since the relaxed problem can be solved using efficient linear (not integer) programming algorithms.

- This is special case of *unimodularity*:
 - A square matrix A with integer components is *unimodular* if its determinant is 0, 1, or -1.

- This is special case of *unimodularity*:
 - A square matrix A with integer components is *unimodular* if its determinant is 0, 1, or -1.
 - If *A* is invertible and unimodular, by Kramer's rule, the inverse matrix A^{-1} has integer components. Hence, the solution *x* of the system Ax = b is integer for every integer vector *b*.

- This is special case of *unimodularity*:
 - A square matrix A with integer components is *unimodular* if its determinant is 0, 1, or -1.
 - If *A* is invertible and unimodular, by Kramer's rule, the inverse matrix A^{-1} has integer components. Hence, the solution *x* of the system Ax = b is integer for every integer vector *b*.
 - A rectangular matrix with integer components is called *totally unimodular* if each of its square submatrices is unimodular.

- This is special case of *unimodularity*:
 - A square matrix A with integer components is *unimodular* if its determinant is 0, 1, or -1.
 - If *A* is invertible and unimodular, by Kramer's rule, the inverse matrix A^{-1} has integer components. Hence, the solution *x* of the system Ax = b is integer for every integer vector *b*.
 - A rectangular matrix with integer components is called *totally unimodular* if each of its square submatrices is unimodular.
- A polyhedron $\{x \mid Ex = d, b \le x \le c\}$ has integer extreme points if *E* is totally unimodular and *b*, *c*, and *d* have integer components.

• The matrix *E* corresponding to the minimum cost flow problem is totally unimodular.

Non-unimodular Problems

- Unimodularity is an exceptional property.
- Nonunimodular example (Traveling salesman problem): A salesman wants to find a minimum cost tour that visits each of *N* given cities exactly once and returns to the starting city.

Example of Non-Unimodular Problem: Traveling Salesman Problem

• Let a_{ij} : cost of going from city *i* to city *j*, and let x_{ij} be a variable that takes the value 1 if the salesman visits city *j* immediately following city *i*, and the value 0 otherwise.

Example of Non-Unimodular Problem: Traveling Salesman Problem

• Let a_{ij} : cost of going from city *i* to city *j*, and let x_{ij} be a variable that takes the value 1 if the salesman visits city *j* immediately following city *i*, and the value 0 otherwise. The problem is

minimize
$$\sum_{i=1}^{N} \sum_{\substack{j=1,\dots,N\\j\neq i}} a_{ij} x_{ij}$$
subject to
$$\sum_{\substack{j=1,\dots,N\\j\neq i}} x_{ij} = 1, \qquad i = 1,\dots,N,$$
$$\sum_{\substack{i=1,\dots,N\\i\neq j}} x_{ij} = 1, \qquad j = 1,\dots,N,$$

plus the constraints $x_{ij} = 0$ or 1, and that the set of arcs $\{(i, j) | x_{ij} = 1\}$ forms a connected tour

Example of Non-Unimodular Problem: Traveling Salesman Problem

• Let a_{ij} : cost of going from city *i* to city *j*, and let x_{ij} be a variable that takes the value 1 if the salesman visits city *j* immediately following city *i*, and the value 0 otherwise. The problem is

minimize
$$\sum_{i=1}^{N} \sum_{\substack{j=1,\dots,N\\j\neq i}} a_{ij} x_{ij}$$
subject to
$$\sum_{\substack{j=1,\dots,N\\j\neq i}} x_{ij} = 1, \qquad i = 1,\dots,N,$$
$$\sum_{\substack{i=1,\dots,N\\i\neq j}} x_{ij} = 1, \qquad j = 1,\dots,N,$$

plus the constraints $x_{ij} = 0$ or 1, and that the set of arcs $\{(i, j) | x_{ij} = 1\}$ forms a connected tour, i.e.,

 $\sum_{i \in S, j \notin S} (x_{ij} + x_{ji}) \ge 2, \quad \forall \text{ proper subsets } S \text{ of cities.}$

Example: Graphical Model Inference

• Consider a random vector $X = (X_1, \ldots, X_p)$ with distribution:

$$P(X) \propto \left\{ \sum_{s \in V(G)} \theta_s(x_s) + \sum_{(s,t) \in E(G)} \theta_{st}(x_s, x_t) \right\},\$$

i.e. X follows a pairwise graphical model distribution with graph G = (V, E).

• An important "inference" problem in graphical models is to solve:

$$\arg \max_{x_1,...,x_p} P(x)$$

$$\equiv \arg \max_{x_1,...,x_p} \left\{ \sum_{s \in V(G)} \theta_s(x_s) + \sum_{(s,t) \in E(G)} \theta_{st}(x_s,x_t) \right\}$$

- Called the Maximum A Posteriori (MAP) problem, this is an integer program when the values taken by the random variables lies in a discrete set e.g. {0,1}.
- A large class of combinatorial optimization problems can be cast graphical model MAP problems, including satisfiability problems, decoding audio signals, among others.

Approaches to Integer Programming

• Enumeration of the finite set of all feasible (integer) solutions, and comparison to obtain an optimal solution (this is rarely practical).

Approaches to Integer Programming

• Enumeration of the finite set of all feasible (integer) solutions, and comparison to obtain an optimal solution (this is rarely practical).

- Constraint relaxation and heuristic rounding.
 - Neglect the integer constraints
 - Solve the problem using linear/nonlinear programming methods
 - If a noninteger solution is obtained, round it to integer using a heuristic
 - Sometimes, with favorable structure, clever problem formulation, and good heuristics, this works remarkably well

Approaches to Integer Programming

- Implicit enumeration (or branch-and-bound):
 - Combines the preceding two approaches
 - It uses constraint relaxation and solution of noninteger problems to obtain certain lower bounds that are used to discard large portions of the feasible set.
 - In principle it can find an optimal (integer) solution, but this may require unacceptable long time.
 - In practice, usually it is terminated with a heuristically obtained integer solution, often derived by rounding a noninteger solution.

Principle of Branch & Bound

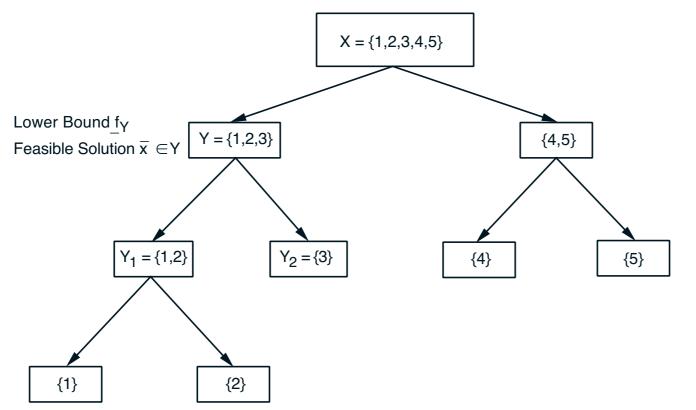
• Bounding Principle: Consider minimizing f(x) over a finite set $x \in X$. Let Y_1 and Y_2 be two subsets of X, and suppose that we have bounds

$$\underline{f}_1 \le \min_{x \in Y_1} f(x), \qquad \overline{f}_2 \ge \min_{x \in Y_2} f(x).$$

Then, if $\overline{f}_2 \leq \underline{f}_1$, the solutions in Y_1 may be disregarded since their cost cannot be smaller than the cost of the best solution in Y_2 .

Branch & Bound

- The branch-and-bound method uses suitable upper and lower bounds, and the bounding principle to eliminate substantial portions of *X*.
- It uses a tree, with nodes that correspond to subsets of *X*, usually obtained by binary partition.



Branch and Bound Tree

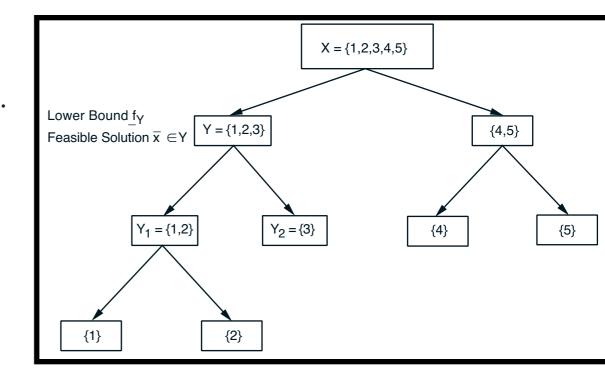
- Nodes of graph correspond to a collection \mathcal{X} of subsets of feasible set X
 - The nodes of tree from root to leaves specify a progressively finer partition of X
- The set of all solutions is the root node: $X \in \mathcal{X}$.
- All feasible solutions $x \in X$ are leaf nodes: $\{x\} \in \mathcal{X}$.
- If a set $Y \in \mathcal{X}$ has more than one solution, then there exist disjoint sets $Y_1, \ldots, Y_n \in \mathcal{X}$, such that:

 $\bigcup_{i=1}^{n} Y_i = Y.$

- Set Y is called the *parent* of
$$Y_1, \ldots, Y_n$$

- Y_1, \ldots, Y_n are called *children* of Y.

• Each set in \mathcal{X} other than X has a parent



Branch & Bound: Key Ingredient

For every non-terminal node Y, there is an algorithm that calculates:

(a) A lower bound \underline{f}_Y to the minimum cost over Y

$$\underline{f}_Y \le \min_{x \in Y} f(x).$$

(b) A feasible solution $\bar{x} \in Y$, whose cost $f(\bar{x})$ can serve as an upper bound to the minimum cost over Y (as well as over X).

Branch & Bound: Key Ingredient

- These bounds are used to save computation by discarding nodes Y of tree (and all its descendants) that have no chance of containing a solution better than current best solution
- For any node Y in the tree, check if the lower bound \underline{f}_Y is larger than best available upper bound (minimal $f(\bar{x})$ over feasible solutions \bar{x} considered so far)
- If so, we know Y cannot contain optimal solution, so Y and descendants can be safely discarded.

Branch and Bound Algorithm

• The algorithm maintains a node list called OPEN, and a scalar called UPPER, which is equal to the minimal cost over feasible solutions found so far. Initially, OPEN= $\{X\}$, and UPPER= ∞ or to the cost $f(\overline{x})$ of some feasible solution $\overline{x} \in X$.

Branch and Bound Algorithm

• The algorithm maintains a node list called OPEN, and a scalar called UPPER, which is equal to the minimal cost over feasible solutions found so far. Initially, OPEN= $\{X\}$, and UPPER= ∞ or to the cost $f(\overline{x})$ of some feasible solution $\overline{x} \in X$.

• Step 1: Remove a node *Y* from OPEN. For each child Y_j of *Y*, do the following: Find the lower bound \underline{f}_{Y_j} and a feasible solution $\overline{x} \in Y_j$. If $\underline{f}_{Y_j} < \text{UPPER},$

place Y_j in OPEN. If in addition

 $f(\overline{x}) < \mathsf{UPPER},$

set UPPER = $f(\overline{x})$ and mark \overline{x} as the best solution found so far.

Branch and Bound Algorithm

• The algorithm maintains a node list called OPEN, and a scalar called UPPER, which is equal to the minimal cost over feasible solutions found so far. Initially, OPEN= $\{X\}$, and UPPER= ∞ or to the cost $f(\overline{x})$ of some feasible solution $\overline{x} \in X$.

• Step 1: Remove a node *Y* from OPEN. For each child Y_j of *Y*, do the following: Find the lower bound \underline{f}_{Y_j} and a feasible solution $\overline{x} \in Y_j$. If $\underline{f}_{Y_j} < \text{UPPER},$

place Y_j in OPEN. If in addition

 $f(\overline{x}) < \mathsf{UPPER},$

set UPPER = $f(\overline{x})$ and mark \overline{x} as the best solution found so far.

Step 2: (Termination Test) If OPEN is nonempty, go to step 1. Otherwise, terminate; the best solution found so far is optimal.

Termination

• Termination with a global minimum is guaranteed, but the number of nodes to be examined may be huge. In practice, the algorithm is terminated when an ϵ -optimal solution is obtained.

• Tight lower bounds \underline{f}_{Y_j} are important for quick termination.

Lower Bounds

• One method to obtain lower bounds in the branchand-bound method is by constraint relaxation (e.g., replace $x_i \in \{0, 1\}$ by $0 \le x_i \le 1$)

Lower Bounds

• Another method, called *Lagrangian relaxation*, is based on weak duality. If the subproblem of a node of the branch-and-bound tree has the form

 $\begin{array}{ll} \text{minimize} & f(x)\\ \text{subject to} & g_j(x) \leq 0, \qquad j=1,\ldots,r,\\ & x \in X, \end{array}$

use as lower bound the optimal dual value

$$q^* = \max_{\mu \ge 0} q(\mu),$$

where

$$q(\mu) = \min_{x \in X} \left\{ f(x) + \sum_{j=1}^r \mu_j g_j(x) \right\}.$$

• Essential for applying Lagrangian relaxation is that the dual problem is easy to solve