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Unconstrained Minimization

r™ € argmin f(x)

e Jo get to the optimal solution xA*, we typically use
iterative algorithms

 Compute sequence of iterates x_k that (hopefully)
converge to x\* at a fast rate

e x_{k+1} Is some (simple) function of f, previous iterates



Two Classes of lterative
Algorithms

* Descent + Line Search Algorithms

Iteratively find directions pg,
and (approximately) solve for ming~g f(xr + a p)

* Jrust Region Algorithms

[teratively solve min, mg(zr + p)
where x; + p lies in some “trust region”

for some approx. mg(-) to the function f(-),
that is accurate in trust region



Descent Algorithms

Pick direction p; such that

flxr +apk) < f(or),

for some a > 0.

* Many choices of such directions p_k
* Gradient Descent
* Conjugate Gradient

* Newton



Which Is the direction that Is
the “steepest” of them all”?

* By Taylor's Theorem:
fo+ap) = fu) +ap' Vi + 30°p" V2 f(xp +1p)p,  forsomer € (0, )
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e Unit direction p with most rapid decrease:

min p’V f, subject to || p|| = 1.
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Steepest Descent Is
Gradient Descent

* |teratively descend in direction:
p=—=Vi/IVfil

 Will study in depth in next class
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Iteratively find directions pg,
and (approximately) solve for ming,sq f(zr + a pg)

e Taylor's Theorem:

fxx +epe) = f(xx) +epl Vi + O(€).

e Suppose angle between p_k and \grad f_k is \theta_k, and
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* Any “downhill” direction is a descent direction



Can we characterize
‘descent” directions”

Iteratively find directions pg,
and (approximately) solve for ming,sq f(zr + a pg)

Downhill direction p_k



Step-size Selection

e |terates: Tr+1 = Ti — Ok Pk

e Suppose we have a strategy to iteratively pick the

descent directions p_k (e.g. steepest i.e. negative
gradient)

* How to pick the step-size \alpha_k"



| Ine Search

* Picking the step-size reduces to a one-dimensional
optimization also called “line search”

Let ¢(a) = f(xx +apr), o> 0.

Line Search: ming,~g ¢(a).



Exact Line Search

Solve for global minimum: ming,sq ¢(a).

¢ (o)

point global minimizer

* One-dimensional non-convex optimization problem

* Might be too expensive



Inexact line search

* Solve for the optimization min_{alpha > 0}
\phi(alpha) approximately and cheaply

* Question: is it sufficient to obtain an alpha that
strictly”?
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Inexact line search

* Question: is it sufficient to obtain an alpha that
strictly”?

Consider iterates x_k
1) s.t. f(x_k) = 5/k

Each iterate results In
strict function decrease

«  But f(x_k) converges to zero,

g 2 % which Is greater than
min. value which is -1



Inexact line search

* Solve for the optimization min_{alpha > 0}
\phi(alpha) approximately and cheaply

* Question: is it sufficient to obtain an alpha that
strictly”?

f(x)

Answer: No

We need “sufficient” decrease




Armijo Condition

fxe +apr) < f(xx) + oV £ pr

for some constantc_1in (0,1)

¢ (o) =f(x,+op, )

Ua) = f(zk) + c1aV £} pr

-

-~ __ (o)

acceptable | acceptable



Backtracking Line Search
with Armijo Condition

Procedure (Backtracking Line Search).
Choosea > 0, p,c € (0, 1);seta < «;

repeat until f(x; + apr) < f(xx) +caV fkT Dk
a < po;

end (repeat)

Terminate with oy, = «.

e Start from a large step-size, and keep reducing by constant factor till it satisfies Armijo condition
* Typically can show similar theoretical results for this backtracking search as for exact line search

* Loosely: the step-sizes are small enough, but not too small: since a step-size that is a factor \rho
larger violates the sufficient decrease condition



Decrease Condition not
Sufficient

« Just a sufficient decrease (Armijo condition) is typically not sufficient

o (o) =f(x,+ap,)

*\\\\\\l(oc)

acceptable I . acceptable

* We can see that by noting very small values of alpha also satisfy the Armijo condition

e Backtracking partially addresses this by starting from large step-sizes and
checking Armijo condition

» But is there some other condition that we can add to Armijo?



Curvature Condition

V£ +ap) pe > eV E pr.

* Loosely, this says that
the slope at alpha_k

0 (o) =f(x,+oup, ) should be larger than

at alpha = zero

for some constant ¢, € (¢, 1)

e since slope at zero Is
negative, this entails
that the slope be flatter
e.g. closer to local/

o global minimum

A AN
/t/ desired
. slope
tangent

SEEN
' AN
\/\f

acceptable acceptable




Wolte Conditions

e +opr) < fO) + cion V£ pr,
VG +arpr) pe = V1 pr

 Armijo and curvature conditions together

* Can show that there always exist alpha that satisfies
Wolfe conditions

* Can provide unified convergence analyses for any step-
size selection algorithm that satisties Wolfe conditions



Wolte Conditions

fOx +opr) < fOa) + oV E! pr.,
V£ +arp) pr = a2V F prs

WA

o (o) =fx,+ap, )

line of sufficient
decrease

o o)

acceptable | acceptable



Zoutendilk Theorem

Loosely, tor sufficiently well-behaved functions f, any
descent algorithm with line search satisfying Wolfe
conditions, satisties:

Y cos’ O |V fill* < oo
k>0
* |mplies: cos” Oy |V fill* — 0.

e |f cosby > >0, forallk.

= lim [[Vfi] =0.

k— 00



Strong Wolfe Conditions

fOx +arpr) < fxx) + oV £ pr,
IV f(xx +axpi)’ pel < alVE prl,

* |Improves curvature condition:

* Rules out positive slopes i.e. strictly asks for flatter
slope at alpha_k than at zero so that hopetully around
local minimum of line search optimization problem



(Strong) Wolfe Condition
Algorithms

Armijo condition ensures sufficient decrease

Curvature condition ensures that step-size is not too small
(otherwise won’'t make enough progress)

Backtracking algorithm introduced earlier finesses need
for curvature condition by starting from large step-size and
iteratively reducing step-size

* not guaranteed to satisfy Wolfe conditions per se

Algorithms targeted to satistying Wolfe conditions tricky to
code, even trickier to analyze



