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Unconstrained Minimization

• To get to the optimal solution x^*, we typically use 
iterative algorithms  

• Compute sequence of iterates x_k that (hopefully) 
converge to x^* at a fast rate 

• x_{k+1}  is some (simple) function of f, previous iterates

x

⇤ 2 argmin
x

f(x)



Two Classes of Iterative 
Algorithms

• Descent + Line Search Algorithms 

• Trust Region Algorithms

Iteratively find directions pk,

and (approximately) solve for min↵>0 f(xk + ↵ pk)

Iteratively solve minp mk(xk + p)

where xk + p lies in some “trust region”

for some approx. mk(·) to the function f(·),
that is accurate in trust region



Descent Algorithms

• Many choices of such directions p_k 

• Gradient Descent 

• Conjugate Gradient 

• Newton 

• …

Pick direction pk such that

f(xk + ↵pk) < f(xk),

for some ↵ > 0.



Which is the direction that is 
the “steepest” of them all?

• By Taylor’s Theorem:  

•  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Figure 2.4 Two possible trust regions (circles) and their corresponding steps pk . The
solid lines are contours of the model function mk .

SEARCH DIRECTIONS FOR LINE SEARCH METHODS

The steepest-descent direction −∇fk is the most obvious choice for search direction
for a line search method. It is intuitive; among all the directions we could move from xk ,
it is the one along which f decreases most rapidly. To verify this claim, we appeal again to
Taylor’s theorem (Theorem 2.1), which tells us that for any search direction p and step-length
parameter α, we have

f (xk + αp) # f (xk) + αpT∇fk + 1
2α

2pT∇2f (xk + tp)p, for some t ∈ (0,α)

(see (2.6)). The rate of change in f along the direction p at xk is simply the coefficient of
α, namely, pT∇fk . Hence, the unit direction p of most rapid decrease is the solution to the
problem

min
p

pT∇fk, subject to ∥p∥ # 1. (2.12)

Since pT∇fk # ∥p∥ ∥∇fk∥ cos θ , where θ is the angle between p and ∇fk , we have from
∥p∥ # 1 that pT∇fk # ∥∇fk∥ cos θ , so the objective in (2.12) is minimized when cos θ



Which is the direction that is 
the “steepest” of them all?

• By Taylor’s Theorem:  

• Rate of change of f along direction p:  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lim
↵!0

f(xk + ↵p)� f(xk)

↵

= p

T rfk
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Figure 2.5 Steepest descent direction for a function of two variables.

takes on its minimum value of−1 at θ " π radians. In other words, the solution to (2.12) is

p " −∇fk/∥∇fk∥,

as claimed. As we show in Figure 2.5, this direction is orthogonal to the contours of the
function.

The steepest descent method is a line search method that moves along pk " −∇fk at
every step. It can choose the step lengthαk in a variety of ways, as we discuss in Chapter 3. One
advantage of the steepest descent direction is that it requires calculation of the gradient ∇fk

but not of second derivatives. However, it can be excruciatingly slow on difficult problems.
Line search methods may use search directions other than the steepest descent direc-

tion. In general, any descent direction—one that makes an angle of strictly less than π/2
radians with−∇fk—is guaranteed to produce a decrease in f , provided that the step length
is sufficiently small (see Figure 2.6). We can verify this claim by using Taylor’s theorem. From
(2.6), we have that

f (xk + ϵpk) " f (xk) + ϵpT
k ∇fk + O(ϵ2).

When pk is a downhill direction, the angle θk between pk and ∇fk has cos θk < 0, so that

pT
k ∇fk " ∥pk∥ ∥∇fk∥ cos θk < 0.

It follows that f (xk + ϵpk) < f (xk) for all positive but sufficiently small values of ϵ.
Another important search direction—perhaps the most important one of all—

is the Newton direction. This direction is derived from the second-order Taylor series



Steepest Descent is 
Gradient Descent

• Iteratively descend in direction: 

• Will study in depth in next class
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Can we characterize 
“descent” directions?

• Taylor’s Theorem: 

• Suppose angle between p_k and \grad f_k is \theta_k, and  
cos(\theta_k) < 0 i.e. angle is strictly less than 90 degrees 

Iteratively find directions pk,

and (approximately) solve for min↵>0 f(xk + ↵ pk)
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advantage of the steepest descent direction is that it requires calculation of the gradient ∇fk

but not of second derivatives. However, it can be excruciatingly slow on difficult problems.
Line search methods may use search directions other than the steepest descent direc-

tion. In general, any descent direction—one that makes an angle of strictly less than π/2
radians with−∇fk—is guaranteed to produce a decrease in f , provided that the step length
is sufficiently small (see Figure 2.6). We can verify this claim by using Taylor’s theorem. From
(2.6), we have that

f (xk + ϵpk) " f (xk) + ϵpT
k ∇fk + O(ϵ2).

When pk is a downhill direction, the angle θk between pk and ∇fk has cos θk < 0, so that

pT
k ∇fk " ∥pk∥ ∥∇fk∥ cos θk < 0.

It follows that f (xk + ϵpk) < f (xk) for all positive but sufficiently small values of ϵ.
Another important search direction—perhaps the most important one of all—

is the Newton direction. This direction is derived from the second-order Taylor series

22 C h a p t e r 2 . F u n d a m e n t a l s o f U n c o n s t r a i n e d O p t i m i z a t i o n

kx

kp *x.

Figure 2.5 Steepest descent direction for a function of two variables.

takes on its minimum value of−1 at θ " π radians. In other words, the solution to (2.12) is

p " −∇fk/∥∇fk∥,

as claimed. As we show in Figure 2.5, this direction is orthogonal to the contours of the
function.

The steepest descent method is a line search method that moves along pk " −∇fk at
every step. It can choose the step lengthαk in a variety of ways, as we discuss in Chapter 3. One
advantage of the steepest descent direction is that it requires calculation of the gradient ∇fk

but not of second derivatives. However, it can be excruciatingly slow on difficult problems.
Line search methods may use search directions other than the steepest descent direc-

tion. In general, any descent direction—one that makes an angle of strictly less than π/2
radians with−∇fk—is guaranteed to produce a decrease in f , provided that the step length
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It follows that f (xk + ϵpk) < f (xk) for all positive but sufficiently small values of ϵ.
Another important search direction—perhaps the most important one of all—

is the Newton direction. This direction is derived from the second-order Taylor series
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Can we characterize 
“descent” directions?

• Taylor’s Theorem: 

• Suppose angle between p_k and \grad f_k is \theta_k, and  
cos(\theta_k) < 0 i.e. angle is strictly less than 90 degrees 

• Any “downhill” direction is a descent direction

Iteratively find directions pk,

and (approximately) solve for min↵>0 f(xk + ↵ pk)
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radians with−∇fk—is guaranteed to produce a decrease in f , provided that the step length
is sufficiently small (see Figure 2.6). We can verify this claim by using Taylor’s theorem. From
(2.6), we have that

f (xk + ϵpk) " f (xk) + ϵpT
k ∇fk + O(ϵ2).

When pk is a downhill direction, the angle θk between pk and ∇fk has cos θk < 0, so that

pT
k ∇fk " ∥pk∥ ∥∇fk∥ cos θk < 0.

It follows that f (xk + ϵpk) < f (xk) for all positive but sufficiently small values of ϵ.
Another important search direction—perhaps the most important one of all—

is the Newton direction. This direction is derived from the second-order Taylor series



Can we characterize 
“descent” directions?

Iteratively find directions pk,
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approximation to f (xk + p), which is

f (xk + p) ≈ fk + pT∇fk + 1
2p

T∇2fkp
def# mk(p). (2.13)

Assuming for the moment that ∇2fk is positive definite, we obtain the Newton direction
by finding the vector p that minimizes mk(p). By simply setting the derivative of mk(p) to
zero, we obtain the following explicit formula:

pN
k # −∇2f −1

k ∇fk. (2.14)

The Newton direction is reliable when the difference between the true function f (xk +
p) and its quadratic model mk(p) is not too large. By comparing (2.13) with (2.6), we see
that the only difference between these functions is that the matrix ∇2f (xk + tp) in the
third term of the expansion has been replaced by ∇2fk # ∇2f (xk). If ∇2f (·) is sufficiently
smooth, this difference introduces a perturbation of only O(∥p∥3) into the expansion, so
that when ∥p∥ is small, the approximation f (xk + p) ≈ mk(p) is very accurate indeed.

The Newton direction can be used in a line search method when ∇2fk is positive
definite, for in this case we have

∇f T
k pN

k # −pN
k
T∇2fkp

N
k ≤ −σk∥pN

k∥2

for some σk > 0. Unless the gradient ∇fk (and therefore the step pN
k ) is zero, we have that

∇f T
k pN

k < 0, so the Newton direction is a descent direction. Unlike the steepest descent
direction, there is a “natural” step length of 1 associated with the Newton direction. Most

Downhill direction p_k



Step-size Selection

• Iterates: 

• Suppose we have a strategy to iteratively pick the 
descent directions p_k (e.g. steepest i.e. negative 
gradient) 

• How to pick the step-size \alpha_k?

xk+1 = xk � ↵k pk



Line Search

• Picking the step-size reduces to a one-dimensional 
optimization also called “line search”

Let �(↵) = f(xk + ↵ pk), ↵ > 0.

Line Search: min↵>0 �(↵).



Exact Line Search

• One-dimensional non-convex optimization problem 

• Might be too expensive 

Solve for global minimum: min↵>0 �(↵).
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iteration by means of a low-rank formula. When pk is defined by (3.2) and Bk is positive
definite, we have

pT
k ∇fk " −∇f T

k B−1
k ∇fk < 0,

and therefore pk is a descent direction.
In the next chapters we study how to choose the matrix Bk , or more generally, how

to compute the search direction. We now give careful consideration to the choice of the
step-length parameter αk .

3.1 STEP LENGTH

In computing the step length αk , we face a tradeoff. We would like to choose αk to
give a substantial reduction of f , but at the same time, we do not want to spend too much
time making the choice. The ideal choice would be the global minimizer of the univariate
function φ(·) defined by

φ(α) " f (xk + αpk), α > 0, (3.3)

but in general, it is too expensive to identify this value (see Figure 3.1). To find even a local
minimizer of φ to moderate precision generally requires too many evaluations of the objec-



Inexact line search
• Solve for the optimization min_{alpha > 0} 

\phi(alpha) approximately and cheaply 

• Question: is it sufficient to obtain an alpha that 
strictly?
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tive function f and possibly the gradient ∇f . More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for α, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until the end of
this chapter. We now discuss various termination conditions for the line search algorithm
and show that effective step lengths need not lie near minimizers of the univariate function
φ(α) defined in (3.3).

A simple condition we could impose on αk is that it provide a reduction in f , i.e.,
f (xk + αkpk) < f (xk). That this is not appropriate is illustrated in Figure 3.2, where the
minimum is f ∗ # −1, but the sequence of function values {5/k}, k # 0, 1, . . ., converges
to zero. The difficulty is that we do not have sufficient reduction in f , a concept we discuss
next.

THE WOLFE CONDITIONS

A popular inexact line search condition stipulates thatαk should first of all give sufficient
decrease in the objective function f , as measured by the following inequality:

f (xk + αpk) ≤ f (xk) + c1α∇f T
k pk, (3.4)

Min. function value: -1 

Consider iterates x_k  
s.t. f(x_k) = 5/k
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tive function f and possibly the gradient ∇f . More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for α, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until the end of
this chapter. We now discuss various termination conditions for the line search algorithm
and show that effective step lengths need not lie near minimizers of the univariate function
φ(α) defined in (3.3).

A simple condition we could impose on αk is that it provide a reduction in f , i.e.,
f (xk + αkpk) < f (xk). That this is not appropriate is illustrated in Figure 3.2, where the
minimum is f ∗ # −1, but the sequence of function values {5/k}, k # 0, 1, . . ., converges
to zero. The difficulty is that we do not have sufficient reduction in f , a concept we discuss
next.

THE WOLFE CONDITIONS

A popular inexact line search condition stipulates thatαk should first of all give sufficient
decrease in the objective function f , as measured by the following inequality:

f (xk + αpk) ≤ f (xk) + c1α∇f T
k pk, (3.4)

Min. function value: -1 

Consider iterates x_k  
s.t. f(x_k) = 5/k 

Each iterate results in  
strict function decrease



Inexact line search
• Question: is it sufficient to obtain an alpha that 

strictly? 3 . 1 . S t e p L e n g t h 37

2
x

0
x1x

x

xf( )

Figure 3.2 Insufficient reduction in f .

tive function f and possibly the gradient ∇f . More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for α, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until the end of
this chapter. We now discuss various termination conditions for the line search algorithm
and show that effective step lengths need not lie near minimizers of the univariate function
φ(α) defined in (3.3).

A simple condition we could impose on αk is that it provide a reduction in f , i.e.,
f (xk + αkpk) < f (xk). That this is not appropriate is illustrated in Figure 3.2, where the
minimum is f ∗ # −1, but the sequence of function values {5/k}, k # 0, 1, . . ., converges
to zero. The difficulty is that we do not have sufficient reduction in f , a concept we discuss
next.

THE WOLFE CONDITIONS

A popular inexact line search condition stipulates thatαk should first of all give sufficient
decrease in the objective function f , as measured by the following inequality:

f (xk + αpk) ≤ f (xk) + c1α∇f T
k pk, (3.4)

Consider iterates x_k  
s.t. f(x_k) = 5/k 

Each iterate results in  
strict function decrease 

But f(x_k) converges to zero, 
which is greater than  
min. value which is -1
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tive function f and possibly the gradient ∇f . More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for α, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until the end of
this chapter. We now discuss various termination conditions for the line search algorithm
and show that effective step lengths need not lie near minimizers of the univariate function
φ(α) defined in (3.3).

A simple condition we could impose on αk is that it provide a reduction in f , i.e.,
f (xk + αkpk) < f (xk). That this is not appropriate is illustrated in Figure 3.2, where the
minimum is f ∗ # −1, but the sequence of function values {5/k}, k # 0, 1, . . ., converges
to zero. The difficulty is that we do not have sufficient reduction in f , a concept we discuss
next.

THE WOLFE CONDITIONS

A popular inexact line search condition stipulates thatαk should first of all give sufficient
decrease in the objective function f , as measured by the following inequality:

f (xk + αpk) ≤ f (xk) + c1α∇f T
k pk, (3.4)

Answer: No 

We need “sufficient” decrease



Armijo Condition
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tive function f and possibly the gradient ∇f . More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for α, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until the end of
this chapter. We now discuss various termination conditions for the line search algorithm
and show that effective step lengths need not lie near minimizers of the univariate function
φ(α) defined in (3.3).

A simple condition we could impose on αk is that it provide a reduction in f , i.e.,
f (xk + αkpk) < f (xk). That this is not appropriate is illustrated in Figure 3.2, where the
minimum is f ∗ # −1, but the sequence of function values {5/k}, k # 0, 1, . . ., converges
to zero. The difficulty is that we do not have sufficient reduction in f , a concept we discuss
next.

THE WOLFE CONDITIONS

A popular inexact line search condition stipulates thatαk should first of all give sufficient
decrease in the objective function f , as measured by the following inequality:

f (xk + αpk) ≤ f (xk) + c1α∇f T
k pk, (3.4)
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for some constant c1 ∈ (0, 1). In other words, the reduction in f should be proportional to
both the step length αk and the directional derivative ∇f T

k pk . Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by l(α). The function l(·) has negative slope
c1∇f T

k pk , but because c1 ∈ (0, 1), it lies above the graph of φ for small positive values of
α. The sufficient decrease condition states that α is acceptable only if φ(α) ≤ l(α). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c1 is chosen
to be quite small, say c1 $ 10−4.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress, because as we see from Figure 3.3, it is satisfied for all sufficiently
small values of α. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires αk to satisfy

∇f (xk + αkpk)T pk ≥ c2∇f T
k pk, (3.5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (3.4). Note that the left-hand-
side is simply the derivative φ′(αk), so the curvature condition ensures that the slope of
φ(αk) is greater than c2 times the gradient φ′(0). This makes sense because if the slope φ′(α)
is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction. On the other hand, if the slope is only slightly negative
or even positive, it is a sign that we cannot expect much more decrease in f in this direction,

`(↵) = f(xk) + c1↵rf

T
k pk



Backtracking Line Search 
with Armijo Condition

• Start from a large step-size, and keep reducing by constant factor till it satisfies Armijo condition 

• Typically can show similar theoretical results for this backtracking search as for exact line search 

• Loosely: the step-sizes are small enough, but not too small: since a step-size that is a factor \rho 
larger violates the sufficient decrease condition
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By combining (3.8) and (3.9), we obtain

∇f (xk + α′′pk)T pk # c1∇f T
k pk > c2∇f T

k pk, (3.10)

since c1 < c2 and ∇f T
k pk < 0. Therefore, α′′ satisfies the Wolfe conditions (3.6), and the

inequalities hold strictly in both (3.6a) and (3.6b). Hence, by our smoothness assumption
on f , there is an interval around α′′ for which the Wolfe conditions hold. Moreover, since
the term in the left-hand side of (3.10) is negative, the strong Wolfe conditions (3.7) hold in
the same interval. !

The Wolfe conditions are scale-invariant in a broad sense: Multiplying the objective
function by a constant or making an affine change of variables does not alter them. They can
be used in most line search methods, and are particularly important in the implementation
of quasi-Newton methods, as we see in Chapter 8.

THE GOLDSTEIN CONDITIONS

Like the Wolfe conditions, the Goldstein conditions also ensure that the step length
α achieves sufficient decrease while preventing α from being too small. The Goldstein
conditions can also be stated as a pair of inequalities, in the following way:

f (xk) + (1− c)αk∇f T
k pk ≤ f (xk + αkpk) ≤ f (xk) + cαk∇f T

k pk, (3.11)

with 0 < c < 1
2 . The second inequality is the sufficient decrease condition (3.4), whereas

the first inequality is introduced to control the step length from below; see Figure 3.6
A disadvantage of the Goldstein conditions vis-à-vis the Wolfe conditions is that the

first inequality in (3.11) may exclude all minimizers of φ. However, the Goldstein and Wolfe
conditions have much in common, and their convergence theories are quite similar. The
Goldstein conditions are often used in Newton-type methods but are not well suited for
quasi-Newton methods that maintain a positive definite Hessian approximation.

SUFFICIENT DECREASE AND BACKTRACKING

We have mentioned that the sufficient decrease condition (3.6a) alone is not sufficient
to ensure that the algorithm makes reasonable progress along the given search direction.
However, if the line search algorithm chooses its candidate step lengths appropriately, by
using a so-called backtracking approach, we can dispense with the extra condition (3.6b) and
use just the sufficient decrease condition to terminate the line search procedure. In its most
basic form, backtracking proceeds as follows.

Procedure 3.1 (Backtracking Line Search).
Choose ᾱ > 0, ρ, c ∈ (0, 1); set α← ᾱ;
repeat until f (xk + αpk) ≤ f (xk) + cα∇f T

k pk
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α← ρα;
end (repeat)
Terminate with αk " α.

In this procedure, the initial step length ᾱ is chosen to be 1 in Newton and quasi-Newton
methods, but can have different values in other algorithms such as steepest descent or conju-
gate gradient. An acceptable step length will be found after a finite number of trials because
αk will eventually become small enough that the sufficient decrease condition holds (see Fig-
ure 3.3). In practice, the contraction factor ρ is often allowed to vary at each iteration of the
line search. For example, it can be chosen by safeguarded interpolation, as we describe later.
We need ensure only that at each iteration we have ρ ∈ [ρlo, ρhi], for some fixed constants
0 < ρlo < ρhi < 1.

The backtracking approach ensures either that the selected step length αk is some
fixed value (the initial choice ᾱ), or else that it is short enough to satisfy the sufficient
decrease condition but not too short. The latter claim holds because the accepted value αk

is within striking distance of the previous trial value, αk/ρ, which was rejected for violating
the sufficient decrease condition, that is, for being too long.



Decrease Condition not 
Sufficient

• Just a sufficient decrease (Armijo condition) is typically not sufficient 

• We can see that by noting very small values of alpha also satisfy the Armijo condition  

• Backtracking partially addresses this by starting from large step-sizes and 
checking Armijo condition 

• But is there some other condition that we can add to Armijo?
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for some constant c1 ∈ (0, 1). In other words, the reduction in f should be proportional to
both the step length αk and the directional derivative ∇f T

k pk . Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by l(α). The function l(·) has negative slope
c1∇f T

k pk , but because c1 ∈ (0, 1), it lies above the graph of φ for small positive values of
α. The sufficient decrease condition states that α is acceptable only if φ(α) ≤ l(α). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c1 is chosen
to be quite small, say c1 $ 10−4.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress, because as we see from Figure 3.3, it is satisfied for all sufficiently
small values of α. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires αk to satisfy

∇f (xk + αkpk)T pk ≥ c2∇f T
k pk, (3.5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (3.4). Note that the left-hand-
side is simply the derivative φ′(αk), so the curvature condition ensures that the slope of
φ(αk) is greater than c2 times the gradient φ′(0). This makes sense because if the slope φ′(α)
is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction. On the other hand, if the slope is only slightly negative
or even positive, it is a sign that we cannot expect much more decrease in f in this direction,



Curvature Condition

• Loosely, this says that 
the slope at alpha_k 
should be larger than 
at alpha = zero 

• since slope at zero is 
negative, this entails 
that the slope be flatter 
e.g. closer to local/
global minimum 
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for some constant c1 ∈ (0, 1). In other words, the reduction in f should be proportional to
both the step length αk and the directional derivative ∇f T

k pk . Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by l(α). The function l(·) has negative slope
c1∇f T

k pk , but because c1 ∈ (0, 1), it lies above the graph of φ for small positive values of
α. The sufficient decrease condition states that α is acceptable only if φ(α) ≤ l(α). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c1 is chosen
to be quite small, say c1 $ 10−4.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress, because as we see from Figure 3.3, it is satisfied for all sufficiently
small values of α. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires αk to satisfy

∇f (xk + αkpk)T pk ≥ c2∇f T
k pk, (3.5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (3.4). Note that the left-hand-
side is simply the derivative φ′(αk), so the curvature condition ensures that the slope of
φ(αk) is greater than c2 times the gradient φ′(0). This makes sense because if the slope φ′(α)
is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction. On the other hand, if the slope is only slightly negative
or even positive, it is a sign that we cannot expect much more decrease in f in this direction,
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for some constant c1 ∈ (0, 1). In other words, the reduction in f should be proportional to
both the step length αk and the directional derivative ∇f T

k pk . Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by l(α). The function l(·) has negative slope
c1∇f T

k pk , but because c1 ∈ (0, 1), it lies above the graph of φ for small positive values of
α. The sufficient decrease condition states that α is acceptable only if φ(α) ≤ l(α). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c1 is chosen
to be quite small, say c1 $ 10−4.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress, because as we see from Figure 3.3, it is satisfied for all sufficiently
small values of α. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires αk to satisfy

∇f (xk + αkpk)T pk ≥ c2∇f T
k pk, (3.5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (3.4). Note that the left-hand-
side is simply the derivative φ′(αk), so the curvature condition ensures that the slope of
φ(αk) is greater than c2 times the gradient φ′(0). This makes sense because if the slope φ′(α)
is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction. On the other hand, if the slope is only slightly negative
or even positive, it is a sign that we cannot expect much more decrease in f in this direction,
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so it might make sense to terminate the line search. The curvature condition is illustrated in
Figure 3.4. Typical values of c2 are 0.9 when the search direction pk is chosen by a Newton
or quasi-Newton method, and 0.1 when pk is obtained from a nonlinear conjugate gradient
method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk, (3.6a)

∇f (xk + αkpk)T pk ≥ c2∇f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk, (3.7a)

|∇f (xk + αkpk)T pk| ≤ c2|∇f T
k pk|, (3.7b)



Wolfe Conditions

• Armijo and curvature conditions together 

• Can show that there always exist alpha that satisfies 
Wolfe conditions  

• Can provide unified convergence analyses for any step-
size selection algorithm that satisfies Wolfe conditions
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so it might make sense to terminate the line search. The curvature condition is illustrated in
Figure 3.4. Typical values of c2 are 0.9 when the search direction pk is chosen by a Newton
or quasi-Newton method, and 0.1 when pk is obtained from a nonlinear conjugate gradient
method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk, (3.6a)

∇f (xk + αkpk)T pk ≥ c2∇f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk, (3.7a)

|∇f (xk + αkpk)T pk| ≤ c2|∇f T
k pk|, (3.7b)
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so it might make sense to terminate the line search. The curvature condition is illustrated in
Figure 3.4. Typical values of c2 are 0.9 when the search direction pk is chosen by a Newton
or quasi-Newton method, and 0.1 when pk is obtained from a nonlinear conjugate gradient
method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk, (3.6a)

∇f (xk + αkpk)T pk ≥ c2∇f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk, (3.7a)

|∇f (xk + αkpk)T pk| ≤ c2|∇f T
k pk|, (3.7b)
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Figure 3.5 Step lengths satisfying the Wolfe conditions.

with 0 < c1 < c2 < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative φ′(αk) to be too positive. Hence, we exclude points that are far from
stationary points of φ.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.
Suppose that f : IRn → IR is continuously differentiable. Let pk be a descent direction at

xk , and assume that f is bounded below along the ray {xk + αpk|α > 0}. Then if 0 < c1 <

c2 < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

Proof. Since φ(α) # f (xk + αpk) is bounded below for all α > 0 and since 0 < c1 < 1,
the line l(α) # f (xk) + αc1∇f T

k pk must intersect the graph of φ at least once. Let α′ > 0
be the smallest intersecting value of α, that is,

f (xk + α′pk) # f (xk) + α′c1∇f T
k pk. (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than α′.
By the mean value theorem, there exists α′′ ∈ (0,α′) such that

f (xk + α′pk)− f (xk) # α′∇f (xk + α′′pk)T pk. (3.9)
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• Implies:  

• If 
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while the Lipschitz condition (3.13) implies that

(∇fk+1 − ∇fk)T pk ≤ αkL∥pk∥2.

By combining these two relations, we obtain

αk ≥
c2 − 1

L

∇f T
k pk

∥pk∥2
.

By substituting this inequality into the first Wolfe condition (3.6a), we obtain

fk+1 ≤ fk − c1
1− c2

L

(∇f T
k pk)2

∥pk∥2
.

From the definition (3.12), we can write this relation as

fk+1 ≤ fk − c cos2 θk∥∇fk∥2,

where c & c1(1 − c2)/L. By summing this expression over all indices less than or equal to
k, we obtain

fk+1 ≤ f0 − c
k
∑

j&0

cos2 θj∥∇fj∥2. (3.15)

Since f is bounded below, we have that f0− fk+1 is less than some positive constant, for all
k. Hence by taking limits in (3.15), we obtain

∞
∑

k&0

cos2 θk∥∇fk∥2 <∞,

which concludes the proof. !

Similar results to this theorem hold when the Goldstein conditions (3.11) or strong
Wolfe conditions (3.7) are used in place of the Wolfe conditions.

Note that the assumptions of Theorem 3.2 are not too restrictive. If the function f were
not bounded below, the optimization problem would not be well-defined. The smoothness
assumption—Lipschitz continuity of the gradient—is implied by many of the smoothness
conditions that are used in local convergence theorems (see Chapters 6 and 8) and are often
satisfied in practice.

Inequality (3.14), which we call the Zoutendijk condition, implies that

cos2 θk∥∇fk∥2 → 0. (3.16)
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This limit can be used in turn to derive global convergence results for line search algorithms.
If our method for choosing the search direction pk in the iteration (3.1) ensures that

the angle θk defined by (3.12) is bounded away from 90◦, there is a positive constant δ such
that

cos θk ≥ δ > 0, for all k. (3.17)

It follows immediately from (3.16) that

lim
k→∞
∥∇fk∥ ' 0. (3.18)

In other words, we can be sure that the gradient norms∥∇fk∥ converge to zero, provided that
the search directions are never too close to orthogonality with the gradient. In particular, the
method of steepest descent (for which the search direction pk makes an angle of zero degrees
with the negative gradient) produces a gradient sequence that converges to zero, provided
that it uses a line search satisfying the Wolfe or Goldstein conditions.

We use the term globally convergent to refer to algorithms for which the property
(3.18) is satisfied, but note that this term is sometimes used in other contexts to mean
different things. For line search methods of the general form (3.1), the limit (3.18) is the
strongest global convergence result that can be obtained: We cannot guarantee that the
method converges to a minimizer, but only that it is attracted by stationary points. Only
by making additional requirements on the search direction pk—by introducing negative
curvature information from the Hessian ∇2f (xk), for example—can we strengthen these
results to include convergence to a local minimum. See the Notes and References at the end
of this chapter for further discussion of this point.

Consider now the Newton-like method (3.1), (3.2) and assume that the matrices Bk

are positive definite with a uniformly bounded condition number. That is, there is a constant
M such that

∥Bk∥ ∥B−1
k ∥ ≤ M, for all k.

It is easy to show from the definition (3.12) that

cos θk ≥ 1/M (3.19)

(see Exercise 5). By combining this bound with (3.16) we find that

lim
k→∞
∥∇fk∥ ' 0. (3.20)

Therefore, we have shown that Newton and quasi-Newton methods are globally convergent
if the matrices Bk have a bounded condition number and are positive definite (which is
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)

Loosely, for sufficiently well-behaved functions f, any 
descent algorithm with line search satisfying Wolfe 
conditions, satisfies: 
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This simple and popular strategy for terminating a line search is well suited for Newton
methods (see Chapter 6) but is less appropriate for quasi-Newton and conjugate gradient
methods.

3.2 CONVERGENCE OF LINE SEARCH METHODS

To obtain global convergence, we must not only have well-chosen step lengths but also well-
chosen search directions pk . We discuss requirements on the search direction in this section,
focusing on one key property: the angle θk between pk and the steepest descent direction
−∇fk , defined by

cos θk #
−∇f T

k pk

∥∇fk∥ ∥pk∥
. (3.12)

The following theorem, due to Zoutendijk, has far-reaching consequences. It shows,
for example, that the steepest descent method is globally convergent. For other algorithms
it describes how far pk can deviate from the steepest descent direction and still give rise to
a globally convergent iteration. Various line search termination conditions can be used to
establish this result, but for concreteness we will consider only the Wolfe conditions (3.6).
Though Zoutendijk’s result appears, at first, to be technical and obscure, its power will soon
become evident.

Theorem 3.2.
Consider any iteration of the form (3.1), where pk is a descent direction and αk satisfies

the Wolfe conditions (3.6). Suppose that f is bounded below in IRn and that f is continuously

differentiable in an open set N containing the level set L def# {x : f (x) ≤ f (x0)}, where x0 is
the starting point of the iteration. Assume also that the gradient ∇f is Lipschitz continuous on
N , that is, there exists a constant L > 0 such that

∥∇f (x)− ∇f (x̃)∥ ≤ L∥x − x̃∥, for all x, x̃ ∈ N . (3.13)

Then

∑

k≥0

cos2 θk ∥∇fk∥2 <∞. (3.14)

Proof. From (3.6b) and (3.1) we have that

(∇fk+1 − ∇fk)T pk ≥ (c2 − 1)∇f T
k pk,



Strong Wolfe Conditions

• Improves curvature condition: 

• Rules out positive slopes i.e. strictly asks for flatter 
slope at alpha_k than at zero so that hopefully around 
local minimum of line search optimization problem
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so it might make sense to terminate the line search. The curvature condition is illustrated in
Figure 3.4. Typical values of c2 are 0.9 when the search direction pk is chosen by a Newton
or quasi-Newton method, and 0.1 when pk is obtained from a nonlinear conjugate gradient
method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk, (3.6a)

∇f (xk + αkpk)T pk ≥ c2∇f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αkpk) ≤ f (xk) + c1αk∇f T
k pk, (3.7a)

|∇f (xk + αkpk)T pk| ≤ c2|∇f T
k pk|, (3.7b)



(Strong) Wolfe Condition 
Algorithms

• Armijo condition ensures sufficient decrease 

• Curvature condition ensures that step-size is not too small 
(otherwise won’t make enough progress) 

• Backtracking algorithm introduced earlier finesses need 
for curvature condition by starting from large step-size and 
iteratively reducing step-size  

• not guaranteed to satisfy Wolfe conditions per se 

• Algorithms targeted to satisfying Wolfe conditions tricky to 
code, even trickier to analyze


