Descent Algorithms, Line Search

Lecturer: Pradeep Ravikumar

Co-instructor: Aarti Singh

Convex Optimization 10-725/36-725

Unconstrained Minimization

$$x^* \in \arg\min_x f(x)$$

- To get to the optimal solution x^*, we typically use iterative algorithms
 - Compute sequence of iterates x_k that (hopefully) converge to x^* at a fast rate
 - x_{k+1} is some (simple) function of f, previous iterates

Two Classes of Iterative Algorithms

Descent + Line Search Algorithms

Iteratively find directions p_k , and (approximately) solve for $\min_{\alpha>0} f(x_k + \alpha p_k)$

Trust Region Algorithms

Iteratively solve $\min_p m_k(x_k + p)$ where $x_k + p$ lies in some "trust region"

for some approx. $m_k(\cdot)$ to the function $f(\cdot)$, that is accurate in trust region

Descent Algorithms

Pick direction p_k such that

$$f(x_k + \alpha p_k) < f(x_k),$$

for some $\alpha > 0$.

- Many choices of such directions p_k
 - Gradient Descent
 - Conjugate Gradient
 - Newton

• ...

By Taylor's Theorem:

```
f(x_k + \alpha p) = f(x_k) + \alpha p^T \nabla f_k + \frac{1}{2} \alpha^2 p^T \nabla^2 f(x_k + tp) p, for some t \in (0, \alpha)
```

•

By Taylor's Theorem:

$$f(x_k + \alpha p) = f(x_k) + \alpha p^T \nabla f_k + \frac{1}{2} \alpha^2 p^T \nabla^2 f(x_k + tp) p$$
, for some $t \in (0, \alpha)$

Rate of change of f along direction p:

$$\lim_{\alpha \to 0} \frac{f(x_k + \alpha p) - f(x_k)}{\alpha}$$
$$= p^T \nabla f_k$$

By Taylor's Theorem:

$$f(x_k + \alpha p) = f(x_k) + \alpha p^T \nabla f_k + \frac{1}{2} \alpha^2 p^T \nabla^2 f(x_k + tp) p$$
, for some $t \in (0, \alpha)$

Rate of change of f along direction p:

$$\lim_{\alpha \to 0} \frac{f(x_k + \alpha p) - f(x_k)}{\alpha}$$
$$= p^T \nabla f_k$$

Unit direction p with most rapid decrease:

$$\min_{p} p^{T} \nabla f_{k}, \quad \text{subject to } ||p|| = 1.$$

By Taylor's Theorem:

$$f(x_k + \alpha p) = f(x_k) + \alpha p^T \nabla f_k + \frac{1}{2} \alpha^2 p^T \nabla^2 f(x_k + tp) p$$
, for some $t \in (0, \alpha)$

Rate of change of f along direction p:

$$\lim_{\alpha \to 0} \frac{f(x_k + \alpha p) - f(x_k)}{\alpha}$$
$$= p^T \nabla f_k$$

Unit direction p with most rapid decrease:

$$p = -\nabla f_k / \|\nabla f_k\|$$

Steepest Descent is Gradient Descent

Iteratively descend in direction:

$$p = -\nabla f_k / \|\nabla f_k\|$$

Will study in depth in next class

Iteratively find directions p_k , and (approximately) solve for $\min_{\alpha>0} f(x_k + \alpha p_k)$

Taylor's Theorem:

$$f(x_k + \epsilon p_k) = f(x_k) + \epsilon p_k^T \nabla f_k + O(\epsilon^2).$$

Iteratively find directions p_k , and (approximately) solve for $\min_{\alpha>0} f(x_k + \alpha p_k)$

Taylor's Theorem:

$$f(x_k + \epsilon p_k) = f(x_k) + \epsilon p_k^T \nabla f_k + O(\epsilon^2).$$

Suppose angle between p_k and \grad f_k is \theta_k, and cos(\theta_k) < 0 i.e. angle is strictly less than 90 degrees

$$\Rightarrow p_k^T \nabla f_k = \|p_k\| \|\nabla f_k\| \cos \theta_k < 0.$$

$$\implies f(x_k + \epsilon p_k) < f(x_k)$$

Iteratively find directions p_k , and (approximately) solve for $\min_{\alpha>0} f(x_k + \alpha p_k)$

Taylor's Theorem:

$$f(x_k + \epsilon p_k) = f(x_k) + \epsilon p_k^T \nabla f_k + O(\epsilon^2).$$

Suppose angle between p_k and \grad f_k is \theta_k, and cos(\theta_k) < 0 i.e. angle is strictly less than 90 degrees

$$\Rightarrow p_k^T \nabla f_k = ||p_k|| \, ||\nabla f_k|| \cos \theta_k < 0.$$

$$\Rightarrow f(x_k + \epsilon p_k) < f(x_k)$$

Any "downhill" direction is a descent direction

Iteratively find directions p_k , and (approximately) solve for $\min_{\alpha>0} f(x_k + \alpha p_k)$

Downhill direction p_k

Step-size Selection

- Iterates: $x_{k+1} = x_k \alpha_k p_k$
- Suppose we have a strategy to iteratively pick the descent directions p_k (e.g. steepest i.e. negative gradient)
- How to pick the step-size \alpha_k?

Line Search

 Picking the step-size reduces to a one-dimensional optimization also called "line search"

Let
$$\phi(\alpha) = f(x_k + \alpha p_k), \quad \alpha > 0.$$

Line Search: $\min_{\alpha>0} \phi(\alpha)$.

Exact Line Search

Solve for global minimum: $\min_{\alpha>0} \phi(\alpha)$.

- One-dimensional non-convex optimization problem
- Might be too expensive

- Solve for the optimization min_{alpha > 0}
 \phi(alpha) approximately and cheaply
- Question: is it sufficient to obtain an alpha that strictly?

 Question: is it sufficient to obtain an alpha that strictly?

Min. function value: -1

Consider iterates x_k s.t. $f(x_k) = 5/k$

 Question: is it sufficient to obtain an alpha that strictly?

Min. function value: -1

Consider iterates x_k s.t. $f(x_k) = 5/k$

Each iterate results in strict function decrease

 Question: is it sufficient to obtain an alpha that strictly?

Consider iterates x_k s.t. $f(x_k) = 5/k$

Each iterate results in strict function decrease

But f(x_k) converges to zero, which is greater than min. value which is -1

- Solve for the optimization min_{alpha > 0}
 \phi(alpha) approximately and cheaply
- Question: is it sufficient to obtain an alpha that strictly?

Answer: No

We need "sufficient" decrease

Armijo Condition

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k$$

for some constant c_1 in (0,1)

Backtracking Line Search with Armijo Condition

```
Procedure (Backtracking Line Search). Choose \bar{\alpha} > 0, \rho, c \in (0, 1); set \alpha \leftarrow \bar{\alpha}; repeat until f(x_k + \alpha p_k) \leq f(x_k) + c\alpha \nabla f_k^T p_k \alpha \leftarrow \rho \alpha; end (repeat)

Terminate with \alpha_k = \alpha.
```

- Start from a large step-size, and keep reducing by constant factor till it satisfies Armijo condition
- Typically can show similar theoretical results for this backtracking search as for exact line search
- Loosely: the step-sizes are small enough, but not too small: since a step-size that is a factor \rho larger violates the sufficient decrease condition

Decrease Condition not Sufficient

• Just a sufficient decrease (Armijo condition) is typically not sufficient

- We can see that by noting very small values of alpha also satisfy the Armijo condition
 - Backtracking partially addresses this by starting from large step-sizes and checking Armijo condition
 - But is there some other condition that we can add to Armijo?

Curvature Condition

$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k,$$

for some constant $c_2 \in (c_1, 1)$

- Loosely, this says that the slope at alpha_k should be larger than at alpha = zero
- since slope at zero is negative, this entails that the slope be flatter e.g. closer to local/ global minimum

Wolfe Conditions

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f_k^T p_k,$$
$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k,$$

- Armijo and curvature conditions together
- Can show that there always exist alpha that satisfies Wolfe conditions
- Can provide unified convergence analyses for any stepsize selection algorithm that satisfies Wolfe conditions

Wolfe Conditions

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f_k^T p_k,$$
$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k,$$

Zoutendijk Theorem

Loosely, for sufficiently well-behaved functions f, any descent algorithm with line search satisfying Wolfe conditions, satisfies:

$$\sum_{k\geq 0} \cos^2 \theta_k \|\nabla f_k\|^2 < \infty.$$

- Implies: $\cos^2 \theta_k \|\nabla f_k\|^2 \to 0$.
- If $\cos \theta_k \ge \delta > 0$, for all k.

$$\Rightarrow \lim_{k\to\infty} \|\nabla f_k\| = 0.$$

Strong Wolfe Conditions

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f_k^T p_k,$$
$$|\nabla f(x_k + \alpha_k p_k)^T p_k| \le c_2 |\nabla f_k^T p_k|,$$

- Improves curvature condition:
 - Rules out positive slopes i.e. strictly asks for flatter slope at alpha_k than at zero so that hopefully around local minimum of line search optimization problem

(Strong) Wolfe Condition Algorithms

- Armijo condition ensures sufficient decrease
- Curvature condition ensures that step-size is not too small (otherwise won't make enough progress)
- Backtracking algorithm introduced earlier finesses need for curvature condition by starting from large step-size and iteratively reducing step-size
 - not guaranteed to satisfy Wolfe conditions per se
- Algorithms targeted to satisfying Wolfe conditions tricky to code, even trickier to analyze