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Constrained optimization

 Projected gradient descent

 Conditional gradient method

 Barrier and Interior Point methods

- Augmented Lagrangian/Method of Multipliers (today)

o Consider the equality constrained problem
minimize f(z)
subjectto = c X, h(z) =0,

where f:R" SR and r: R™ — R™ are continuous,
and x is closed.



Quadratic Penalty Approach

Add a quadratic penalty instead of a barrier. For some ¢ > 0

minimize f(z)+ gllh(iv)”2
subject to h(x) =0,

Note: Problem is unchanged — has same local minima

Augmented Lagrangian:
C
Le(x,A) = f(z) + A" h(z) + SIA(@)]17

 Quadratic penalty makes new objective strongly convex if
c is large

- Softer penalty than barrier — iterates no longer confined to
be interior points.



Quadratic Penalty Approach

Solve unconstrained minimization of Augmented Lagrangian:

Le(2,3) = f(z) + ATh(z) + 5 ||h(@)|]

When does this work?



Convergence mechanisms

1) Take A close to A*.

Let x*, A* satisfy the sufficiency conditions of second-order
for the original problem. We will show that if c is larger than
a threshold, then x* is a strict local minimum of the
Augmented Lagrangian L (., A*) corresponding to A*.

This suggest that if we set A close to A* and do
unconstrained minimization of Augmented Lagrangian:

Tr = arg a{fél}} Le(x, N)

Then we can find x close to x*.



Second-order sufficiency conditions

Second Order Sufficiency Conditions: Let z* € R
and \* ¢ R™ satisfy

VaeL(z™,\") =0, VaL(z™, \*) =0,

y'V2, L(z*, \*)y >0, Vy#0 with Vh(z*)'y = 0.
Then z* is a strict local minimum.

We will show that if c is larger than a threshold, then x* also
satisfies these conditions for the Augmented Lagrangian L.,
A*) and hence is a strict local minimum of the Augmented
Lagrangian L (., A*) corresponding to A*.



Convergence mechanisms

Augmented Lagrangian:
C
Le(w,A) = f(@) + A" h(z) + 5 [[h()|7
Gradient and Hessian of Augmented Lagrangian:

ViLc(z,\) = Vf(z) + Vh(z) (X + ch(z)),

V2, Lo(z,)\) = V2f(z +Z (Xi + chi(z))V2hi(z) + cVh(z)Vh(z)'.

If x*, A* satisfy the sufficiency conditions of second-order for
original problem, we get:

VeLe(z*, A*) = Vf(z*)+Vh(z*)(A* +ch(z*)) = Vo L(z*,A*) =0,



Convergence mechanisms

V2, Lo(z*, \*) = V2f(z*) + 3 A V2hi(z*) + cVh(z*)VA(z*)
1=1

— V2, L(z*, \*) + cVh(z*)Vh(z*)"

Since v'V2_L(z*,\*)y >0, VY y#0 with Vh(z*)'y=0
from sufficiency condition, we have for large enough c

y' V2 Le(z*, A )y >0, Yy#0

using the following lemma:
Lemma: Let P and @ be two symmetric matrices.
Assume that @ > 0 and P > 0 on the nullspace of

Q, I.e., z’Pz > 0 for all z # 0 with z’Qz = 0. Then
there exists a scalar z such that

P + Q) : positive definite, Ve>e.



Convergence mechanisms

1) Take A close to \*.
2) Take c very large, ¢ = .

— For large c and any A

\~ J fz) ifzeXandh(z)=0
Feln {oo otherwise

If c is very large, then solution of unconstrained Augmented
Lagrangian x is nearly feasible



minimize f(z) = i(z? + 22)
subjectto z; =1

L(z,\) =4@i+23)+A(z1-1) z*=(1,0) A" =-1

Le(z,A) = 4(23 + 23) + A(z1 — 1) + g(ml —1)?

c— A
r1(A, ) = 1 z2(A,c) =0

We also have for all c>0
liTI'l’.t $1(A,C) = :cl(—l,C) =1= x;a

)N

We also have for all A ,
Iim z;(A,¢) =1 = x;
C— 00



minimize f(z) = i(z? + 22)
subjectto z; =1

z* = (1,0) X" =-1

lim z1(\ c) =xz1(—1,¢) = 1= a1, lim z1(\,¢) = 1 = 2
A A* C—00

>0
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A
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Quadratic Penalty Approach

How to choose A and ¢?

Solve sequence of unconstrained minimization of Augmented
Lagrangian:
k : k
" =arg min L g (xz, A
g min Lo ( )
where

ck
Lk (2, %) = f(a) + X'h(z) + - [|A()]|?



Basic convergence result

Proposition : Assume that f and h are continuous functions,

that X is a closed set, and that the constraint set {z € X | h(z) = 0}
is nonempty. For £k = 0,1,..., let z¥ be a global minimum of the
problem

minimize L_x{x, A¥)

subject to = € X,
where {A*} is bounded, 0 < ¢ < ¢k+1! for all k, and ¢ — oo. Then

every limit point of the sequence {z*¥} is a global minimum of the
original problem

« Assumes we can do exact minimization of the unconstrained
Augmented Lagrangian




Inexact minimization

Proposition : Assume that X = R", and f and h are continu-
ously differentiable. For k = 0, 1,.. ., let z* satisfy

IV2 Lk (2, AF)|| < €,

where {\¥} is bounded, and {¢*k} and {c*} satisfy
0<ck<cktl, VEk, ck — oo, 0<ek, VE, N s 0.

Assumez* — z*, where z* is such that vi(z*) has rank m. Then
Ao PRy A

where A* is a vector satisfying, together with z*, the first order nec-
essary conditions

Vi(z*) + Vh(z*)A* =0, h(z*) = 0.



Practical issues

 lll-conditioning: The condition number of the
Hessian v, L (=", \F) tends to increase with c*.

Example: minimize f(z) = 4(x] + T3) -
subject to z; = 1. @

, 1-¢ 0 NWJIIE
2. Le(z, X) =( 0 1)' U

« To overcome ill-conditioning:
— use)NeMon-like method (and double preci-
sion).
— Use good starting points.

— Increase <* at a moderate rate (if c* is in-
creased at a fast rate, {=*} converges faster,
but the likelihood of ill-conditioning is greater).
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Method of Multipliers

Solve sequence of unconstrained minimization of Augmented
Lagrangian:

k . k
x"¥ =argmin L g (xz, A

zeX © (2,A)
where k

C
Lk (2, X%) = f(2) + X h(x) + - [[h(=)])?
and using the following multiplier update:

AL = AF 4 Fh(z*)

- Note: Under some reasonable assumptions this works
even if {ck} is not increased to oo.



Method of Multipliers

Example: minimize f(z) = 4(x} + z3) Convex problem

subject to r; = 1. z* = (1,0) X" =-1

A liarc: ckF — Ak
Method of Multipliers: & _ arg;g;{'n Lk (z,\F) = (ﬁ,o)

k k
AR+L — 2k 4 ok (i _ 1)

ck+1
k -
Ak-l-—l —\" = u
ck 41
From this formula, it can be seen that
(a) A* 5 A" =—-1and z*¥ - 2* = (1,0) for every nondecreasing sequence

{c*} [since the scalar 1/(c*+1) multiplying \* —A* in the above formula
1s always less than one].

(b) The convergence rate becomes faster as ¢* becomes larger; in fact { A%~
A*1} converges superlinearly if ¢* — .



Method of Multipliers

Example: minimize f(z) = (—z% 4 23) Non-convex problem

subject to z; = 1. " =(1,0) Ax*=1

kE _\k
Method of Multipliers: z¥ = arg min Lk (z, /\k) = (C A ,0)

reRn ck —1

provided c* > 1 (otherwise the min does not exist)

kK
,\’°+1=>"°+c’“(C A —1)

ck —1
ck —1

o We see that:

— Noneedto increase c* to ~ for convergence;
doing so results in faster convergence rate.

— To obtain convergence, < must eventually
exceed the threshold 2.



Practical issues

e Key issue is how to select {c*}.

— cF should eventually become larger than the
“threshold” of the given problem.

— % should not be so large as to cause ill-
conditioning at the 1st minimization.

— cF should not be increased so fast that too
much ill-conditioning is forced upon the un-
constrained minimization too early.

— ¢* should not be increased so slowly that
the multiplier iteration has poor convergence
rate.

e A good practical scheme is to choose a mod-
erate value <°, and use c*+1 = gck, where 3 is a
scalar with g > 1 (typically g < [5,10] if a Newton-
like method is used).



Inequality constraints

Consider the problem
minimize f(z)
subject to  hi(z) =0,...,hm(x) =0,
gi(z) <0,...

« Convertinequality constraint g;(z) < 0to equality
constraint g;(z) + 27 = 0.

« The penalty method solves problems of the form

minLe(z,2, A, 1) = f(2) + Nh(z) + £ [|h(2)]]
d 2 c 212
+ Z {p.j (gj(a:) +zj) — §|g,-(a:) + 25| } ;
1=1

for various values of x and c.



Inequality constraints

e First minimize L.(z, z,\, ) With respect to z,

Le(z, A, p) = min Le (2,2, A, 1) = f(2) + Nh(z) + -2c-||h(~'1¢)ll2

. A 2 c . 22
+Zn:;n {I‘J (QJ(‘D)'*'ZJ') +§|QJ($)+ZJ'| }

1=1
and then minimize L.(z, A, ) with respect to z.

« (Can show this reduces to:
Le(@ A1) = f(z) + Xh(z) + £ |Ih(2)|?
1 T
+ % ; {(max{O, i+ cgj(z)})2 - uf}

- Under similar assumptions as before,
{Af + c"h.-(:c“)}% )\;k max{O,p;‘-+-c’°gj(x‘°)}—> ,u;"





