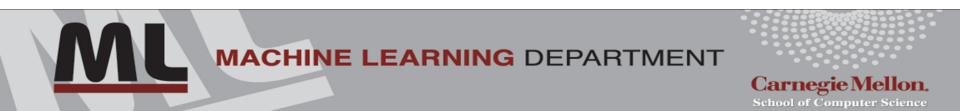
Augmented Lagrangian & the Method of Multipliers

Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar

Convex Optimization 10-725/36-725



Constrained optimization

So far:

- Projected gradient descent
- Conditional gradient method
- Barrier and Interior Point methods
- Augmented Lagrangian/Method of Multipliers (today)
- Consider the equality constrained problem

minimize f(x)subject to $x \in X$, h(x) = 0,

where $f : \Re^n \to \Re$ and $h : \Re^n \to \Re^m$ are continuous, and X is closed.

Quadratic Penalty Approach

Add a quadratic penalty instead of a barrier. For some c > 0

minimize
$$f(x) + \frac{c}{2} ||h(x)||^2$$

subject to $h(x) = 0$,

Note: Problem is unchanged – has same local minima

Augmented Lagrangian:

$$L_{c}(x,\lambda) = f(x) + \lambda^{\top} h(x) + \frac{c}{2} \|h(x)\|^{2}$$

- Quadratic penalty makes new objective strongly convex if c is large
- Softer penalty than barrier iterates no longer confined to be interior points.

Quadratic Penalty Approach

Solve unconstrained minimization of Augmented Lagrangian:

$$x = \arg\min_{x \in X} L_c(x, \lambda)$$

where

$$L_{c}(x,\lambda) = f(x) + \lambda^{\top} h(x) + \frac{c}{2} \|h(x)\|^{2}$$

When does this work?

1) Take λ close to λ^* .

Let x^* , λ^* satisfy the sufficiency conditions of second-order for the original problem. We will show that if c is larger than a threshold, then x^* is a strict local minimum of the Augmented Lagrangian $L_c(., \lambda^*)$ corresponding to λ^* .

This suggest that if we set λ close to λ^* and do unconstrained minimization of Augmented Lagrangian:

$$x = \arg\min_{x \in X} L_c(x, \lambda)$$

Then we can find x close to x*.

Second Order Sufficiency Conditions: Let $x^* \in \Re^n$ and $\lambda^* \in \Re^m$ satisfy

$$\nabla_x L(x^*, \lambda^*) = 0, \qquad \nabla_\lambda L(x^*, \lambda^*) = 0,$$

 $y' \nabla_{xx}^2 L(x^*, \lambda^*) y > 0, \quad \forall y \neq 0 \text{ with } \nabla h(x^*)' y = 0.$

Then x^* is a strict local minimum.

We will show that if c is larger than a threshold, then x* also satisfies these conditions for the Augmented Lagrangian $L_c(., \lambda^*)$ and hence is a strict local minimum of the Augmented Lagrangian $L_c(., \lambda^*)$ corresponding to λ^* .

Augmented Lagrangian:

$$L_{c}(x,\lambda) = f(x) + \lambda^{\top} h(x) + \frac{c}{2} \|h(x)\|^{2}$$

Gradient and Hessian of Augmented Lagrangian:

$$\nabla_x L_c(x,\lambda) = \nabla f(x) + \nabla h(x) \big(\lambda + ch(x)\big),$$

$$7_{xx}^2 L_c(x,\lambda) = \nabla^2 f(x) + \sum_{i=1}^m \big(\lambda_i + ch_i(x)\big) \nabla^2 h_i(x) + c \nabla h(x) \nabla h(x)'.$$

If x^* , λ^* satisfy the sufficiency conditions of second-order for original problem, we get:

$$\nabla_x L_c(x^*, \lambda^*) = \nabla f(x^*) + \nabla h(x^*) \big(\lambda^* + ch(x^*) \big) = \nabla_x L(x^*, \lambda^*) = 0,$$

$$\nabla_{xx}^2 L_c(x^*, \lambda^*) = \nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_i(x^*) + c \nabla h(x^*) \nabla h(x^*)'$$
$$= \nabla_{xx}^2 L(x^*, \lambda^*) + c \nabla h(x^*) \nabla h(x^*)'.$$

Since $y' \nabla_{xx}^2 L(x^*, \lambda^*) y > 0$, $\forall y \neq 0$ with $\nabla h(x^*)' y = 0$ from sufficiency condition, we have for large enough c

 $y' \nabla^2_{xx} L_c(x^*, \lambda^*) y > 0, \quad \forall y \neq 0$

using the following lemma:

Lemma: Let *P* and *Q* be two symmetric matrices. Assume that $Q \ge 0$ and P > 0 on the nullspace of *Q*, i.e., x'Px > 0 for all $x \ne 0$ with x'Qx = 0. Then there exists a scalar \overline{c} such that

P + cQ: positive definite, $\forall c > \overline{c}$.

- 1) Take λ close to λ^* .
- 2) Take c very large, $c \rightarrow \infty$.
 - For large c and any λ

$$L_c(\cdot, \lambda) \approx \begin{cases} f(x) & \text{if } x \in X \text{ and } h(x) = 0 \\ \infty & \text{otherwise} \end{cases}$$

If c is very large, then solution of unconstrained Augmented Lagrangian x is nearly feasible

Example

minimize
$$f(x) = \frac{1}{2}(x_1^2 + x_2^2)$$

subject to $x_1 = 1$

$$L(x,\lambda) = \frac{1}{2}(x_1^2 + x_2^2) + \lambda(x_1 - 1) \qquad x^* = (1,0) \qquad \lambda^* = -1$$

$$L_c(x,\lambda) = \frac{1}{2}(x_1^2 + x_2^2) + \lambda(x_1 - 1) + \frac{c}{2}(x_1 - 1)^2$$
$$x_1(\lambda, c) = \frac{c - \lambda}{c + 1}, \qquad x_2(\lambda, c) = 0$$

We also have for all c>0

$$\lim_{\lambda \to \lambda^*} x_1(\lambda, c) = x_1(-1, c) = 1 = x_1^*,$$

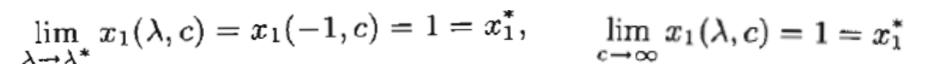
We also have for all λ

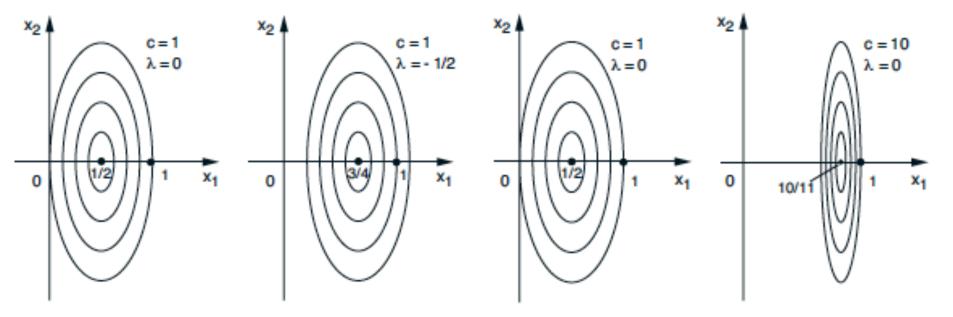
$$\lim_{c \to \infty} x_1(\lambda, c) = 1 = x_1^*$$

Example

minimize $f(x) = \frac{1}{2}(x_1^2 + x_2^2)$ subject to $x_1 = 1$

$$x^* = (1,0) \qquad \lambda^* = -1$$





Quadratic Penalty Approach

How to choose λ and c?

Solve sequence of unconstrained minimization of Augmented Lagrangian:

$$x^{k} = \arg\min_{x \in X} L_{c^{k}}(x, \lambda^{k})$$

where

$$L_{c^k}(x,\lambda^k) \equiv f(x) + {\lambda^k}' h(x) + \frac{c^k}{2} \|h(x)\|^2$$

Proposition : Assume that f and h are continuous functions, that X is a closed set, and that the constraint set $\{x \in X \mid h(x) = 0\}$ is nonempty. For $k = 0, 1, ..., let x^k$ be a global minimum of the problem

minimize $L_{c^k}(x, \lambda^k)$ subject to $x \in X$,

where $\{\lambda^k\}$ is bounded, $0 < c^k < c^{k+1}$ for all k, and $c^k \to \infty$. Then every limit point of the sequence $\{x^k\}$ is a global minimum of the original problem

 Assumes we can do exact minimization of the unconstrained Augmented Lagrangian

Inexact minimization

Proposition : Assume that $X = \Re^n$, and f and h are continuously differentiable. For $k = 0, 1, ..., let x^k$ satisfy

 $\|\nabla_x L_{c^k}(x^k, \lambda^k)\| \le \epsilon^k,$

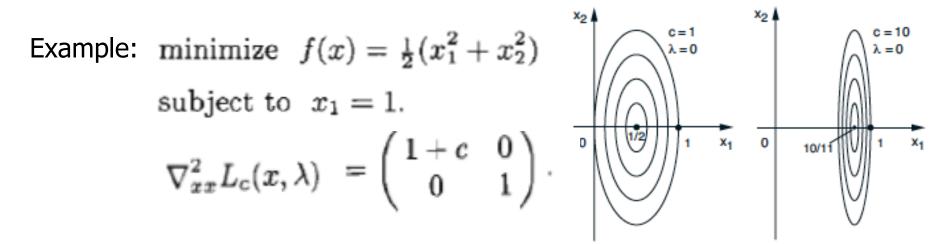
where $\{\lambda^k\}$ is bounded, and $\{\epsilon^k\}$ and $\{c^k\}$ satisfy $0 < c^k < c^{k+1}, \quad \forall k, \qquad c^k \to \infty, \qquad 0 \le \epsilon^k, \quad \forall k, \qquad \epsilon^k \to 0.$ Assume $x^k \to x^*$, where x^* is such that $\nabla h(x^*)$ has rank m. Then $\lambda^k + c^k h(x^k) \rightarrow \lambda^*$

where λ^* is a vector satisfying, together with x^* , the first order necessary conditions

 $\nabla f(x^*) + \nabla h(x^*)\lambda^* = 0, \qquad h(x^*) = 0.$

Practical issues

• Ill-conditioning: The condition number of the Hessian $\nabla_{xx}^2 L_{c^k}(x^k, \lambda^k)$ tends to increase with c^k .



- To overcome ill-conditioning:
 - Use Newton-like method (and double precision).
 - Use good starting points.
 - Increase c^k at a moderate rate (if c^k is increased at a fast rate, {x^k} converges faster, but the likelihood of ill-conditioning is greater).

Method of Multipliers

Solve sequence of unconstrained minimization of Augmented Lagrangian:

$$x^{k} = \arg\min_{x \in X} L_{c^{k}}(x, \lambda^{k})$$

where

$$L_{c^k}(x,\lambda^k) \equiv f(x) + \lambda^{k'}h(x) + \frac{c^k}{2} \|h(x)\|^2$$

and using the following multiplier update:

 $\lambda^{k+1} = \lambda^k + c^k h(x^k)$

 Note: Under some reasonable assumptions this works even if {c^k} is not increased to ∞.

Method of Multipliers

Example: minimize
$$f(x) = \frac{1}{2}(x_1^2 + x_2^2)$$
 Convex problem
subject to $x_1 = 1$.
 $x^* = (1, 0)$ $\lambda^* = -1$

Method of Multipliers:
$$x^{k} = \arg\min_{x \in \Re^{n}} L_{c^{k}}(x, \lambda^{k}) = \left(\frac{c^{k} - \lambda^{k}}{c^{k} + 1}, 0\right)$$

$$\lambda^{k+1} = \lambda^k + c^k \left(\frac{c^k - \lambda^k}{c^k + 1} - 1 \right)$$
$$\lambda^{k+1} - \lambda^* = \frac{\lambda^k - \lambda^*}{c^k + 1}$$

From this formula, it can be seen that

- (a) λ^k → λ^{*} = −1 and x^k → x^{*} = (1,0) for every nondecreasing sequence {c^k} [since the scalar 1/(c^k+1) multiplying λ^k − λ^{*} in the above formula is always less than one].
- (b) The convergence rate becomes faster as c^k becomes larger; in fact {|λ^k − λ^{*}|} converges superlinearly if c^k → ∞.

Method of Multipliers

Example: minimize
$$f(x) = \frac{1}{2}(-x_1^2 + x_2^2)$$
 Non-convex problem
subject to $x_1 = 1$.
 $x^* = (1,0)$ $\lambda^* = 1$

Method of Multipliers:
$$x^k = \arg\min_{x \in \Re^n} L_{c^k}(x, \lambda^k) = \left(\frac{c^k - \lambda^k}{c^k - 1}, 0\right)$$

provided $c^k > 1$ (otherwise the min does not exist)

$$\lambda^{k+1} = \lambda^k + c^k \left(\frac{c^k - \lambda^k}{c^k - 1} - 1 \right)$$

$$\lambda^{k+1} - \lambda^* = -\frac{\lambda^k - \lambda^*}{c^k - 1}$$

- We see that:
 - No need to increase c^k to ∞ for convergence; doing so results in faster convergence rate.
 - To obtain convergence, c^k must eventually exceed the threshold 2.

Practical issues

- Key issue is how to select $\{c^k\}$.
 - c^k should eventually become larger than the "threshold" of the given problem.
 - c⁰ should not be so large as to cause illconditioning at the 1st minimization.
 - c^k should not be increased so fast that too much ill-conditioning is forced upon the unconstrained minimization too early.
 - c^k should not be increased so slowly that the multiplier iteration has poor convergence rate.
- A good practical scheme is to choose a moderate value c^0 , and use $c^{k+1} = \beta c^k$, where β is a scalar with $\beta > 1$ (typically $\beta \in [5, 10]$ if a Newton-like method is used).

Inequality constraints

Consider the problem

minimize
$$f(x)$$

subject to $h_1(x) = 0, \dots, h_m(x) = 0,$
 $g_1(x) \le 0, \dots, g_r(x) \le 0.$

- Convert inequality constraint $g_j(x) \le 0$ to equality constraint $g_j(x) + z_j^2 = 0$.
- The penalty method solves problems of the form

$$\begin{split} \min_{x,z} \bar{L}_c(x,z,\lambda,\mu) &= f(x) + \lambda' h(x) + \frac{c}{2} ||h(x)||^2 \\ &+ \sum_{j=1}^r \left\{ \mu_j \left(g_j(x) + z_j^2 \right) + \frac{c}{2} |g_j(x) + z_j^2|^2 \right\}, \end{split}$$

for various values of μ and c.

Inequality constraints

First minimize L
_c(x, z, λ, μ) with respect to z,

$$L_{c}(x,\lambda,\mu) = \min_{z} \bar{L}_{c}(x,z,\lambda,\mu) = f(x) + \lambda' h(x) + \frac{c}{2} ||h(x)||^{2} + \sum_{j=1}^{r} \min_{z_{j}} \left\{ \mu_{j} \left(g_{j}(x) + z_{j}^{2} \right) + \frac{c}{2} |g_{j}(x) + z_{j}^{2}|^{2} \right\}$$

and then minimize $L_c(x,\lambda,\mu)$ with respect to x.

• Can show this reduces to:

$$L_{c}(x,\lambda,\mu) = f(x) + \lambda' h(x) + \frac{c}{2} ||h(x)||^{2} + \frac{1}{2c} \sum_{j=1}^{r} \left\{ \left(\max\{0,\mu_{j} + cg_{j}(x)\} \right)^{2} - \mu_{j}^{2} \right\}$$

• Under similar assumptions as before, $\{\lambda_i^k + c^k h_i(x^k)\} \rightarrow \lambda_i^* \max\{0, \mu_j^k + c^k g_j(x^k)\} \rightarrow \mu_j^*$