Alternating Direction Method of

Multipliers ADMM

Consider a problem of the form:

min f(x)+ g(z) subject to Ax + Bz =c
T,z

We define augmented Lagrangian, for a parameter p > 0,

Ly(z,z,u) = f(z) 4+ g(z) + ul (Az+ Bz — ¢) + g”A.’r + Bz — |3

We repeat, for k. =1,2,3, ...

z*) = argmin Lp(:c,z(k_l), u*~1))
T

2(k) = argmin Lp(a:(k),z,u(k_l))

u® =yt 4 p(4c® 1 B0 )



ADMM convergence

Under modest assumptions on f, g (these do not require A, B to
be full rank), the ADMM iterates satisfy, for any p > 0:

e Residual convergence: r*%) = Az(k) — B2(k) _ ¢ 50 as
k — oo, i.e., primal iterates approach feasibility

e Objective convergence: f(z(F)) + g(2*)) — f* + ¢g*, where
f* + g* is the optimal primal objective value

e Dual convergence: uk) — u*, where u* is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this is true under more assumptions

Convergence rate: not known in general, theory is currently being
developed, e.g., in Hong and Luo (2012), Deng and Yin (2012),

lutzeler et al. (2014), Nishihara et al. (2015). Roughly, it behaves
like a first-order method (or a bit faster)



ADMM scaled form

It is often easier to express the ADMM algorithm in a scaled form,
where we replace the dual variable u by a scaled variable w = u/p.
In this parametrization, the ADMM steps are:

%) = argmin f(z) + g |Az + B2*F1 — ¢+ w(k_l)“%

2 = argmin g(z) + g| Az®) + Bz — c+ w3

z

w® = w®=1 L 4.0 4 Bk _ .

Note that here the kth iterate w¥) is just given by a running sum
of residuals:

k
w® = w© 4 Z (Aa:(i) + B2(W — c)

1=1



Connection to prox operators

Consider

min f(z)+g(r) <= min f(z)+ g(z) subject to =z =2
€T 4 A

3

ADMM steps

zk) = proxf’l/p(z(k_l) — wk—1)

Z(k) — proxg,l/p(x(k) + w(k_l))

where prox; ;/, is the proximal operator for f at parameter 1/p,

and similarly for prox, ,/,

In general, the update for block of variables reduces to prox update
whenever the corresponding linear transformation is the identity



Example: Lasso regression

Given y € R", X € R™ P, recall the lasso problem:

.1
min 5 ly — X8I + ABll

We can rewrite this as:

1
rBin 5”'&/ — XB|I3+ Alla|l1 subject to B —a =0
,Q

ADMM gives us a simple algorithm:

BH = (XTX + pI)7H(XTy + p(a®=D — w*=1))

a® = 55 ,,(B® 4 wk-D)
w® = =D | gk _ o)



Notes:

o The matrix X7 X + pI is always invertible, regardless of X

e If we compute a factorization (say Cholesky) in O(p?) flops,
then each 3 update takes O(p?) flops

e The a update applies the soft-thresolding operator S¢, which
recall is defined as

.I‘j—t r >t
Si(z)]; =<0 —t<z<t, j=1,...p
ilfj—l—t r < —t

e ADMM steps are “almost” like repeated soft-thresholding of
ridge regression coefficients



Comparison of various algorithms for lasso regression: 50 instances
with n = 100, p = 20
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Practical issues

In practice, ADMM usually obtains a relatively accurate solution in
a handful of iterations, but it requires a large number of iterations
for a highly accurate solution (generally behaves like a first-order
method)

Choice of p can greatly influence practical convergence of ADMM:

e p too large — not enough emphasis on minimizing f + g
e p too small — not enough emphasis on feasibility

Boyd et al. (2010) give a strategy for varying p; can be useful, but
does not have convergence guarantees

Like deriving duals, transforming a problem into one that ADMM
can handle is sometimes a bit subtle, since different forms can lead
to different algorithms



Example: Sparse Subspace estimation

Given S € S, (typically S = 0 is a covariance matrix), consider the
sparse subspace estimation problem (Vu et al., 2013):

max tr(SY) — Al|[Y|l1 subject to Y € Fi

where F}. is the Fantope of order k, namely
Frr=4Y eSP:0<Y X1, tr(Y) =k}

Note that when A = 0, the above problem is equivalent to ordinary
principal component analysis (PCA)

This above is an SDP and in principle solveable with interior point
methods, though these can be complicated to implement and quite
slow for large problem sizes



We rewrite the problem as:

I%}IZII —tr(SY) + I5 (Y)+ A|[Z]|1 subjectto ¥ =2

ADMM steps are:

Y®) = pr (z*D —wk=1D 4 5/)p)
7(k) S/\/p(y(k) + W k=1
wk) — wk-1) 4 y(k) _ 7(k)

Here Pr, is Fantope projection operator, computed by clipping the
eigendecomposition A = UXUT, ¥ = diag(oy, ..., Op):

Pr,(A) =USgUT, %, = diag(a1(0),...,0,(0))

where each 0;(0) = min{max{o; — #,0},1}, and >.¥_, 0:(6) = k



Example: Low Rank + Sparse Decomposition

Given M € R™ ™ consider the sparse plus low rank decomposition
problem (Candes et al., 2009):

' L Al|S
min Ll + Al

subject to L+ S=M

ADMM steps:

L™ = sp (M — §*=1 4 wk=D)
Sk — sﬁl/p(M — L% k=1

w&) — wk=1) 4 pp— k) _ g(k)

where, to distinguish them, we use Sg\r/p for matrix soft-thresolding

and Sff/p for elementwise soft-thresolding



Example from Candes et al. (2009):

P

(a) Original frames (b) Low-rank L (c) Sparse S



Faster Convergence?

ADMM can exhibit much faster convergence than usual, when we
parametrize subproblems in a “special way"

e ADMM updates relate closely to block coordinate descent, in
which we optimize a criterion in an alternating fashion across
blocks of variables

e With this in mind, get fastest convergence when minimizing
over blocks of variables leads to updates in nearly orthogonal
directions

e Suggests we should design ADMM form (auxiliary constraints)
so that primal updates de-correlate as best as possible

e This is done in, e.g., Ramdas and Tibshirani (2014), Wytock
et al. (2014), Barbero and Sra (2014)
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