
Homework 4
Trust Region, Cond. Gradient/Frank Wolfe

Lagrange Mult. Theory, Augmented Lagrangian, Barrier Methods

CMU 10-725/36-725: Convex Optimization (Fall 2017)

OUT: Oct 20
DUE: Nov 3, 5:00 PM

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Gradescope unless explic-
itly stated otherwise. Each derivation/proof should be completed on a separate page. Submissions
can be handwritten, but should be labeled and clearly legible. Else, submissions can be written in
LaTeX. Upon submission, label each question using the template provided by Gradescope. Please refer
to Piazza for detailed instruction for joining Gradescope and submitting your homework.

• Programming: All programming portions of the assignments should be submitted to Gradescope as
well. We will not be using this for autograding, meaning you may use any language which you like to
submit.
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1 Trust Region [Hao; 25 pts]

Let

f(x) =
1

2
x21 + x22, (1)

and let x0 = (1, 1), g = Of(x0), B = O2f(x0).

(a) [10pt] Explicitly compute the next step in the trust region method using values of 4 = 2 and 4 = 5
6 .

[Hint: The only non-negative solution for 1
(1+λ)2 + 4

(2+λ)2 = 25
36 is λ = 1.]

(b) [15pt] Compute the next step in the dogleg method for all 4 > 0.

2 Frank Wolfe [Hongyang; 25 pts]

In this problem, we will derive the convergence rate of Frank-Wolfe algorithm to address general constrained
convex optimization problem

min
x∈D

f(x), (2)

where the objective function f is convex and continuously differentiable, and that the domain D is a compact
convex subset of any vector space. Recall that the Frank-Wolfe algorithm is given by

1: Let x(0) ∈ D.
2: for k = 0, 1, ...,K do
3: Compute s := argmins∈D〈s,∇f(x(k))〉
4: Update x(k+1) := (1− γ)x(k) + γs, for γ := 2

k+2
5: end for

Algorithm 1: Frank-Wolfe Algorithm.

We define the curvature constant Cf of f : Rn → R with respect to domain D by

Cf := sup
x,s∈Dγ∈[0,1],y=x+γ(s−x)

2

γ2
(f(y)− f(x)− 〈y − x,∇f(x)〉).

Prove that for a step x(k+1) := x(k) + γ(s− x(k)) with arbitrary step-size γ ∈ [0, 1], it holds that

f(x(k+1)) ≤ f(x(k))− γg(x(k)) +
γ2

2
Cf ,

if s is an approximate linear minimizer, i.e., 〈s,∇f(x(k))〉 = minŝ〈ŝ,∇f(x(k))〉, where g(x) is the duality gap
defined by

g(x) = max
s∈D
〈x− s,∇f(x)〉.

3 Lagrange Methods and Augmented Lagrangian [Devendra; 25
pts]

(a) [12pts] A quantity of Q units of a certain product is available for sale in n outlets. For each i = 1, .., n
the quantity di, which is demanded at outlet i, and its sale price pi are known. We wish to determine
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the quantities s∗i with 0 ≤ s∗i ≤ di to be sold at each outlet that maximizes the revenue
∑n
i=1 pisi from

the sale.

• Assuming that di > 0, pi > 0, and
∑n
i=1 di ≥ Q, show that there exists a cutoff price level y such

that for each i, if pi > y, then s∗i = di, and if pi < y, then s∗i = 0.

• What happens if pi = y?

• Describe a procedure for obtaining s∗i .

(b) [13pts] Consider the problem of

minimize f(x) =
1

2
(x21 − x22)− 3x2

subject to x2 = 0

• Calculate the optimal solution and the Lagrange multiplier.

• For k = 0, 1, 2 and ck = 10k+1, calculate and compare iterates of the quadratic penalty method
with λk = 0 for all k and the method of multipliers with λ0 = 0. Here λ is Lagrange multiplier and
c is positive penalty parameter.

• If c is a constant in the method of Multipliers, for what values of c, would the method converge?

4 Barrier Methods for Support Vector Regression [Yichong; 25
pts]

In this problem we develop barrier methods for support vector regression(SVR). Suppose we have a set of
data points (X1, Y1), ..., (Xn, Yn) with Xi ∈ Rd and Yi ∈ R for all i, and we want to fit a linear model of
y = wTx + b. For simplicity, we append a 1 to the end of each Xi so that we don’t need to consider b. An
ε-SVR solves the convex optimization problem

min
w∈Rd+1,ξ∈Rn

f̃(w, ξ) =
1

2
‖w1:d‖22 + C

n∑
i=1

ξi

s.t. |Yi − wTXi| ≤ ε+ ξi,

ξi ≥ 0, i = 1, 2, ..., n.

Here ε and C are parameters of SVR, and w1:d is the first d dimension of w. Please refer to
http://www.stat.cmu.edu/ ryantibs/convexopt/lectures/barr-method.pdf (page 12) for a description of bar-
rier methods.

(a) [3pts] Derive the objective f(w, ξ) of barrier method (with parameter t) for SVR problem.

(b) [8pts] Compute derivative and Hessian of f with respect to w and ξ.

(c) [2pts] Describe how to generate the initial point for barrier method.

(d) [12pts] Implement barrier method with backtracking line search on data in birthwt.zip. birthwt.zip
contains data of features of newborn babies to predict their birth weight. Centralize the data such
that

∑n
i=1Xi,j = 0 for all j ∈ {1, 2, ..., d}, where Xi,j is the j-th dimension of Xi. Use SVR with

C = 10, ε = 0.1 to predict birth weights. For the barrier parameters t(the multiplier for the original
objective of SVR) and µ(the constant by which t increases at each outer iteration of the barrier method),
try two settings: (t, µ) = (5, 20) and (t, µ) = (10000, 5). A good number for m(the constant that, together
with t, bounds the duality gap) is the number of constraints in the barrier problem. For backtracking
during the Newton method steps, use α = 0.2 and β = 0.9. You can use 1e-9 as the stopping threshold
for both the Newton method and the barrier method.
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Record the SVR objective and MSE g(w) = 1
n

∑n
i=1(Yi−wTXi)

2 for each outer step, i.e., each time you
update values of w (the steps of backtracking line search is not considered). Give two plots comparing
the performance for two settings of (t, µ), one on SVR objective f (excluding barrier terms) and one
on MSE g. Plot the x-axis as the number of iterations, and y-axis as log

(
f (k) − f∗

)
and log

(
g(k) − g∗

)
,

with f∗ = 729.652 and g∗ = 0.365.
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