
Homework 2
Canonical Forms, Applications

Descent Algorithms & Line Search, and Gradient Descent

CMU 10-725/36-725: Convex Optimization (Fall 2017)

OUT: Sep 15
DUE: Sep 29, 5:00 PM

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Gradescope unless explic-
itly stated otherwise. Each derivation/proof should be completed on a separate page. Submissions
can be handwritten, but should be labeled and clearly legible. Else, submissions can be written in
LaTeX. Upon submission, label each question using the template provided by Gradescope. Please refer
to Piazza for detailed instruction for joining Gradescope and submitting your homework.

• Programming: All programming portions of the assignments should be submitted to Gradescope as
well. We will not be using this for autograding, meaning you may use any language which you like to
submit.
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1 Schur Complement and Row Selection (25 pts) [Yichong]

1. Given a symmetric matrix X ∈ Sn partitioned as

X =

[
A B
BT C

]
with A ∈ Sk, and A is nonsingular. The matrix

S = C −BTA−1B

is called the Schur complement of A in X. Here Sn represents the set of all n× n symmetric matrices.

(a) [5pts] Suppose A � 0, i.e., A is positive definite. Consider the problem

min
u∈Rk

uTAu+ 2uTBv + vTCv

where u ∈ Rk is to be optimized and v ∈ Rn−k is fixed. Compute the optimal value of this
problem as a function of v and S.

(b) [5pts] Prove that if A � 0, then X � 0 if and only if S � 0, i.e., X is positive semi-definite if and
only if S is positive semi-definite.
Hint: Use the fact that M is positive semi-definite if and only if wTMw ≥ 0 for all w; and use
the result of part (a).

2. [15pts] Suppose X ∈ Rn×p. The following program appears in row subset selection problems:

min
π∈Rn

tr
((
XTdiag(π)X

)−1)
s.t. π ≥ 0, 1Tπ = 1.

Suppose the objective value is +∞ when XTdiag(π)X is singular. Show that the above program is
convex. Here π ∈ Rn and diag(π) is a n× n matrix with π being on the diagonal.
Hint: Treat the trace as a sum of p variables, where each of the p variables are set to some expression
involving X and π. Transform the equation defining each of these elements into an SDP constraint,

by using the the identity: t ≥ uTB−1u⇔
[
B u
uT t

]
� 0..

2 Applications (25 pts) [Hao]

1. (Extremal Volume Rectangle) [10pts] Formulate the following problem as a convex optimization
problem:

Find the rectangle
R = {x ∈ Rn | l � x � u }

of maximum volume, inscribed in a polyhedron P = {x|Ax � b}, where for vectors x and y of the same
dimension, x � y means xi ≤ yi for each i (xi is the i-th element of x). The variables are l, u ∈ Rn.
Your answer should not involve an exponential number of constraints.
Hint: supl≤x≤ua

Tx =
∑n
j=1 suplj≤xj≤uj

ajxj .

2. (Statistical estimation) [15pts] Suppose xi, i = 1, ..., n, are independent random variables with
Poisson distributions

prob(xi = k) =
e−µiµki
k!
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with unknown means µi. The variables xi represent the number of times that one of n possible
independent events occurs during a certain period.

We consider an experiment designed to determine the means µi. The experiment involves m detectors.
If event i occurs, it is detected by detector j with probability pji. We assume the probabilities pji are
given (with pji ≥ 0,

∑m
j=1 pji ≤ 1). yji is the variable that indicates the number of event i recorded

by detector j, and the total number of events recorded by detector j is denoted yj ,

yj =

n∑
i=1

yji, j = 1, ...,m.

Formulate the maximum likelihood estimation problem of estimating the means µi, based on observed
values of yj , j = 1, ...,m, as a convex optimization problem.

Hint: The variables yji subject to the Poisson distribution with means pjiµi, i.e.,

prob(yji = k) =
e−pjiµi(pjiµi)

k

k!
.

3 Descent Algorithms and Line Search (25 pts) [Yifeng]

For a differentiable convex function f(x) with Lipschitz gradient, we have proved in class the gradient
descent with backtracking has a convergence rate of O(1/k), where k ≥ 1 is the number of iterations that
the algorithm is run for.

When f(x) is not differentiable, but can be represented as the sum of a non-differentiable convex function
h(x) and differentiable convex function g(x), proximal gradient descent (which will be introduced in class
later) can be used. Never mind if you don’t know proximal gradient descent, because this question is
self-contained.

In this problem, you will show that the convergence rate for proximal gradient descent with backtracking is
also O(1/k). We will setup for proximal gradient descent and lead you to go through the proof. We assume
that the objective f(x) can be written as f(x) = g(x) + h(x) (more details on these functions are given
below); then, we compute the iterates

x(i) = proxtih

(
x(i−1) − ti∇g(x(i−1))

)
, (1)

where i ≥ 1 is an iteration counter, x(0) is the initial point, and the ti > 0 are step sizes (chosen appropriately,
during iteration i). The proximal mapping proxth (x) is defined as:

argmin
z

1

2t
||z − x||22 + h(z).

To be clear, we are assuming the following conditions here.

(A1) g is convex, differentiable, and dom(g) = Rn.

(A2) ∇g is Lipschitz, with constant L > 0.

(A3) h is convex, not necessarily differentiable, and we take dom(h) = Rn for simplicity.

(A4) The step sizes ti are either taken to be constant, i.e., ti = t = 1/L, or chosen by backtracking line
search; either way, the following inequality holds:

g(x(i)) ≤ g(x(i−1))− t∇g(x(i−1))TGt(x
(i−1)) + (t/2)‖Gt(x(i−1))‖22, (2)
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where t is the step size at any iteration of the algorithm, and we define

Gt(x
(i−1)) = (1/t)

(
x(i−1) − x(i)

)
.

(In case you are wondering, this inequality follows from assumption (A2), but you can just take it to
be true for this problem.)

Now, finally, for the problem. Assume, for all parts of this problem except the last one, that the step size is
fixed, i.e., ti = t = 1/L.

(a, 5pts) Derive the following (helpful) inequality:

f(x(i)) ≤ f(z) +Gt(x
(i−1))T (x(i−1) − z)− (t/2)‖Gt(x(i−1))‖22, z ∈ Rn.

Note: You can directly use the fact (2) and the following fact throughout question (a) to (e) without
proof:

h(z) ≥ h(x(i)) + (Gt(x
(i−1))−∇g(x(i−1)))T (z − x(i)), z ∈ Rn.

(b, 5pts) Show that the sequence of objective function evaluations {f(x(i))}, i = 0, . . . , k, is nonincreasing
(don’t worry about the case when x(i) is a minimizer of f). (By the way, this result basically says that
proximal gradient descent is a “descent method”.)

(c, 5pts) Derive the following (helpful) inequality:

f(x(i))− f(x∗) ≤ 1

2t

(
‖x(i−1) − x∗‖22 − ‖x(i) − x∗‖22

)
,

where x∗ is a minimizer of f (we assume f(x∗) is finite). (By the way, this result, taken together with
what you showed in part (b), implies that we move closer to the optimal point(s) on each iteration of
proximal gradient descent.)

(d, 5pts) Now, show that after k iterations, the accuracy that proximal gradient descent (with a fixed step size
of 1/L) obtains is O(1/k), i.e.,

f(x(k))− f(x∗) ≤ 1

2kt
‖x(0) − x∗‖22;

in other words, the convergence rate for proximal gradient descent is O(1/k). (Put differently, if you
desire ε-level accuracy, roughly speaking, then you must run proximal gradient descent for O(1/ε)
iterations.)

(e, 5pts) Establish the analogous convergence rate result when the step sizes are chosen according to backtracking
line search, i.e.,

f(x(k))− f(x∗) ≤ 1

2ktmin
‖x(0) − x∗‖22,

where tmin = mini=1,...,k ti.

4 Programming Problem (25pts) [Devendra]

This part consists of an implementation of a one-versus-all, L2 loss SVM also known as squared hinge loss,
which is commonly used for multiclass classification. L2 SVM is differentiable and imposes a bigger penalty
on points which violates the margin. In one-versus-all (OVA) approach, we train |C| binary classifiers, one
for each class and during inference time, we select the class which classifies the test data with maximum
margin.
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Given a training set S = {(xi, yi)}mi=1, where xi ∈ Rn, yi ∈ 1, .., C where C is the number of classes, we
would like to minimize the following objective function:

f(x) = minw(j)∈Rn

1

2

C∑
j=1

‖w(j)‖22 +
λ

m

∑
(xi,yi)∈S

C∑
j=1

l(w(j); (xi, yi))
2

where
l(w(j); (xi, yi)) = max{0, 1− (1{yi = j}(〈w(j),xi〉+ b(j)))}

and

1{yi = j} =

{
1 if yi = j
−1 if yi 6= j

f(x) is also known as the cost function. In order to update the parameters w and b of the SVM objective
function, gradient descent techniques are used.

Gradient computation Compute the gradient of the objective function f(x) w.r.t the parameters w(j).
[5pts]

Implementation tasks You will implement batch gradient descent and mini-batch stochastic gradient
descent algorithms in order to update the parameters w(j) by minimizing the cost function f(x). In both
the cases, initialize the values of w(j) with zero vector and update the parameters for a maximum of 200
epochs. There is no explicit need for bias parameter during implementation as an additional feature (all 1’s)
for the bias term has been included in the dataset.

• Batch Gradient Descent: In this, the parameters are updated by iterating through the full dataset
in every epoch. Plot the value of the objective function, train accuracy, test accuracy after every epoch
for λ = 0.1, 0.5, 1, 10. Use learning rate as 0.005. [10pts]

• Mini-Batch Stochastic Gradient Descent: In this, the parameters are updated by iterating
through randomly sampled subsets of training data at every epoch. Plot the value of the objec-
tive function, train accuracy, test accuracy on every epoch for λ = 0.1, 1, 30, 50. Use learning rate as
0.001 and batch size as 5000. [10pts]

You can use any programming language to implement the above functionality.

Dataset description: The training and test data consists of features extracted from CIFAR-10 images
which is available from here https://www.dropbox.com/s/4zgesaqlfxoe811/hw2_q4_dataset.zip. There
are 4 csv files inside this compressed file whose descriptions are below:

• train features.csv : training set features

• train labels.csv : training set labels

• test features.csv : test set features

• test labels.csv : test set labels

The training set consists of 50, 000 examples and test set consists of 10, 000 examples. Each example is in a
new line and has 401 features which are separated by comma delimiter. Overall there are 10 classes in this
dataset.
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