
Homework 1a
Convex Sets and Convex Functions

CMU 10-725/36-725: Convex Optimization (Fall 2017)

OUT: Sep 1
DUE: Prob 1-3 Sep 11, 5:00 PM

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Gradescope unless explic-
itly stated otherwise. Each derivation/proof should be completed on a separate page. Submissions
can be handwritten, but should be labeled and clearly legible. Else, submissions can be written in
LaTeX. Upon submission, label each question using the template provided by Gradescope. Please refer
to Piazza for detailed instruction for joining Gradescope and submitting your homework.
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Problem 1: Convex Set (Hongyang - 20 pts)

1. [5pts] (Definition of convexity) Denote by C ⊆ Rn a convex set. Let x1, ..., xk ∈ C, and θ1, ..., θk ∈ R
satisfy θi ≥ 0 and

∑k
i=1 θi = 1. Show that θ1x1 + ... + θkxk ∈ C for arbitrary k (Recall that in the

class, we define the convexity by the case of k = 2.)

2. (Example of convex set)
(a) [5pts] Show that if a, b ≥ 0 and 0 ≤ θ ≤ 1, then aθb1−θ ≤ θa + (1 − θ)b. Hint: Use concavity of
log functions.
(b) [5pts] Show that Sn = {x ∈ Rn+ |

∏n
i=1 xi ≥ 1} is convex.

3. [5pts] (Operations that preserve convexity) Suppose that S1 and S2 are convex sets in Rm+n. Show
that their partial sum

S = {(x, y1 + y2) | x ∈ Rm, y1, y2 ∈ Rn, (x, y1) ∈ S1, (x, y2) ∈ S2}

is a convex set.
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Problem 2: Convex Functions (Devendra - 20 pts)

1. [5pts] Suppose that a non-convex function f(x) is given as a sum of terms of the form g : Rn++ →
R, g(x) = βxα1

1 ..xαn
n , β > 0, αi ∈ R. Show that the substitution yi = log xi can transform f(x), into a

into a convex function in y.
(Hint: Use a simple example such as f(x1, x2) = x−2

1 + (x1x2)
1
3 + 2x−4

2 , x1 > 0, x2 > 0 to prove the
claim and then generalize it)

2. Show that the following functions are convex

• [5pts] f : Rn++ → R, f(x) =
∑n
i=1 xi log xi, such that

∑n
i=1 xi = 1. This is also called negative

entropy function.

• [5pts] f : Rn++ → R−, f(x) = −(
∑n
i=1 x

a
i )

1
a , given that a < 1, a 6= 0.

• [5pts] f : R+ → R

f(x) =

{
1
x

∫ x
0
g(y)dy if x > 0

0 if x = 0

given that g : R+ → R is a convex, non-negative function and g(0) = 0.
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Problem 3: Lipschitz gradients and strong convexity (Yifeng - 30
pts)

Let f be convex and twice differentiable.

1. [6pts] Prove the monotonicity of gradient ∇f , i.e.,

f is convex if and only if (∇f(x)−∇f(y))T (x− y) ≥ 0, for all x, y.

(Note: Feel free to use this property in the proof of problem 2 or 3 if necessary.)

2. [12pts] (Smoothness of f) Show that the following statements are equivalent.

i. ∇f is Lipschitz with constant L;

ii. (∇f(x)−∇f(y))T (x− y) ≤ L‖x− y‖22 for all x, y;

iii. ∇2f(x) � LI for all x;

iv. f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ‖y − x‖

2
2 for all x, y.

3. [12pts](Curvature of f) Show that the following statements are equivalent.

i. f is strongly convex with constant m;

ii. (∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖22 for all x, y;

iii. ∇2f(x) � mI for all x;

iv. f(y) ≥ f(x) +∇f(x)T (y − x) + m
2 ‖y − x‖

2
2 for all x, y.
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