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ABSTRACT

Te xture mapping is one of the most successful new techniques in high quality image synthesis. Its use can
enhance the visual richness of raster scan images immensely while entailing only a relatively small increase
in computation. The technique has been applied to a number of surface attributes: surface color, surface
normal, specularity, transparency, illumination, and surface displacement, to name a few. Although the list
is potentially endless, the techniques of texture mapping are essentially the same in all cases. We will sur-
vey the fundamentals of texture mapping, which can be split into two topics: the geometric mapping that
warps a texture onto a surface, and the filtering that is necessary in order to avoid aliasing. An extensive
bibliography is included.

INTRODUCTION

Why Map Texture?

In the quest for more realistic imagery, one of the most frequent criticisms of early synthesized raster
images was the extreme smoothness of surfaces - they showed no texture, bumps, scratches, dirt, or finger-
prints. Realism demands complexity, or at least the appearance of complexity. Texture mapping is a rela-
tively efficient means to create the appearance of complexity without the tedium of modeling and rendering
ev ery 3-D detail of a surface.

The study of texture mapping is valuable because its methods are applicable throughout computer graphics
and image processing. Geometric mappings are relevant to the modeling of parametric surfaces in CAD
and to general 2-D image distortions for image restoration and artistic uses. The study of texture filtering
leads into the development of space variant filters, which are useful for image processing, artistic effects,
depth-of-field simulation, and motion blur.

Definitions

We define atexturerather loosely: it can be either a texture in the usual sense (e.g. cloth, wood, gravel) - a
detailed pattern that is repeated many times to tile the plane, or more generally, a multidimensional image
that is mapped to a multidimensional space. The latter definition encompasses non-tiling images such as
billboards and paintings.

Te xture mappingmeans the mapping of a function onto a surface in 3-D. The domain of the function can
be one, two, or three-dimensional, and it can be represented by either an array or by a mathematical func-
tion. For example, a 1-D texture can simulate rock strata; a 2-D texture can represent wav es, vegetation
[Nor82], or surface bumps [Per84]; a 3-D texture can represent clouds [Gar85], wood [Pea85], or marble
[Per85a]. For our purposes textures will usually be 2-D arrays.

The source image (texture) is mapped onto a surface in 3-Dobject space, which is then mapped to the des-
tination image (screen) by the viewing projection. Te xture space is labeled (u, v), object space is labeled
(xo, yo, zo), and screen space is labeled (x, y).

We assume the reader is familiar with the terminology of 3-D raster graphics and the issues of antialiasing
[Rog85], [Fol82].
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Uses for Texture Mapping

The possible uses for mapped texture are myriad. Some of the parameters that have been texture mapped to
date are, in roughly chronological order:

surface color (the most common use) [Cat74],
specular reflection [Bli76],
normal vector perturbation (‘‘bump mapping’’) [Bli78a],
specularity (the glossiness coefficient) [Bli78b],
transparency [Gar85],
diffuse reflection [Mil84],
shadows, surface displacement, and mixing coefficients [Coo84],
local coordinate system (‘‘frame mapping’’) [Kaj85].

Our focus in this paper is on the computational aspects of texturing: those tasks common to all types of tex-
ture mapping. We will not attempt a thorough survey of the optical and semantic implications of texturing,
a careful review of which is available [Car85]. One type of texture mapping warrants particular attention,
however: illumination mapping.

Illumination mappingis the mapping of specular or diffuse reflection. It is also known as reflection map-
ping or environment mapping. Mapping illumination is rather different from mapping other parameters,
since an illumination map is not associated with a particular object in the scene but with an imaginary infi-
nite radius sphere, cylinder, or cube surrounding the scene [Gre86a]. Whereas standard texture maps are
indexed by the surface parametersu andv, a specular reflection map is indexed by the reflected ray direc-
tion [Bli76] and a diffuse reflection map is indexed by the surface normal direction [Mil84]. The technique
can be generalized for transparency as well, indexing by the refracted ray direction [Kay79]. In the special
case that all surfaces have the same reflectance and they are viewed orthographically the total reflected
intensity is a function of surface orientation only, so the diffuse and specular maps can be merged into one
[Hor81]. Efficient filtering is especially important for illumination mapping, where high surface curvature
often necessitates broad areas of the sky to be averaged.

Illumination mapping facilitates the simulation of complex lighting environments, since the time required
to shade a point is independent of the number of light sources. There are other reasons for its recent popu-
larity: it is one of the few demonstrated techniques for antialiasing highlights [Wil83], and it is an inexpen-
sive approximation to ray tracing for mirror reflection and to radiosity methods [Gor84] for diffuse reflec-
tion of objects in the environment.

MAPPING

The mapping from texture space to screen space is split into two phases, as shown in figure 1. First is the
surface parameterization that maps texture space to object space, followed by the standard modeling and
viewing transformations that map object space to screen space, typically with a perspective projection
[Fol82]. These two mappings are composed to find the overall 2-D texture space to 2-D screen space map-
ping, and the intermediate 3-D space is often forgotten. This simplification suggests texture mapping’s
close ties with image warping and geometric distortion.

Scanning Order

There are three general approaches to drawing a texture mapped surface: a scan in screen space, a scan in
texture space, and two-pass methods. The three algorithms are outlined below:
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SCREEN SCANNING:
for y

for x
compute u(x,y) and v(x,y)
copy TEX[u,v] to SCR[x,y]

TEXTURE SCANNING:
for v

for u
compute x(u,v) and y(u,v)
copy TEX[u,v] to SCR[x,y]

TWO-PASS:
for v

for u
compute x(u,v)
copy TEX[u,v] to TEMP[x,v]

for x
for v

compute y(x,v)
copy TEMP[x,v] to SCR[x,y]

where TEX is the texture array, SCR is the screen array, and TEMP is a temporary array. Note that copying
pixels involves filtering.

Screen order, sometimes called inverse mapping, is the most common method. For each pixel in screen
space, the pre-image of the pixel in texture space is found and this area is filtered. This method is prefer-
able when the screen must be written sequentially (e.g. when output is going to a film recorder), the map-
ping is readily invertible, and the texture is random access.

Te xture order may seem simpler than screen order, since inverting the mapping is unnecessary in this case,
but doing texture order correctly requires subtlety. Unfortunately, uniform sampling of texture space does
not guarantee uniform sampling of screen space except for affine (linear) mappings. Thus, for non-affine
mappings texture subdivision must often be done adaptively; otherwise, holes or overlaps will result in
screen space. Scanning the texture is preferable when the texture to screen mapping is difficult to invert, or
when the texture image must be read sequentially (for example, from tape) and will not fit in random access
memory.

Tw o-pass methods decompose a 2-D mapping into two 1-D mappings, the first pass applied to the rows of
an image and the second pass applied to the columns [Cat80]. These methods work particularly well for
affine and perspective mappings, where the warps for each pass are linear or rational linear functions.
Because the mapping and filter are 1-D they are amenable to stream processing techniques such as pipelin-
ing. Two-pass methods are preferable when the source image cannot be accessed randomly but it has rapid
row and column access, and a buffer for the intermediate image is available.

Parameterization

Mapping a 2-D texture onto a surface in 3-D requires a parameterization of the surface. This comes natu-
rally for surfaces that are defined parametrically, such as bicubic patches, but less naturally for other sur-
faces such as polygons and quadrics, which are usually defined implicitly. The parameterization can be by
surface coordinatesu andv, as in standard texture mapping, by the direction of a normal vector or light ray,
as in illumination mapping, or by spatial coordinatesxo, yo, andzo for objects that are to appear carved out
of a solid material. Solid textures can be modeled using arbitrary 3-D functions [Per85a] or by sweeping a
2-D function through space [Pea85], [Bie86].
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Parameterizing Planes and Polygons

We will focus our attention on the simplest surfaces for texture mapping: planar polygons. First we discuss
the parameterization and later we consider the composite mapping.

A triangle is easily parameterized by specifying the texture space coordinates (u, v) at each of its three ver-
tices. This defines an affine mapping between texture space and 3-D object space; each ofxo, yo, andzo

has the formAu+ Bv + C. For polygons with more than three sides, nonlinear functions are needed in gen-
eral, and one must decide whether the flexibility is worth the expense. The alternative is to assume linear
parameterizations and subdivide into triangles where necessary.

One nonlinear parameterization that is sometimes used is the bilinear patch:

[xo yo zo] = [uv u v 1]
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which maps rectangles to planar or nonplanar quadrilaterals [Hou83]. This parameterization has the
strange property of preserving lines and equal spacing along vertical and horizontal texture axes, but pre-
serves neither along diagonals. The use of this parameterization for planar quadrilaterals is not recom-
mended, however, since inverting it requires the solution of quadratic equations.

A better parameterization for planar quadrilaterals is the ‘perspective mapping’ [Hec83]:

[xowo yowo zowo wo] = [u v 1]
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wherewo is the homogeneous coordinate that is divided through to calculate the true object space coordi-
nates [Rob66], [Fol82]. Object coordinatesxo, yo, and zo are thus of the form
(Au+ Bv + C)/(Ju+ Kv + L). The perspective mapping preserves lines at all orientations but sacrifices
equal spacing. Affine mappings are the subset of perspective matrices for whichJ = K = 0. Note that a
perspective mapping might be used for the parameterization whether or not the viewing projection is per-
spective.

Projecting Polygons

Orthographic Projection

Orthographic projections of linearly-parameterized planar textures have an affine composite mapping. The
inverse of this mapping is affine as well, of course. This makes them particularly easy to scan in screen
order: the cost is only two adds per pixel, disregarding filtering [Smi80]. It is also possible to perform
affine mappings by scanning the texture, producing the screen image in non-scanline order. Most of these
methods are quite ingenious.

Braccini and Marino show that by depositing the pixels of a texture scanline along the path of a Bresenham
digital line, an image can be rotated or sheared [Bra80]. To fill the holes that sometimes result between
adjacent lines, they draw an extra pixel at each kink in the line. This results in some redundancy. They also
use Bresenham’s algorithm [Fol82] in a totally different way: to resample an array. This is possible
because distributingm source pixels ton screen pixels is analogous to drawing a line with slopen/m.

Weiman also uses Bresenham’s algorithm for scaling but does not draw diagonally across the screen
[Wei80]. Instead he decomposes rotation into four scanline operations: xscale, yscale, xshear, and yshear.
He does box filtering by averaging together several phases of the scaled image.
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Affine mappings can be performed with multiple pass methods in several ways. Catmull and Smith decom-
pose such mappings into a composition of two shear-and-scale passes: one horizontal and the other vertical
[Cat80]. In a simpler variation discovered by Paeth, a rotational mapping is decomposed into three passes
of shears: the first horizontal, the second vertical, and the third horizontal [Pae86]. Filtering for this three
pass rotate is particularly simple because resampling the scanlines involves no scaling.

Perspective Projection

A naive method for texture mapping in perspective is to linearly interpolate the texture coordinatesu andv
along the sides of the polygon and across each scanline, much as Gouraud or Phong shading [Rog85] is
done. However, linear interpolation will never giv e the proper effect of nonlinear foreshortening [Smi80], it
is not rotationally invariant, and the error is obvious in animation. One solution is to subdivide each poly-
gon into many small polygons. The correct solution, however, is to replace linear interpolation with the
true formula, which requires a division at each pixel. In fact, Gouraud and Phong shading in perspective,
which are usually implemented with linear interpolation, share the same problem, but the errors are so
slight that they’re rarely noticed.

Perspective mapping of a planar texture can be expressed using homogeneous matrix notation [Hec83]:

[xw yw w] = [u v 1]
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This mapping is analogous to the more familiar 3-D perspective transformation using 4x4 homogeneous
matrices. The inverse of this mapping (calculated using the adjoint matrix) is of the same form:

[uq vq q] = [x y 1]
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The composition of two perspective mappings is also a perspective mapping. Consequently, a plane using a
perspective parameterization that is viewed in perspective will have a compound mapping of the perspective
form. For screen scanning we computeu andv from x andy as follows:

u =
ax + by + c

gx + hy + i
, v =

dx + ey+ f

gx + hy + i

Perspective mapping simplifies to the affine form whenG = H = g = h = 0, which occurs when the surface
is parallel to the projection plane.

Aoki and Levine demonstrate texture mapping polygons in perspective using formulas equivalent to the
above [Aok78]. Smith proves that the division is necessary in general, and shows howu andv can be cal-
culated incrementally fromx and y as a polygon is scanned [Smi80]. As discussed earlier, Catmull and
Smith decompose perspective mappings into two passes of shears and scales [Cat80]. Gangnet, Perny, and
Coueignoux explore an alternate decomposition that rotates screen and texture space so that the perspective
occurs along one of the image axes [Gan82].

Heckbert promotes the homogeneous matrix notation for perspective texture mapping and discusses tech-
niques for scanning in screen space [Hec83]. Since the formulas foru andv above are quotients of linear
expressions, they can be computed incrementally at a cost of 3 adds and 2 divides per screen pixel. Heck-
bert also discusses methods for computing the 3x3 matrices. Since they are homogeneous, all scalar multi-
ples of these matrices are equivalent. If we arbitrarily choosei = 1 this leaves 8 degrees of freedom. These
8 values can be computed empirically by solving an 8x8 system of linear equations, which is defined by the
texture and screen coordinates of four points in the plane.
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Patches

Te xture mapping is quite popular for surfaces modeled from patches, probably for two reasons: (a) the
parameterization comes for free, (b) the cost of texture mapping is small relative to the cost of patch render-
ing. Patches are usually rendered using a subdivision algorithm whereby screen and texture space areas are
subdivided in parallel [Cat74]. As an alternative technique, Catmull and Smith demonstrate, theoretically
at least, that it is possible to perform texture mapping on bilinear, biquadratic, and bicubic patches with
two-pass algorithms [Cat80]. Shantz and Fraser, Schowengerdt, and Briggs explore a similar method for
the purpose of geometric image distortions [Sha82], [Fra85]. Tw o-pass algorithms require 1-D space vari-
ant texture filters.

FILTERING

After the mapping is computed and the texture is warped, the image must be resampled on the screen grid.
This process is calledfiltering.

The cheapest texture filtering method is point sampling, wherein the pixel nearest the desired sample point
is used. It works relatively well on unscaled images, but for stretched images the texture pixels are visible
as large blocks, and for shrunken images aliasing can cause distracting moire patterns.

Aliasing

Aliasing can result when a signal has unreproducible high frequencies [Cro77], [Whi81]. In texture map-
ping, it is most noticeable on high contrast, high frequency textures. Rather than accept the aliasing that
results from point sampling or avoid those models which exhibit it, we prefer a high quality, robust image
synthesis system that does the extra work required to eliminate it. In practice, total eradication of aliasing
is often impractical, and we must settle for approximations that merely reduce it to unobjectionable levels.

Tw o approaches to the aliasing problem are:
a) Point sample at higher resolution
b) Low pass filter before sampling

The first method theoretically implies sampling at a resolution determined by the highest frequencies pre-
sent in the image. Since a surface viewed obliquely can create arbitrarily high frequencies, this resolution
can be extremely high. It is therefore desirable to limit dense supersampling to regions of high frequency
and high contrast by adapting the sampling rate to the local intensity variance [Lee85]. Whether adaptive
or uniform point sampling is used, stochastic sampling can improve the appearance of images significantly
by trading off aliasing for noise [Coo86].

The second method, low pass filtering before sampling, is preferable because it addresses the causes of
aliasing rather than its symptoms. To eliminate aliasing our signals must be band-limited (contain no fre-
quencies above the Nyquist limit). When a signal is warped and resampled the following steps must theo-
retically be performed [Smi83]:

1. reconstruct continuous signal from input samples by convolution
2. warp the abscissa of the signal
3. low pass filter the signal using convolution
4. resample the signal at the output sample points

These methods are well understood for linear warps, where the theory of linear systems lends support
[Opp75]; but for nonlinear warps such as perspective, the theory is lacking, and a number of approximate
methods have sprung up.

Space Invariant Filtering

For affine image warps the filter isspace invariant; the filter shape remains constant as it moves across the
image. The four steps above simplify to:

1. low pass filter the input signal using convolution
2. warp the abscissa of the signal
3. resample the signal at the output sample points
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Space invariant filtering is often done using an FFT, a multiply, and an inverse FFT [Opp75]. The cost of
this operation is independent of the filter size.

Space Variant Filtering

Nonlinear mappings requirespace variantfilters, whose shape varies as they move across the image. Space
variant filters are more complex and less well understood than space invariant filters.

In general, a square screen pixel that intersects a curved surface has a curvilinear quadrilateral pre-image in
texture space. Most methods approximate the true mapping by the locally tangent perspective or linear
mapping, so that the curvilinear pre-image is approximated by a quadrilateral or parallelogram. If pixels
are instead regarded as circles, their pre-images are ellipses. This model is often simpler because an ellipse
has five degrees of freedom (two for position, two for radii, and one for angle), while a quadrilateral has
eight. Figure 2 shows the pre-images of several square screen pixels and illustrates how pixels near a hori-
zon or silhouette require filtering of large, highly elongated areas. One of texture filtering’s greatest chal-
lenges is finding efficient algorithms for filtering fairly general areas (such as arbitrarily oriented ellipses or
quadrilaterals).

The cross sectional shape of the filter is also important. Theoretically we should use the ideal low pass fil-
ter, sinc(x) = sin(πx)/πx, but its infinite width makes it impractical for computation. In practice we must
use a finite impulse response (FIR) filter [Opp75]. Commonly used FIR filters are the box, triangle, cubic
b-spline, and truncated gaussian (figure 3).

Most algorithms for texture filtering allow filtering requests to be made in arbitrary order. Such a random
access capability is important for applications such as reflection mapping or ray tracing, which produce
widely scattered requests.

Methods for random access space variant filtering can be categorized as follows:

1. direct convolution
2. prefiltering (pyramid or integrated array)
3. fourier series

Direct Convolution

The most straightforward filtering technique isdirect convolution, which directly computes a weighted
av erage of texture samples. We now summarize several direct convolution methods.

Catmull, 1974

In his subdivision patch renderer, Catmull computes an unweighted average of the texture pixels corre-
sponding to each screen pixel [Cat74]. He gives few details, but his filter appears to be a quadrilateral with
a box cross section.

Blinn and Newell, 1976

Blinn and Newell improve onthis with a triangular filter that forms overlapping square pyramids 2 pixels
wide in screen space [Bli76]. At each pixel the pyramid is distorted to fit the approximating parallelogram
in texture space, and a weighted average is computed.

Feibush, Levoy, and Cook, 1980

The filter used by Feibush, Levo y, and Cook is more elaborate [Fei80].

The following steps are taken at each screen pixel:

(1) Center the filter function (box, cylinder, cone, or gaussian) on the pixel and find its bounding rectan-
gle.

(2) Transform the rectangle to texture space, where it is a quadrilateral. The sides of this quadrilateral
are assumed to be straight. Find a bounding rectangle for this quadrilateral.

(3) Map all pixels inside the texture space rectangle to screen space.
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(4) Form a weighted average of the mapped texture pixels using a two-dimensional lookup table indexed
by each sample’s location within the pixel.

Since the filter function is in a lookup table it can be a gaussian or other high quality filter.

Gangnet, Perny, and Coueignoux, 1982

The texture filter proposed by Gangnet, Perny, and Coueignoux is quite similar to the method of Feibush et.
al., but they subdivide uniformly in screen space rather than texture space [Gan82].

Pixels are assumed to be circular and overlapping. The pre-image of a screen circle is a texture ellipse
whose major axis corresponds to the direction of greatest compression. A square intermediate supersam-
pling grid that is oriented orthogonally to the screen is constructed. The supersampling rate is determined
from the longest diagonal of the parallelogram approximating the texture ellipse. Each of the sample points
on the intermediate grid is mapped to texture space, and bilinear interpolation is used to reconstruct the tex-
ture values at these sample points. The texture values are then weighted by a truncatedsinc 2 pixels wide
in screen space and summed.

The paper contrasts Feibush’s ‘‘back transforming’’ method with their own ‘‘direct transforming’’ method,
claiming that the latter produces more accurate results because the sampling grid is in screen space rather
than in texture space. Other differences are more significant. For example, Gangnet’s method requires a
bilinear interpolation for each sample point, while Feibush’s method does not. Also, Gangnet samples at an
unnecessarily high frequency along the minor axis of the texture ellipse. For these two reasons, Feibush’s
algorithm is probably faster than Gangnet’s.

Greene and Heckbert, 1986

The elliptical weighted average filter (EWA) proposed by Heckbert [Gre86b] is similar to Gangnet’s
method in that it assumes overlapping circular pixels that map to arbitrarily oriented ellipses, and it is like
Feibush’s because the filter function is stored in a lookup table, but instead of mapping texture pixels to
screen space, the filter is mapped to texture space. The filter shape, a circularly symmetric function in
screen space, is warped by an elliptic paraboloid function into an ellipse in texture space. The elliptic
paraboloid is computed incrementally and used for both ellipse inclusion testing and filter table index. The
cost per texture pixel is just a few arithmetic operations, in contrast to Feibush’s and Gangnet’s methods,
which both require mapping each pixel from texture space to screen space, or vice versa.

Comparison of Direct Convolution Methods

All five methods have a cost per screen pixel proportional to the number of texture pixels accessed, and this
cost is highest for Feibush and Gangnet. Since the EWA filter is comparable in quality to these other two
techniques at much lower cost, it appears to be the fastest algorithm for high quality direct convolution.

Prefiltering

Even with optimization, the methods above are often extremely slow, since a pixel pre-image can be arbi-
trarily large along silhouettes or at the horizon of a textured plane. Horizon pixels can easily require the
av eraging of thousands of texture pixels. We would prefer a texture filter whose cost does not grow in pro-
portion to texture area.

To speed up the process, the texture can be prefiltered so that during rendering only a few samples will be
accessed for each screen pixel. The access cost of the filter will thus be constant, unlike direct convolution
methods. Two data structures have be used for prefiltering: image pyramids and integrated arrays.

Pyramid data structures are commonly used in image processing and computer vision [Tan75], [Ros84].
Their application to texture mapping was apparently first proposed in Catmull’s PhD work.

Several texture filters that employ prefiltering are summarized below. Each method makes its own trade-off
between speed and filter quality.
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pyramid − Dungan, Stenger, and Sutty, 1978

Dungan, Stenger, and Sutty prefilter their texture ‘‘tiles’’ to form a pyramid whose resolutions are powers of
two [Dun78]. To filter an elliptical texture area one of the pyramid levels is selected on the basis of the
av erage diameter of the ellipse and that level is point sampled. The memory cost for this type of texture
pyramid is 1+ 1/4 + 1/16+ ⋅ ⋅ ⋅  = 4/3 times that required for an unfiltered texture. Others have used four
dimensional image pyramids which prefilter differentially inu andv to resolutions of the form 2∆u × 2∆v.

pyramid − Heckbert, 1983

Heckbert discusses Williams’ trilinear interpolation scheme for pyramids (see below) and its efficient use in
perspective texture mapping of polygons [Hec83]. Choosing the pyramid level is equivalent to approximat-
ing a texture quadrilateral with a square, as shown in figure 4a. The recommended formula for the diameter
d of the square is the maximum of the side lengths of the quadrilateral. Aliasing results if the area filtered
is too small, and blurring results if it’s too big; one or the other is inevitable (it is customary to err on the
blurry, conservative side).

pyramid − Williams, 1983

Williams improves upon Dungan’s point sampling by proposing a trilinear interpolation scheme for pyrami-
dal images wherein bilinear interpolation is performed on two lev els of the pyramid and linear interpolation
is performed between them [Wil83]. The output of this filter is thus a continuous function of position (u, v)
and diameterd. His filter has a constant cost of 8 pixel accesses and 7 multiplies per screen pixel.
Williams uses a box filter to construct the image pyramid, but gaussian filters can also be used [Bur81]. He
also proposes a particular layout for color image pyramids called the ‘‘mipmap’’.

EWA on pyramid − Greene and Heckbert, 1986

Attempting to decouple the data structure from the access function, Greene suggests the use of the EWA fil-
ter on an image pyramid [Gre86b]. Unlike the other prefiltering techniques such as trilinear interpolation
on a pyramid or the summed area table, EWA allows arbitrarily oriented ellipses to be filtered, yielding
higher quality.

summed area table − Crow, 1984; Ferrari and Sklansky, 1984

Crow proposes thesummed area table, an alternative to the pyramidal filtering of earlier methods, which
allows orthogonally oriented rectangular areas to be filtered in constant time [Cro84]. The original texture
is pre-integrated in theu andv directions and stored in a high-precision summed area table. To filter a rect-
angular area the table is sampled in four places (much as one evaluates a definite integral by sampling an
indefinite integral). To do this without artifacts requires 16 accesses and 14 multiplies in general, but an
optimization for large areas cuts the cost to 4 accesses and 2 multiplies. The high-precision table requires 2
to 4 times the memory cost of the original image.

The method was developed independently by Ferrari and Sklansky, who show how convolution with arbi-
trary rectilinear polygons can easily be performed using a summed area table [Fer84], [Fer85].

The summed area table is generally more costly than the texture pyramid in both memory and time, but it
can perform better filtering than the pyramid since it filters rectangular areas, not just squares, as shown in
figure 4b. Glassner has shown how the rectangle can be successively refined to approximate a quadrilateral
[Gla86]. As an optimization he also suggests that this refinement be done only in areas of high local tex-
ture variance. To compute variance over a rectangle he pre-computes variances of 3x3 areas and forms a
summed area table of them. A more accurate method for computing rectangle variance would be to pre-
compute summed area tables of the texture values and their squares. Using these two tables variance can be
computed asσ 2 = Σx2

i /n − (Σxi /n)2. Of course there is considerable overhead in time and memory to
access a variance table.

repeated integration filtering − Perlin, 1985; Heckbert, 1986; Ferrari et. al., 1986

This elegant generalization of the summed area table was developed independently by Perlin and by Ferrari
et. al. [Per85b], [Hec86], [Fer86]. If an image is pre-integrated inu andv n times, an orthogonally oriented
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elliptical area can be filtered by sampling the array at (n + 1)2 points and weighting them appropriately.
The effective filter is a box convolved with itselfn times (annth order b-spline) whose size can be selected
at each screen pixel. Ifn = 0 the method degenerates to point sampling, ifn = 1 it is equivalent to the
summed area table with its box filter,n = 2 uses a triangular filter, andn = 3 uses a parabolic filter. Asn
increases, the filter shape approaches a gaussian, and the memory and time costs increase. The method can
be generalized to arbitrary spline filters [Hec86]. One difficulty with the method is that high precision
arithmetic (more than 32 bits) is required forn ≥ 2.

Comparison of Prefiltering Methods

The following table summarizes the prefiltering methods we have discussed:

REFERENCE FILTER SHAPE DOF TIME MEMORY

point sampling impulse point 2 1,0 1
point sampled pyramid box square 3 1,0 1.33

trilinear interp. on pyramid box square 3 8,7 1.33
4-D pyramid (scaling u and v) box rectangle 4 16,15 4

EWA on pyramid any ellipse 5 unlimited? 1.33

summed area table box rectangle 4 16,14; or 4,2 2-4
repeated integration (order 2) triangle rectangle 4 36,31; or 9,4 2-6

direct convolution any any 5+ unlimited 1

The high quality direct convolution methods of Feibush and Gangnet have been included at the bottom for
comparison. In this table, FILTER means cross section, while SHAPE is 2-D filter shape. The number of
degrees of freedom (DOF) of the 2-D filter shape provides an approximate ranking of filter quality; the
more degrees of freedom are available the greater is the filter shape control. The numbers under TIME are
the number of texture pixel accesses and the number of multiplies per screen pixel. MEMORY is the ratio
of memory required relative to an unfiltered texture.

We see that the integrated array techniques of Crow and Perlin have rather high memory costs relative to
the pyramid methods, but allow rectangular or orthogonally oriented elliptical areas to be filtered. Tradi-
tionally pyramid techniques have lower memory cost but allow only squares to be filtered.

Since prefiltering usually entails a setup expense proportional to the square of the texture resolution, its cost
is proportional to that of direct convolution − if the texture is only used once. But if the texture is used
many times, as part of a periodic pattern, or appearing on several objects or in several frames of animation,
the setup cost can be amortized over each use.

Figure 5 illustrates several of these texture filters on a checkerboard in perspective, which is an excellent
test of a texture filter, since it has a range of frequencies at high contrast. Note that trilinear interpolation
on a pyramid blurs excessively parallel to the horizon but that integrated arrays do not. Second order
repeated integration does just as well as EWA for vertically oriented texture ellipses (on the left of the
images), but there is a striking difference between gaussian EWA and the other prefiltering methods for
ellipses at 45 degrees (on the right of the images).

Fourier Series

An alternative to texture space filtering is to transform the texture to frequency space and low pass filter its
spectrum. This is most convenient when the texture is represented by a Fourier series rather than a texture
array. Norton, Rockwood, and Skolmoski explore this approach for flight simulator applications and pro-
pose a simple technique for clamping high frequency terms [Nor82]. Gardner employs 3-D Fourier series
as a transparency texture function, with which he generates surprisingly convincing pictures of trees and
clouds [Gar85].

Perlin’s ‘‘Image Synthesizer’’ uses band limited pseudo-random functions as texture primitives [Per85a].
Creating textures in this way eases transitions from macroscopic to microscopic views of a surface; in the
macroscopic range the surface characteristics are built into the scattering statistics of the illumination
model, in the intermediate range they are modeled using bump mapping, and in the microscopic range the
surface is explicit geometry [Per84], [Kaj85]. Each term in the texture series can make the transition
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independently at a scale appropriate to its frequency range.

Filtering Recommendations

The best filtering algorithm for a given task depends on the texture representation in use. When filtering a
texture array, the minimal texture filter should be trilinear interpolation on a pyramid. This blurs exces-
sively, but it eliminates most aliasing and costs little more than point sampling. Next in quality and cost are
integrated arrays of order 1 (box filter) or order 2 (triangle filter). These allow elongated vertical or hori-
zontal areas to be filtered much more accurately (resulting in less blurring at horizons and silhouettes) but
blur is still excessive for elongated areas at an angle (such as an eccentric ellipse at 45 degrees). For near-
perfect quality at a cost far below that of direct convolution, the EWA or similar filter on a pyramid is rec-
ommended. Its cost is not strictly bounded like most prefiltering methods, but is proportional to ellipse
eccentricity. The cost of direct convolution, meanwhile, is proportional to ellipse area. Any of these meth-
ods could probably benefit from adaptive refinement according to local texture variance [Gla86].

In the case of arbitrary texture functions, which can be much harder to integrate than texture arrays, adap-
tive stochastic sampling methods are called for [Lee85].

Future research on texture filters will continue to improve their quality by providing greater filter shape
control while retaining low time and memory costs. One would like to find a constant-cost method for high
quality filtering of arbitrarily oriented elliptical.

SYSTEM SUPPORT FOR TEXTURE MAPPING

So far we have emphasized those tasks common to all types of texture mapping. We now summarize some
of the special provisions that a modeling and rendering system must make in order to support different vari-
eties of texture mapping. We assume that the rendering program is scanning in screen space.

The primary requirements of standard texture mapping are texture space coordinates (u, v) for each screen
pixel plus the partial derivatives ofu andv with respect to screenx andy for good antialiasing. If the ana-
lytic formulas for these partials are not available, they can be approximated by differencing theu andv of
neighboring pixels.

Bump mapping requires additional information at each pixel: two vectors tangent to the surface pointing in
the u and v directions. For facet shaded polygons these tangents are constant across the polygon, but for
Phong shaded polygons they vary. In order to ensure artifact-free bump mapping on Phong shaded poly-
gons, these tangents must be continuous across polygon seams. One way to guarantee this is to compute
tangents at all polygon vertices during model preparation and interpolate them across the polygon. The
normal vector can be computed as the cross product of the tangents.

Proper antialiasing of illumination mapping requires some measure of surface curvature in order to calcu-
late the solid angle of sky to filter. This is usually provided in the form of the partials of the normal vector
with respect to screen space. When direct rendering support for illumination mapping is unavailable, how-
ev er, tricks can be employed that give a visually acceptable approximation. Rather than calculate the exact
ray direction at each pixel, one can compute the reflected or refracted ray direction at polygon vertices only
and interpolate it, in the form ofu andv texture indices, across the polygon using standard methods.

Although texture maps are usually much more compact than brute force 3-D modeling of surface details,
they can be bulky, especially when they represent a high resolution image as opposed to a low resolution
texture pattern that is replicated numerous times. Keeping several of these in random access memory is
often a burden on the rendering program. This problem is especially acute for rendering algorithms that
generate the image in scanline order rather than object order, since a given scanline could access hundreds
of texture maps. Further work is needed on memory management for texture map access.

SUMMARY

Te xture mapping has become a widely used technique because of its generality and efficiency. It has even
made its way into everyday broadcast TV, thanks to new real-time video texture mapping hardware such as
the AmpexADO and QuantelMirage. Rendering systems of the near future will allow any conceivable
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surface parameter to be texture mapped. Despite the recent explosion of diverse applications for texture
mapping, a common set of fundamental concepts and algorithms is emerging. We hav e surveyed a number
of these fundamentals: alternative techniques for parameterization, scanning, texture representation, direct
convolution, and prefiltering. Further work is needed on quantifying texture filter quality and collecting
theoretical and practical comparisons of various methods.
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