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Abstract

Many algorithms for reducing the number of triangles in
a surface model have been proposed, but to date there
has been little theoretical analysis of the approximations
they produce. Previously we described an algorithm that
simplifies polygonal models using a quadric error metric.
This method is fast and produces high quality approxima-
tions in practice. Here we provide some theory to explain
why the algorithm works as well as it does. Using meth-
ods from differential geometry and approximation theory,
we show that in the limit as triangle area goes to zero on
a differentiable surface, the quadric error is directly re-
lated to surface curvature. Also, in this limit, a triangula-
tion that minimizes the quadric error metric achieves the
optimal triangle aspect ratio in that it minimizes theL2
geometric error. This work represents a new theoretical
approach for the analysis of simplification algorithms.

Keywords: triangle aspect ratio, curvature, approxima-
tion theory, anisotropic mesh generation, quadric error
metric.

1 Introduction

The simplification of detailed geometric surface models
is important for a number of applications. A typical sim-
plification algorithm — the type we will focus on in this
paper — takes a polygonal model as input and produces
an approximation composed of fewer triangles that pre-
serves surface shape. Simplification algorithms are an
important component in the creation of multiresolution
models, models that represent the geometry and other at-

tributes of an object at multiple levels of detail. By reduc-
ing a model’s size, we can accelerate programs that sub-
sequently process the data, cut storage space and network
bandwidth requirements, and decrease the time required
to display the model. Natural application areas include
computer-aided design, architectural walkthroughs, finite
element methods, scientific visualization, shape acquisi-
tion, graphics on the Web, movie special effects, virtual
reality, and video games.

Optimal Approximation. Ideally, we would like to find
theoptimal approximation:the triangulated surface with
a given number of triangles that has the least error relative
to the original model. We will use theL2 measure of ge-
ometric error as our ideal error metric. While perceptual
error metrics might be more desirable for display applica-
tions, they are also significantly harder to analyze. Even
with a purely geometric error metric, optimal approxima-
tion is not feasible, in general. Computing the optimal
approximation of a surface with respect to theL1 met-
ric is NP-hard [1]; finding such an optimal approximation
requires time exponential in the number of vertices.

To date, little has been proven about the optimality
of existing surface approximation algorithms. The ex-
isting results are narrow in scope. Some of the few
are polynomial-time algorithms to find approximations to
height fields or convex polytopes that are within a fac-
tor of optimal [1]. For surfaces more general than height
fields and convex polytopes, there are simplification al-
gorithms with bounded error (e.g. [4]), but the number of
triangles in their approximations are not bounded, so such
algorithms are not optimal in a strong sense. The authors
are not aware of any polynomial time algorithms that gen-
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erate approximations to general surfaces that are provably
good in both error and number of triangles.

Even simpler versions of the surface approximation
problem have only limited theoretical results to date. For
example, optimal approximation of a sphere by a trian-
gulated surface is related to optimal packing ofn equal
circles on a sphere. Although the latter problem has been
studied for decades, solutions are known only for smalln
(n < 200 or so) [5]. Little has been proven about opti-
mality for arbitrary surfaces.

Overview. Previously we described an algorithm for
surface simplification based on iterative edge contraction
and quadric error metrics [10, 11]. This algorithm is fast
and achieves good quality results in practice. Simpli-
fying a manifold surface model withn vertices has an
O(n logn) running time [9]. In this paper, we analyze
its approximation errors.

Our principal tools in this analysis are differential ge-
ometry, which provides techniques for analyzing sur-
face curvature, and approximation theory, which provides
methods for analyzing approximation errors. Approxima-
tion theorists have determined theL2–optimal shape of
triangles when approximating bivariate functions. They
found that the aspect ratio (length/width) of an optimal
triangle is related to the second derivatives of the func-
tion, i.e., its curvature [16] (seex3.2 for more detail). As
is typical in approximation theory, this analysis is done in
the limit as triangle area goes to zero.

In this paper we attempt to interrelate practical surface
simplification methods from computer graphics with the-
oretical, asymptotic results from approximation theory.
Specifically, we pose the questions: why does the quadric-
based algorithm work as well as it does? And how close
to optimal are the approximations generated by this algo-
rithm?

We show that minimization of the quadric error metric
computes curvature information indirectly, and that mini-
mization of this metric yields, in the limit of small trian-
gles, for differentiable surfaces, a triangulation with op-
timal triangle shape. Note that this does not imply that
the quadric-based algorithm yields optimal approxima-
tions for finite problems (practical problems employing a
finite number of triangles). Nevertheless, it validates that
the algorithm is theoretically “on the right track” in the

sense that as the original mesh becomes finer and finer,
the resulting approximation will become more nearly op-
timal, subject to suitable assumptions.

The remaining sections of the paper are organized as
follows. First, we review the quadric-based simplification
algorithm, along with relevant concepts from differential
geometry and approximation theory. Next, we derive the
quadric error metric for a differentiable manifold, and we
prove that minimization of the quadric error metric gen-
erates a triangulation with optimal triangle shape, in the
limit. Finally, we check this empirically, and present con-
clusions.

2 Quadric-Based Simplification

Given an initial triangulated surface, we want to automat-
ically generate an approximation with fewer triangles that
is faithful to the original geometry. Our simplification al-
gorithm [10, 11] is based on iterative edge contraction,
a framework used by several others as well [19, 14, 12].
Every edge is assigned a “cost” that is typically meant to
reflect the geometric error introduced into the model as a
result of contracting the edge. A greedy approach is used:
on each iteration, the lowest-cost edge is contracted, and
the costs of neighboring edges are updated. An edge con-
traction, which we denote(vi;vj) ! �v, modifies the sur-
face by unifying two vertices into one, thereby removing
one vertex and two faces (see Figure 1). The primary dif-
ference between the various contraction-based methods is
the error metric used to assign costs to edges.

Before After

contract

vi

vj
v–

Figure 1: Edge(vi;vj) is contracted. The darker trian-
gles become degenerate and are removed.

While our algorithm is designed to accommodatenon-
manifold surfaces, for our purpose of analyzing its theo-
retical properties, we will assume that the input surface is
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a closed manifold. In other words, every point on the sur-
face has a neighborhood that is homeomorphic to a disk.
We will also assume in this paper that the topology of the
surface is preserved during simplification.

Quadric Error Metric. Suppose that we are given a
plane determined by a pointp and a unit normaln. The
squared distance of any pointv to this plane is given by

((v � p) � n)2 = vTnnTv � 2(nnTp)Tv + pTnnTp (1)

This is a quadratic function ofv. More generally, to effi-
ciently compute the weighted sum of squared distances to
a set of planes, we use aquadric error metricof the form

Q(v) = vTAv + 2bTv + c (2)

where thequadricQ is given by

Q = (A;b; c) (3)

We call it a quadric error metric because the isosurfaces of
Q(v) are quadric surfaces. This requires 10 coefficients
to store the symmetric3�3 matrixA, the 3-vectorb and
the scalarc.

Every vertexv in the original model has a set of adja-
cent facesff1; : : : ; fkg. Each facefi has a unit normal
ni that, together with any pointpi in the plane of that
face, determines afundamental quadric

Qi = (Ai;bi; ci) = (nini
T;�Aipi;pi

TAipi) (4)

We define the initial quadricQ associated with the vertex
v to be the weighted sum of these fundamental quadrics

Q =
kX

i=1

wiQi (5)

In this paper we use area-weighting, wherewi is the area
of facefi, but in other contexts other weighting schemes
may be preferred. The valueQ(v) is the area-weighted
sum of squared distances ofv to the planes of its neigh-
boring triangles. Note that, since the vertexv necessarily
lies at the intersection of all these planes, the error associ-
ated with every vertex on the original model is 0.

We define the cost of the contraction(vi;vj) ! �v to
beQi(�v)+Qj(�v) = (Qi+Qj)(�v). The minimum of this

function occurs whererQ(v) = 2Av+2b = 0. Solving
this equation, we find that the optimal position is

�v = �A�1b (6)

and its error is

Q(�v) = bT�v + c = �bTA�1b+ c (7)

Quadric Properties. For a given quadricQ, the level
surfaceQ(v) = � is the set of all points whose error with
respect toQ is �. That is, it is the locus of points to which
a vertex can be relocated with constant error. This iso-
surface is a (potentially degenerate) ellipsoid whose prin-
cipal axes are defined by the eigenvalues and eigenvec-
tors of the matrixA [9]. The ellipsoids are degenerate,
or “open,” when some eigenvalues ofA are 0; in other
words, whenA is singular. The equation for finding the
optimal position�v corresponds to finding the center of the
ellipsoid isosurfaces. When the ellipsoids are degenerate
(i.e.,A is non-invertible), the isosurfaces are either infi-
nite cylinders (one 0 eigenvalue) or pairs of parallel planes
(two 0 eigenvalues).

Figure 2: Simplified bunny model with a visualization of
the quadrics used for its construction. Only 1.4% of the
original 70,000 faces remain. Centered aroundeach ver-
tex is an isosurface of the corresponding quadric (a.k.a.
Riemannian metric tensor).

Figure 2 illustrates the quadric isosurfaces produced
by the simplification of a bunny model. Notice that the
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quadrics characterize the local shape of the surface. For
vertices on creases, such as on the neck and ears, the el-
lipsoids are cigar shaped. They are elongated in the direc-
tion of the crease. In contrast, where the surface is less
curved, such as on the forehead, the quadrics are thin and
roughly circular, like pancakes. Intuitively, we might con-
clude that the quadrics will be elongated in directions of
low curvature and thin in directions of high curvature. In
section 4, we quantify this hypothesis.

Neighborhoods. After repeated edge contractions, the
quadric associated with each vertex of the approximate
model is the sum of the fundamental quadrics from a con-
nected neighborhood of nearby vertices from the original
model (Figure 7). On smooth surfaces, these neighbor-
hoods are fairly regular in shape (roughly elliptical, typ-
ically elongated in the direction of lower curvature), but
on more complex surfaces they can be gerrymandered.

Summation of the quadric matrices during edge con-
tractions is equivalent to a neighborhood merge, causing
some fundamental quadrics to be multiply-counted. The
number of times a given triangle’s fundamental quadric is
counted in a given neighborhood is equal to the number of
that triangle’s vertices that are inside the neighborhood.
Thus, perimeter faces are counted once or twice, while
faces interior to the neighborhood are counted thrice. No
vertices are counted more than three times. In all cases
they are area-weighted. Although it may appear undesir-
able, multiple counting has not been found to be a prob-
lem in practice.

3 Background

In this section we review results from differential geom-
etry, approximation theory, and mesh generation that we
make use of in section 4.

3.1 Differential Geometry

We will employ the theory of local differential geometry
[15, 2, 13] to analyze the mathematical properties of the
quadric error metric.

A smooth surface patch is defined by

x = x(u; v) = [f1(u; v) f2(u; v) f3(u; v)]
T (8)

where(u; v) 2 R2 and the functionsfi are of classC2.
We shall be concerned with the surface in the neighbor-
hood of a pointp = x(u0; v0).

Tangents. The partial derivatives ofx

x1 = xu = @x=@u and x2 = xv = @x=@v (9)

evaluated atp span the tangent plane of the surface at
p, so any tangent vectort at p can be written ast =
x1 �u + x2 �v. Consequently, we can parametrize this
tangent vector by a direction vector in the 2-D parameter
space:u = [�u �v]T. The unit surface normaln at the
pointp is given by

n =
x1�x2
kx1�x2k (10)

provided thatx1�x2 6= 0. Note that, by convention, all
functions such asx1 are implicitly evaluated at the point
p under consideration.

The length of a tangent vector can be defined in terms
of the matrix

G =

�
g11 g12
g21 g22

�
wheregij = xi �xj (11)

with determinantg = g11g22�g212. The squared length of
a tangent vector in unit directionu is given by thefirst fun-
damental formuTGu. Such a measure, a second degree
function of direction, defined for each point on a mani-
fold, is called aRiemannian metric tensor[15].

Curvature. Geometrically, surface curvature is defined
in terms of the intersection curve of the surface and a
plane passing through the normal and the tangent vector
in the directionu at that point. Thenormal curvatureof
the surface in the directionu is then the reciprocal of the
radius of the osculating circle at that point. Curvatures
can be positive or negative depending on the sign of the
normal vector. Zero curvature means the surface is flat (in
a particular direction).

Algebraically, curvature can be quantified in terms of
the matrix

B =

�
b11 b12
b21 b22

�
wherebij = n�xij = �ni �xj:

(12)
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The change in the normal vectorn in the unit directionu,
also known as thesecond fundamental form, isuTBu.

Together, the two fundamental forms allow one to ex-
press the normal curvature�n in the directionu as

�n =
uTBu

uTGu
(13)

Unless the curvature is equal in all directions, there must
be a directione1 in which the normal curvature reaches
a minimum and a directione2 in which it reaches a max-
imum. These are calledprincipal directions. The corre-
spondingprincipal curvatures�1; �2 at pointp are the
eigenvalues of the Weingarten mapG�1B.

3.2 Approximation Theory

Approximation theory analyzes the errors of function ap-
proximation. When working with surfaces, one gener-
ally studies the limit as the areas of the approximating
elements (in our case, triangles) vanish, since it is much
easier to prove properties of approximations for the limit
than for finite approximations. To ensure that these limits
are defined, we assume that the function is twice differen-
tiable.

Researchers have studied the effect of triangle size and
shape on approximations to a bivariate function or height
field f(u; v). We will quantify error using theL2 met-
ric, which is the square root of the integral of the squared
difference between two functions. Under this metric, one
can ask: what triangulation with a given number of trian-
gles minimizes the error of piecewise linear approxima-
tion? The asymptotic answer, discovered by Nadler, is
that as the number of triangles goes to infinity, an opti-
mal triangles’ orientation is given by the eigenvectors of
the Hessian of the function at each point, and their size in
each principal direction is given by the reciprocal square
root of the absolute value of the corresponding eigenvalue
[16].

Aspect Ratio. Theaspect ratioof a rectangle is simply
its width divided by its height. The aspect ratio of a tri-
angle is a bit more complex. It can be defined in various
ways, most nearly equivalent. We define the aspect ratio
of a triangle by finding the ellipse of least area through the
three vertices, and take the ratio of major to minor axes.
The aspect ratio of an equilateral triangle is thus 1.

Nadler thus found that an optimal triangle’s aspect ratio
is

� =

�����2�1
����
1=2

(14)

wheref�ig are the eigenvalues of the Hessian. The Hes-
sian of a functionf(u; v) is the matrix

H =

�
fuu fuv
fvu fvv

�
(15)

WhendetH > 0, the aspect ratio of (14) is the unique
optimum for allLp norms withp � 1 [7, 18]. This case
coincides with a positive Gaussian curvature, if we regard
f as a surface in 3-D. WhendetH < 0, theL2–optimal
aspect ratio is not unique; there is a one-parameter fam-
ily of solutions generated by stretching (14) along one of
the directions of zero curvature [16, eqn. (3)]. TheL1–
optimal aspect ratios differ from (14) by a small factor
[7].

Long, thin “sliver” triangles can be bad in certain con-
texts; for instance, they can lead to large condition num-
bers in the matrices used for certain finite element simula-
tions. Equilateral triangles are desirable in such contexts.
But for our goal, deriving an approximation with minimal
geometric error, slivers can be optimal.

We defineoptimal triangulationto be a triangulation
that conforms to the above law, in the limit as the number
of triangles goes to infinity and their areas go to zero.

3.3 Mesh Generation

Two dimensional mesh generation is the subdivision of
a 2-D domain into triangles or quadrilaterals. In many
cases, meshes are used for finite element analysis, as
in the solution of partial differential equations. Adap-
tive meshing techniques alternate solution of a system of
equations with re-meshing of the domain. Some of these
methods strive for optimal triangulations during remesh-
ing using the Hessian of an approximate solution function
to control triangle size and shape [17, 3].

The intentional generation of stretched triangles is
called anisotropic mesh generation[20]. This is often
done using the Hessian to construct a Riemannian metric
tensor that gives the desired edge length as a function of
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direction. A mesh generation algorithm yielding asymp-
totically optimally stretched triangles in this manner was
given by D’Azevedo [6], but his method is restricted to
structured meshes and a very small space of surfaces (ver-
tex degree 6 and zero Riemann-Christoffel tensor every-
where).

Mesh generation methods have been employed to cre-
ate simplification algorithms by appropriate definition of
the desired edge length function. Frey used numerical
estimates of surface curvature to construct an isotropic
Riemannian metric tensor, and then used this to con-
trol a mesh generator [8]. This method did not generate
anisotropic meshes, however.

Our quadric error metric can be regarded as an
anisotropic Riemannian metric tensor, and it is applicable
to unstructured meshes and general surfaces.

4 Analysis of Quadric Metric

We now relate our quadric error metric to the optimal tri-
angulation results by analyzing its properties in the limit
as the areas of the triangles go to zero. More precisely,
we imagine a case of a twice-differentiable manifold from
which original models can be constructed by tessellating
it with specified edge lengths. There will be two limit pro-
cesses. The first limit will drive the number of triangles
of the original model to infinity while driving their areas
to zero. We then sum the fundamental quadrics within
a neighborhood around a surface point. In the limit as
original triangle size goes to zero, the sum becomes an
integral. This yields a formula for the infinitesimal error
quadric as a function of surface curvature and neighbor-
hood shape. The second limit will drive the area of these
neighborhoods to zero.

We prove that, in these limits, the quadric error is min-
imized by triangulations with optimal aspect ratio. We
also derive a quantitative relationship between the error
quadrics and surface curvature.

4.1 Theoretical Quadric Error Metric

In order to analyze the quadric error metric, we consider
its behavior on a differentiable manifoldM defined by a
patchx. Suppose that we are given a point of interestp0
onM with surface normaln0 (Figure 3). Lete1; e2 be

the principal directions atp0, and let�1; �2 be the corre-
sponding principal curvatures. Ifp0 is an umbilic point
(i.e., �n is equal in all directions), it is sufficient to pick
two arbitrary, orthogonal “principal” directions. In the co-
ordinate framee1; e2;n0, we can approximate the neigh-
borhood ofM aroundp0 to second degree by a surface
patch [15] of the form

p(u; v) = [u v
1

2
(�1u

2 + �2v
2)]

T

(16)

This can be either an elliptical or hyperbolic paraboloid.
Herep0 = p(0; 0) and the axes(u; v) coincide with the
principal axese1; e2. Such a coordinate frame exists for
any point on our manifold. Use of this frame simplifies
the derivation substantially.

e2

v

u
F

p0

n0

p(u,v)

e1
2ε2

2ε1

Figure 3: Local parametrization of the surface aboutp0.
The neighborhoodF is the projection of a rectangular re-
gion of the parameter domain onto the surface. This patch
of surface is approximated byp(u; v).

For this surface, the matrix of the first fundamental
form atp is

G =

�
1 + �2

1
u2 �1�2uv

�1�2uv 1 + �2
2
v2

�
g = 1 + �2

1
u2 + �2

2
v2

(17)

and the unit surface normal isn = m=
p
g, writ-

ten in terms of the non-unit normalm = p1�p2 =
[��1u � �2v 1]

T. It is easy to verify that atp = p0,
the matrixG�1B has eigenvalues�1 and�2.

For the sake of simplicity, let us assume that the small
neighborhoodF around the pointp0 (Figure 3) has the
rectangular parameter domain��1 � u � �1; ��2 �
v � �2. An elliptical domain could also be used, and it
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would yield identical results to first order. We will leave
the size and aspect ratio of this rectangle unspecified for
now; later we will determine the values that minimize the
quadric error metric.

Every pointp in the vicinity of p0 has a unique tan-
gent plane from which we can construct a quadric. Just
as a vertex accumulates a sum of quadrics during simpli-
fication, we shall consider the result of the pointp0 ac-
cumulating the fundamental quadrics of all infinitesimal
triangles inF . We won’t attempt to simulate multiple-
counting; its effect on this limit process is negligible.

In the limit as the triangles of the original model go to
zero area, the sum of area-weighted fundamental quadrics
of the infinitesimal triangles given by (4) and (5) becomes
a surface integral overF . The quadric at pointp0 will
therefore have components

A =

ZZ
F

nnTdA (18)

b =

ZZ
F

�nnTp dA (19)

c =

ZZ
F

pTnnTp dA (20)

where integration of matrices and vectors is defined by
integrating each scalar component separately.

Let us focus on the matrixA. Making the substitutions
dA =

p
g du dv andn = m=

p
g, it simplifies to

A =

ZZ
mmTp

g
du dv (21)

The matrix

mmT=

2
4 �2

1
u2 �1�2uv ��1u

�1�2uv �2
2
v2 ��2v

��1u ��2v 1

3
5 (22)

is easy to integrate by itself, but not with
p
g in the de-

nominator. To tackle this problem, we use the Taylor se-
ries approximation

1p
g
= 1� 1

2
�2
1
u2 � 1

2
�2
2
v2 +O(u4 + u2v2 + v4)

(23)

In the limit of infinitesimal neighborhoods, the fourth and
higher degree terms become negligible. Using this ap-
proximation,

A =

Z �2

��2

Z �1

��1

mmT(1� 1

2
�2
1
u2 � 1

2
�2
2
v2) du dv

(24)

If this integral is evaluated, dropping terms of degree six
or higher in�1 and�2, a diagonal matrix results, with en-
tries

a11 =
4

3
�3
1
�2�

2

1
(25)

a22 =
4

3
�1�

3

2
�2
2

(26)

a33 = 4�1�2 � 2

3
�1�2(�

2

1
�2
1
+ �2

2
�2
2
) (27)

SinceA is diagonal, these are also its eigenvalues, and
the eigenvectors are the two principal directions and the
surface normal. These formulas are approximate for fi-
nite neighborhoods, and become exact in the limit as the
neighborhood size parameters�1 and�2 go to zero.

Following a similar procedure, we can evaluate the in-
tegrals forb andc.

b =

�
0 0

2

3
�1�2(�

2

1
�1 + �2

2
�2)

�T
(28)

c =
1

5
�2
1
�5
1
�2 +

2

9
�1�2�

3

1
�3
2
+

1

5
�2
2
�1�

5

2
(29)

We now have a complete quadricQ. Applying the for-
mula for the optimal vertex position�v = �A�1b, we
find that

�v =

�
0 0 � 1

6
(�1�

2

1
+ �2�

2

2
)

�T
(30)

and its error with respect toQ is

Q(�v) =
4

45
(�2

1
�5
1
�2 + �2

2
�1�

5

2
) (31)

4.2 Theoretical Aspect Ratio

We now know the parameters of the quadric at any point
as a function of the principal curvatures�1 and�2 and the
neighborhood size2�1�2�2. The former are determined
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by the original surface, but the latter are properties of the
neighborhoods. We must eliminate these latter variables
to make a complete analysis.

So we push further and ask: what neighborhood shape
is optimal, and what does this tell us about the quadric
error metric and the shape of triangles in the approxima-
tion? We restrict ourselves to rectangular neighborhoods
oriented parallel to the principal directions. We show that,
in the limit as neighborhood area goes to zero, minimizing
the quadric error metric generates triangles with optimal
aspect ratio.

To find the neighborhood aspect ratio that minimizes
error, we take the expression for minimum quadric er-
ror (31) and reparametrize it in terms ofaspect ratio
� = �1=�2 and mean size� =

p
�1�2. Substituting

�1 = ��1=2 and�2 = ���1=2 yields

Q(�v) =
4

45
�6(�2

1
�2 + �2

2
��2) (32)

Now, let us fix the area by holding the size parameter�
constant, and find the aspect ratio� that minimizesQ(�v).
This occurs when

@Q

@�
(�v) =

4

45
�6(2�2

1
� � 2�2

2
��3) = 0 (33)

Solving for�, we find that minimization of the quadric er-
ror metric yields neighborhoods with limiting aspect ratio

� =

�����2�1
����
1=2

(34)

We can show that the aspect ratio (34) that results from
minimizing the quadric error metric agrees with the opti-
mum determined by Nadler. Becausep(u; v) has the sim-
ple form (16), the Hessian of its third coordinate atp0 is
a diagonal matrix with eigenvalues�1= �1 and�2= �2.
Therefore�i should be proportional toj�ij�1=2, and the
optimal aspect ratio is�1=�2 =

p
j�2=�1j. At points of

positive Gaussian curvature, the aspect ratio “preferred”
by the quadric error metric is the unique optimum; at
points of negative curvature, it is one of the optima.

Since the vertex for each neighborhood is centered
within its neighborhood, the aspect ratio of the approx-
imating triangles is identical to the aspect ratio of the
neighborhood. We have thus shown that, in the limit, min-
imization of the quadric error metric achieves an optimal
triangle aspect ratio. This is our main result.

Note that in approximation theory analysis of bivari-
ate functions, anL2 metric uses distance measured ver-
tically, while for optimal surface approximation, theL2
error metric is generally defined using perpendicular dis-
tance to the surface. The two could thus disagree when ap-
plied to finite neighborhoods, but for infinitesimal neigh-
borhoods and parabolic patches such asp(u; v), these dis-
tance vectors converge. This is what allows us to apply
the bivariate optimality criteria of Nadler to smooth man-
ifolds.

There are two special cases worth noting. Where the
surface is locally flat, both principal curvatures are zero,
and the above formula is undefined, but in this case, any
aspect ratio is optimal. And where one principal curva-
ture is zero and the other is nonzero, the aspect ratio of
triangles will be infinite. (This does not happen in prac-
tice, since such a triangulation would result in an infinite
number of triangles.)

Properties of Minimized Quadric. We can determine
the properties of the quadrics in more detail using the de-
rived neighborhood aspect ratio. We rewrite the dimen-
sions of the parameter space ofF as �1 = �j�2=�1j1=4
and�2 = �j�1=�2j1=4. Substituting these values into (25)
we find that the components ofA for this neighborhood
are

a11 =
4

3
�4j�1j3=2j�2j1=2 (35)

a22 =
4

3
�4j�1j1=2j�2j3=2 (36)

a33 = 4�2 + O(�4) (37)

This confirms our intuition fromx2: the eigenvalues of
A are indeed related to the curvature of the surface, and
the quadrics are elongated in the direction of minimum
curvature.

Similarly, we can compute the optimal position

�v =

�
0 0 � 1

6
�2j�1�2j1=2(s1 + s2)

�T
(38)

wheresi is the signum function

si =

8><
>:
�1 if �i < 0;

0 if �i = 0;

1 if �i > 0:
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and its corresponding error is

Q(�v) =
8

45
�6j�1�2j (39)

Note that, in this case,Q(�v) is purely a function of the
Gaussian curvatureK. Hence, the minimal error is an
intrinsic property of the surface; it depends only on the
metric tensorG.

4.3 Relation to Dupin Indicatrix

Nadler’s optimal triangle aspect ratio is also predicted by
a simple geometric construction. At a point on the original
surface, take the tangent plane and offset it in the normal
direction inward or outward. For a smooth surface and a
small offset, the curve of intersection of the plane with the
original surface will be an ellipse or a hyperbola, and the
aspect ratio of these curves will be the optimal ratio given
in (14). Thus, slicing a surface with a plane parallel to
the tangent gives an approximate indication of the optimal
triangle shape.

More formally, this intersection curve is called the
Dupin indicatrix [15]. The indicatrix for the surface

u

v

r

r1

r2

Figure 4: The Dupin indicatrix about a point with positive
Gaussian curvature.

p(u; v) is a conic in the tangent plane ofp0 which is
1=
pj�nj away fromp0 in any tangent direction. Thus,

its principal axes areri = 1=
p
j�ij, and its aspect ratio

is
p
j�2=�1j. The conic is an ellipse if the principal cur-

vatures have the same sign (Figure 4), and it is a pair of
hyperbolas if they have opposite sign.

5 Empirical Results

The theory above tells us the aspect ratio of triangles in
the infinitesimal limit as we minimize the quadric error

metric over rectangular neighborhoods oriented parallel
to the principal directions. The real quadric-based simpli-
fication algorithm is not this idealized, however. It works
with sums over finite sets of triangles, not integrals; and
somewhat irregular neighborhoods (Figure 7), not perfect
rectangles.

We know from experience that our algorithm is not op-
timal for most real simplification tasks, but we suspect
that as the original models become more finely tessel-
lated, for surfaces with slowly changing curvature, far
from the boundary, the algorithm will approach this the-
oretical limiting behavior. For example, we find that the
eigenvectors of our quadrics point approximately in the
principal directions determined by surface curvature. The
theoretical prediction is least accurate where the surface
curvature is rapidly changing (e.g., near a crease) or near
a boundary. Generally, the eigenvectors for the two small-
est eigenvalues of the quadric matrixA correspond to the
principal directions, and the the eigenvector for the largest
eigenvalue corresponds to the normal.

Figure 5: Original ellipsoid model with 11,272 faces.

Figure 6: Approximation of Figure 5 using 800 faces.

In practice, the neighborhoods are sometimes irregu-
lar in shape. This is due, in part, to the greedy nature of
our algorithm. On each iteration it contracts the edge of
least cost. Adjacent neighborhoods “compete” for edges
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Figure 7: Neighborhoods of original surface correspond-
ing to vertices on the approximation.
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Figure 8: Graph of theoretically optimal aspect ratios vs.
actual aspect ratios. An aspect ratio of 1 means equilat-
eral, and larger values correspond to more stretched tri-
angles. Vertical bars show mean and plus or minus one
standard deviation for each bucket.

to contract. Thus, the neighborhood ofn triangles that
forms around a given vertex is not necessarily the same
as the set ofn triangles whose quadric error at that point
is smallest. Finding global minima in this manner would
probably be much slower than the present algorithm.

Nevertheless, the empirical neighborhoods conform
roughly to theory. Since our algorithm ateach itera-
tion contracts the edge of least error, we would predict
that edges along directions of low curvature will tend to
be contracted first, and neighborhoods will become elon-
gated in the direction of low curvature. This tends to ori-
ent the neighborhoods parallel to the principal directions.
On a smooth surface, neighborhoods are roughly centered
aroundp0 because, for such surfaces, curvature changes
slowly, and the optimal vertex location for a neighbor-
hood is near the center of that neighborhood. It is only
when curvature changes within a neighborhood that the
optimal vertex location moves far off-center.

A good check of our theoretical results is to test on a
smooth, closed surface with fine tessellation, such as the
ellipsoid in Figure 5. A simplified version of the ellipsoid
model is shown in Figure 6, with neighborhoods shown in
Figure 7. Consistent with our prediction, neighborhoods
shown in the figure are typically elongated in the direction
of least curvature. We check the aspect ratios of the trian-
gles of Figure 6 in Figure 8. This shows the optimal aspect
ratios (computed from the principal curvatures of the un-
derlying ellipsoid at the center ofeach triangle) versus the
actual aspect ratios (computed by fitting a tight ellipse to
the triangle, as described). Although we have not proven
convergence of the greedy, quadric-based algorithm to op-
timal aspect ratios, we see that in practice the actual val-
ues track the theoretical values closely for the full range of
aspect ratios. The slight bias toward higher aspect ratios
may be an artifact of our empirical aspect ratio formulas
or of pairwise contraction.

The algorithm is further demonstrated in Figure 9,
which shows a model simplified to 1% of its original size,
and the appropriately stretched triangles that result. This
shows that the algorithm behaves well in regions of both
positive and negative curvature.
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(a) Original (b) Approximation

Figure 9: A 47,904 face brontosaurus model (a) along with a 500 face approximation (b), the latter generated with
quadric-based simplification. Note how the triangles stretch along the neck.
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6 Conclusions

We have taken the quadric error metric from our previ-
ously published quadric-based surface simplification al-
gorithm and analyzed its asymptotic behavior. Using
methods from differential geometry and approximation
theory, we have shown that the quadric error metric is di-
rectly related to surface curvature, and that its minimiza-
tion yields triangulations with optimal aspect ratio in the
limit.

More precisely, we have proven that when used on a
differentiable manifold, in the limit as the areas of the tri-
angles in the original model go to zero and the area of a
rectangular neighborhood goes to zero, minimization of
the quadric error metric generates triangles that have op-
timal aspect ratio in the sense ofL2 geometric error. An
optimal aspect ratio is the square root of the ratio of the
absolute values of principal curvatures of the surface at
the point in question.

While we have not proven that our simplification algo-
rithm yields optimal approximations for real, finite-size
problems, we have shown empirically that our algorithm
follows this theoretical ideal, for smooth, detailed models.

Although we have used differential geometry and ap-
proximation theory to validate our error metric, our sim-
plification algorithm is not limited to differentiable sur-
faces, as those theories generally are. While curvature
in differential geometry is determined by an infinitesimal
neighborhood, with our error metric, as in the real world,
curvature is scale-dependent.

Several areas for future work suggest themselves:

� Use the approach demonstrated in this paper to test
the asymptotic optimality of other simplification al-
gorithms.

� Rigorously prove (or disprove) that quadric-based
simplification yields well-shaped neighborhoods in
the limit, and that the triangles’ size, in addition to
their aspect ratio, is optimal.

� Modify the quadric-based algorithm to bring its em-
pirical behavior closer to the optimal orientation,
size, and aspect ratio. Perhaps greedy edge selection
should be replaced by a more brute-force approach
akin to simulated annealing, when quality is more
important than speed.

� Verify empirically that the results are invariant to the
size and orientation of triangles in the original trian-
gulation.

� Extract curvature information from the error
quadrics and use it in other ways. One could, for
example, extract quadrics that locally fit the surface
(up to the sign of�i).

C++ code for our algorithm is available at
http://www.cs.cmu.edu/�garland/quadrics/ .
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