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Abstract tributes of an object at multiple levels of detail. By reduc-
ing a model’s size, we can accelerate programs that sub-
Many algorithms for reducing the number of triangles isequently process the data, cut storage space and network
a surface model have been proposed, but to date thssedwidth requirements, and decrease the time required
has been little theoretical analysis of the approximations display the model. Natural application areas include
they produce. Previously we described an algorithm tigmputer-aided design, architectural walkthroughs, finite
simplifies polygonal models using a quadric error metrislement methods, scientific visualization, shape acquisi-
This method is fast and produces high quality approxim@en, graphics on the Web, movie special effects, virtual
tions in practice. Here we provide some theory to explaigality, and video games.
why the algorithm works as well as it does. Using meth-
ods from differential geometry and approximation theory, . L , !
we show that in the limit as triangle area goes to zero g‘?t'm"’_‘l Apprommgtlon.. Ideal!y, we wouldlike to f|nq
a differentiable surface, the quadric error is directly r Neoptimal approximationthe triangulated surface with

lated to surface curvature. Also, in this limit, a triangul£ given r!urnber oftrianglest'hat has the least error relative
tion that minimizes the quadric error metric achieves thR the'ongmal model.' We will use th@z measure of ge-
optimal triangle aspect ratio in that it minimizes the ometric error as our ideal error metrlc. Whlle percept.ual
geometric error. This work represents a new theoreti&Al " metrics might be_ more desirable for display applica-
approach for the analysis of simplification algorithms. thns, they are also S|gn|f|cantly hgrder FO analyze. .Even

with a purely geometric error metric, optimal approxima-
Keywords: triangle aspect ratio, curvature, approximaion is not feasible, in general. Computing the optimal
tion theory, anisotropic mesh generation, quadric er@pproximation of a surface with respect to the met-
metric. ric is NP-hard [1]; finding such an optimal approximation

requires time exponential in the number of vertices.

To date, little has been proven about the optimality

1 Introduction of existing surface approximation algorithms. The ex-

isting results are narrow in scope. Some of the few
The simplification of detailed geometric surface modedse polynomial-time algorithms to find approximations to
is important for a number of applications. A typical simheight fields or convex polytopes that are within a fac-
plification algorithm — the type we will focus on in thistor of optimal [1]. For surfaces more general than height
paper — takes a polygonal model as input and produdiedds and convex polytopes, there are simplification al-
an approximation composed of fewer triangles that prgerithms with bounded error (e.g. [4]), but the number of
serves surface shape. Simplification algorithms are @iangles in their approximations are not bounded, so such
important component in the creation of multiresolutioalgorithms are not optimal in a strong sense. The authors
models, models that represent the geometry and otheraaie not aware of any polynomial time algorithms that gen-



erate approximations to general surfaces that are provagnse that as the original mesh becomes finer and finer,
good in both error and number of triangles. the resulting approximation will become more nearly op-
Even simpler versions of the surface approximatid¢imal, subject to suitable assumptions.
problem have only limited theoretical results to date. ForThe remaining sections of the paper are organized as
example, optimal approximation of a sphere by a triafellows. First, we review the quadric-based simplification
gulated surface is related to optimal packingroéqual algorithm, along with relevant concepts from differential
circles on a sphere. Although the latter problem has beggometry and approximation theory. Next, we derive the
studied for decades, solutions are known only for smallquadric error metric for a differentiable manifold, and we
(n < 200 or so) [5]. Little has been proven about optiprove that minimization of the quadric error metric gen-
mality for arbitrary suréces. erates a triangulation with optimal triangle shape, in the
limit. Finally, we check this empirically, and present con-

. . ) ] clusions.
Overview. Previously we described an algorithm for

surface simplification based on iterative edge contraction

and quadric error metrics [10, 11]. This algorithm is fa? Quadric-Based Simplification
and achieves good quality results in practice. Simpli-

fying a manifold surface model with vertices has an
O(nlogn) running time [9]. In this paper, we analyz
its approximation errors.

Given an initial triangulated suate, we want to automat-
'Wa’cally generate an approximation with fewer triangles that
o T . ) : is faithful to the original geometry. Our simplification al-

Our prmc!pal toolg in this anglys,ls are dlfferer}tlal 98 orithm [10, 11] is based on iterative edge contraction,

ometry, which provides tephn;ques for anglyzmg SUY framework used by several others as well [19, 14, 12].
face curvature, and' approxmgﬂon'theory, which proy|d%§/ery edge is assigned a “cost” that is typically meant to
methﬂds fpr arr:alyzw&g appr'oxgnanon err.ors.l AﬁprOX'T?éflect the geometric error introduced into the model as a
t|9n tleorlsrt]s ave et'ermline b@blgl—optlfma shape Oh result of contracting the edge. A greedy approach is used:
triangles when approxmgtmg |var|aFe unctions. T % each iteration, the lowest-cost edge is contracted, and
found that the aspect ratio (Ilength/width) of an ophmajle costs of neighboring edges are updated. An edge con-
triangle is related to the second derivatives of the fungz ion which we denotév;, v;) — v, modifies the sur-

. . . . 1 V7 ’

F|on, €., !ts curvatyre [_16] (5€§3.2 fqr more dgt@l). AS face by unifying two vertices into one, thereby removing
is typpal in apprommaﬂon theory, this analysis is done if}, - \.artex and two faces (see Figure 1). The primary dif-
the I|m!t as triangle area goes.to ZEr0. ) ference between the various contraction-based methods is

In this paper we attempt to interrelate practical surfaggs error metric used to assign costs to edges.
simplification methods from computer graphics with the-

oretical, asymptotic results from approximation theory. ‘

contract

P e—

Specifically, we pose the questions: why does the quadric- |

based algorithm work as well as it does? And how clos .

to optimal are the approximations generated by this algo-

rithm? ] ;
We show that minimization of the quadric error metric Before After

computes curvature information indirectly, and that mini-

mization of this metric yields, in the limit of small trian-Figure 1: Edggv;,v;) is contracted. The darker trian-

gles, for differentiable surfaces, a tmgulation with op- gles become degenerate and are removed.

timal triangle shape. Note that this does not imply that

the quadric-based algorithm yields optimal approxima-

tions for finite problems (practical problems employing a While our algorithm is designed to accommodata-

finite number of triangles). Nevertheless, it validates thaanifold surfaces, for our purpose of analyzing its theo-

the algorithm is theoretically “on the right track” in theetical properties, we will assume that the input surface is




a closed manifold. In other words, every point on the suftnction occurs wher& Q(v) = 2Av+2b = 0. Solving
face has a neighborhood that is homeomorphic to a digkis equation, we find that the optimal position is

We will also assume in this paper that the topology of the

surface is preserved during simplification. v=—A""b (6)
Quadric Error Metric.  Suppose that we are given gnd Its erroris
plane determined by a poiptand a unit normah. The

—\ _1T= _ _3Ta-1
squared distance of any pomto this plane is given by Qv)=bvte=-bA"b+c (7)

(v=p) -n)? =vnn'v - 2(nn'p)'v + pnn'p (1) Quadric Properties. For a given quadric), the level

surface)(v) = ¢ is the set of all points whose error with
This is a quadratic function of. More generally, to effi- respect ta) ise. That is, it is the locus of points to which
ciently compute the weighted sum of squared distancest@ertex can be relocated with constant error. This iso-
a set of planes, we usegaadric error metricof the form  surface is a (potentially degenerate) ellipsoid whose prin-
cipal axes are defined by the eigenvalues and eigenvec-
tors of the matrixA [9]. The ellipsoids are degenerate,
or “open,” when some eigenvalues Af are 0; in other
words, whenA is singular. The equation for finding the

Q= (A,b,c) 3) op'tima'l p'ositiorif corresponds tq find'ing the center of the

ellipsoid isosuriices. When thellgpsoids are degenerate
We call it a quadric error metric because the isosurfacedig®-, A is non-invertible), the isoswates are either infi-
Q(v) are quadric surfaces. This requires 10 coefficierii§e cylinders (one 0 eigenvalue) or pairs of parallel planes
to store the symmetrig x 3 matrix A, the 3-vectob and (two 0 eigenvalues).

Q(v) =vIAv+2blv +¢ (2)

where thequadric( is given by

the scalae.
Every vertexv in the original model has a set of adja-
cent faces( f, ..., fx}. Each facef; has a unit normal

n; that, together with any poinp; in the plane of that
face, determines fundamental quadric

Qi = (Ai, by, ¢;) = (mn, —A;p;, pi'Aip;)  (4)

We define the initial quadri@) associated with the vertex
v to be the weighted sum of these fundamental quadrics

k
Q=) wiQi (5)
i=1

In this paper we use area-weighting, whergs the area Figure 2: Simplified bunny model with a visualization of
of face f;, but in other contexts other weighting schemefe quadrics used for its construction. Only 1.4% of the
may be preferred. The valug(v) is the area-weightedoriginal 70,000 faces remain. Centeredwadeach ver-
sum of squared distances ofto the planes of its neigh-tex is an isosurface of the corresponding quadric (a.k.a.
boring triangles. Note that, since the verterecessarily Riemannian metric tensor).
lies at the intersection of all these planes, the error associ-
ated with every vertex on the original model is 0.

We define the cost of the contractiow;, v;) — v to Figure 2 illustrates the quadric isosaces poduced
be@;(v)+Q;(v) = (Q:+Q;)(v). The minimum of this by the simplification of a bunny model. Notice that the



quadrics characterize the local shape of the surface. &rere(u,v) € R* and the functiong; are of class?.
vertices on creases, such as on the neck and ears, th&/elshall be concerned with the surface in the neighbor-
lipsoids are cigar shaped. They are elongated in the direoeod of a poinp = x(ug, vg).

tion of the crease. In contrast, where the surface is less

curved, such as on the forehead, the quadrics are thin #gflgents. The partial derivatives of

roughly circular, like pancakes. Intuitively, we might con-

clude that the quadrics will be elongated in directions of x1 = x, = dx/0u and x; =x, = dx/dv  (9)

low curvature and thin in directions of high curvature. Igvaluated ab span the tangent plane of the surface at
section 4, we quantify this hypothesis. b sp gent p

p, SO any tangent vectar at p can be written ag =

x1 0u + x5 dv. Consequently, we can parametrize this

Neighborhoods. After repeated edge contractions, thgyngent vector by a direction vector in the 2-D parameter
guadric associated with each vertex of the approximate. ... . _ [5u M]T_ The unit surface normai at the
model is the sum of the fundamental quadrics from a Cféigintp is given by

nected neighborhood of nearby vertices from the origina

model (Figure 7). On smooth surfaces, theseynieor- o= XX (10)
hoods are fairly regular in shape (roughly elliptical, typ- [|x1 X x2]|

ically elongated in the direction of lower curvature), but . .
on more complex surfaces they can be gerrymanderedprovIded thate, xx, 7 0. Note that, by convention, all

Summation of the quadric matrices during edge cofr%J-nCtlonS suqh as, are implicitly evaluated at the point
under consideration.

tractions is equivalent to a neighborhood merge, caus ' .

some fundamental quadrics to be multiply-counted. Thgtrr:]e Ierlgth of a tangent vector can be defined in terms
number of times a given triangle’s fundamental quadricis € matrix
counted in a given neighborhood is equal to the number of
that triangle’s vertices that are inside the neighborhood.
Thus, perimeter faces ar@unted once or twice, while
faces interior to the nghborhood are counted thrice. N&Vith determinany = g11922 — ¢7,. The squared length of
vertices are counted more than three times. In all cagd@ngentvector in unit directianis given by théirst fun-
they are area-weighted. Although it may appear undeglamental forma'Gu. Such a measure, a second degree

able, multiple counting has not been found to be a prdnction of direction, defined for each point on a mani-
lem in practice. fold, is called aRiemannian metric tens¢t5].

g11 Y12
G = whereg;; = x;-x; 11
[921 922] Yis / (11)

Curvature. Geometrically, surface curvature is defined
3 Background in terms of the intersection curve of the surface and a
_ ] . . ) plane passing through the normal and the tangent vector
In this section we review results from differential geomp, the directionu at that point. Thenormal curvatureof
etry, approximation theory, and mesh generation that yy@ surface in the direction is then the reciprocal of the

make use of in section 4. radius of the osculating circle at that point. Curvatures
can be positive or negative depending on the sign of the
3.1 Differential Geometry normal vector. Zero curvature means the surface is flat (in

. ) i a particular direction).
We will employ the theory of local differential geometry 'a|gebraically, curvature can be quantified in terms of
[15, 2, 13] to analyze the mathematical properties of the matrix

guadric error metric.

A smooth surface patch is defined by B — [bn bu]
b21 b22

x = x(u,v) = [fi(u,v) fa(u,v) f3(u,v)]"  (8) (12)

Wherebij =N-X;; = —N; -X;.



The change in the normal vectarin the unit directiona, Nadler thus found that an optimal triangle’s aspect ratio

also known as theecond fundamental forris u'Bu. is
Together, the two fundamental forms allow one to ex- 1/2
press the normal curvatuks, in the directiom as _ A (14)
u'Bu (13) M
Kp = ———
u'Gu where{\; } are the eigenvalues of the Hessian. The Hes-

Unless the curvature is equal in all directions, there muan of a functiory (v, v) is the matrix

be a directione; in which the normal curvature reaches

a minimum and a directioa, in which it reaches a max- H— [fuu fuv:| (15)
imum. These are callegrincipal directions The corre- Jou  fou

spondingprincipal curvaturesk;, x» at pointp are the ) i i
eigenvalues of the Weingarten mep ' B. Whendet H > 0, the aspect ratio of (14) is the unique
optimum for all L, norms withp > 1 [7, 18]. This case

32 A . ion Th coincides with a positive Gaussian curvature, if we regard
) pproximation Theory f as a surface in 3-D. Whetet H < 0, the L;—optimal
Approximation theory analyzes the errors of function agspect ratio is not unique; there is a one-parameter fam-
proximation. When working with surfaces, one genelly of solutions generated by stretching (14) along one of
ally studies the limit as the areas of the approximatifige directions of zero curvature [16, eqn. (3)]. The—
elements (in our case, triangles) vanish, since it is muehtimal aspect ratios differ from (14) by a small factor
easier to prove properties of approximations for the linif]-
than for finite approximations. To ensure that these limitsLong, thin “sliver” triangles can be bad in certain con-
are defined, we assume that the function is twice differd@xts; for instance, they can lead to large condition num-
tiable. bers in the matrices used for certain finite element simula-
Researchers have studied the effect of triangle size dig@s. Equilateral triangles are desirable in such contexts.
shape on approximations to a bivariate function or heigdt for our goal, deriving an approximation with minimal
field f(u,v). We will quantify error using the., met- geometric error, slivers can be optimal.
ric, which is the square root of the integral of the squaredWe defineoptimal triangulationto be a triangulation
difference between two functions. Under this metric, oiteat conforms to the above law, in the limit as the number
can ask: what triangulation with a given number of triaof triangles goes to infinity and their areas go to zero.
gles minimizes the error of piecewise linear approxima-
tion? The asymptotic answer, dlscovergd 'by Nadler, ;53 Mesh Generation
that as the number of triangles goes to infinity, an opti-
mal triangles’ orientation is given by the eigenvectors @fvo dimensional mesh generation is the subdivision of
the Hessian of the function at each point, and their sizedrp-D domain into triangles or quadrilaterals. In many
each principal direction is given by the reciprocal squaggses, meshes are used for finite element analysis, as
root of the absolute value of the corresponding eigenvainethe solution of partial differential equations. Adap-
[16]. tive meshing techniques alternate solution of a system of
equations with re-meshing of the domain. Some of these
Aspect Ratio. Theaspect ratioof a rectangle is simply methods strive for optimal triangulations during remesh-
its width divided by its height. The aspect ratio of a tring using the Hessian of an approximate solution function
angle is a bit more complex. It can be defined in variots control triangle size and shape [17, 3].
ways, most nearly equivalent. We define the aspect ratioThe intentional generation of stretched triangles is
of a triangle by finding the ellipse of least area through tlealled anisotropic mesh generatiof20]. This is often
three vertices, and take the ratio of major to minor axefone using the Hessian to construct a Riemannian metric
The aspect ratio of an equilateral triangle is thus 1. tensor that gives the desired edge length as a function of



direction. A mesh generation algorithm yielding asymphe principal directions gbg, and let, , k2 be the corre-
totically optimally stretched triangles in this manner wagponding principal curvatures. tfy is an umbilic point
given by D'Azevedo [6], but his method is restricted téi.e., x,, is equal in all directions), it is sufficient to pick
structured meshes and a very small space of surfaces (o arbitrary, orthogonal “principal” directions. In the co-
tex degree 6 and zero Riemann-Christoffel tensor eveprdinate frame:y, es, ny, we can approximate the neigh-
where). borhood of M aroundp, to second degree by a surface

Mesh generation methods have been employed to gpetch [15] of the form
ate simplification algorithms by appropriate definition of
the desired edge length function. Frey used numerical
estimates of surface curvature to construct an isotropic
Riemannian metric tensor, and then used this to ¢
trol a mesh generator [8]. This method did not gener
anisotropic meshes, however.

Our quadric error metric can be regarded as
anisotropic Riemannian metric tensor, and it is applicaq
to unstructured meshes and general surfaces.

1 T
p(u,v) =[u v §(l~f1u2 + K207)] (16)

Sfhis can be either an elliptical or hyperbolic paraboloid.
a}lf‘:erepo = p(0,0) and the axesu, v) coincide with the
rincipal axese;, e2. Such a coordinate frame exists for
Hy point on our manifold. Use of this frame simplifies
e derivation substantially.

4  Analysis of Quadric Metric

We now relate our quadric error metric to the optimal tri-_| |
angulation results by analyzing its properties in the limit

as the areas of the triangles go to zero. More precisely,

we imagine a case of a twice-differentiable manifold from \D(Uy

which original models can be constructed by tessellating

it with specified edge lengths. There will be two limit pro-.. o

cesses.p The first I?mit W?” drive the number of trianrg)jle':Igure 3 Local par.ametnzatllon .Of the surface about

of the original model to infinity while driving their areas .he neighborhood' is the pr.OjeC'[IOH of a rectangulgr re-
to zero. We then sum the fundamental quadrics Wm,ﬁion ofthe'parametgr domain onto the surface. This patch
a neighborhood around a surface point. In the limit & surface is approximated (v, v).

original triangle size goes to zero, the sum becomes an
integral. This yields a formula for the infinitesimal error

For this surface, the matrix of the firsatridamental

guadric as a function of surface curvature and neighb%Fm atp is

hood shape. The second limit will drive the area of these P

neighborhoods to zero. 1+ k2u?  KyKouv 5 5 5 o

We prove that, in these limits, the quadric error is mir= = [ kikouv 1+ k2v? g =1+ rju” +r3v

imized by triangulations with optimal aspect ratio. We (17)

also derive a quantitative relationship between the error

quadrics and surface curvature. and the unit surface normal ia = m/,/g, writ-
ten in terms of T'[he non-unit normah = p;xps =

4.1 Theoretical Quadric Error Metric [~#1u —rov 1] Itis easy to verify that ap = po,

the matrixG~'B has eigenvalues; andxs.
In order to analyze the quadric error metric, we considerFor the sake of simplicity, let us assume that the small
its behavior on a differentiable manifold defined by a neighborhood”” around the poinp, (Figure 3) has the
patchx. Suppose that we are given a point of inteest rectangular parameter domairy; < u < €1, —es <
on M with surface normah, (Figure 3). Lete;,es be v < e2. An elliptical domain could also be used, and it



would yield identical results to first order. We will leaven the limit of infinitesimal neighborhoods, the fourth and
the size and aspect ratio of this rectangle unspecified fagher degree terms become negligible. Using this ap-
now; later we will determine the values that minimize thgroximation,
guadric error metric. .

Every pointp in the vicinity of p; has a unique tan- A — / mm'(1 — l,ﬁiﬁ — 15302) du dv
gent plane from which we can construct a quadric. Just —ezJ—e; 2 2
as a vertex accumulates a sum of quadrics during simpli- (24)
fication, we shall consider the result of the pojnt ac-
cumulating the fundamental quadrics of all infinitesim
triangles inF'. We won't attempt to simulate multiple-

éfl this integral is evaluated, dropping terms of degree six
or higher ine; ande,, a diagonal matrix results, with en-

counting; its effect on this limit process is negligible. tries
In the limit as the triangles of the original model go to _4d5 25
zero area, the sum of area-weighted fundamental quadrics i = ek (25)
of the infinitesimal triangles given by (4) and (5) becomes _4 5, (26)
a surface integral oveF. The quadric at poinpo will @22 = 5€168s
therefore have components 2
P ass = dereg — 36162(6%143% + 6%;{%) (27)
_ T . o
A= // nn dA (18) SinceA is diagonal, these are also its eigenvalues, and
F the eigenvectors are the two principal directions and the
face normal. These formulas are approximate for fi-
b= [/ —nn'pdA 19) Surace ; 1t
// nwp (19) nite neighborhoods, and become exact in the limit as the
F

neighborhood size parametessande» go to zero.
. // P’ dA (20)  Following a similar procedure, we can evaluate the in-
L tegrals forb andec.

-
yvhere integration of matrices and vectors is defined by b=10o0 26162(6%1 + k) (28)
integrating each scalar cqonent separately. 3
Let us focus on the matriA. Making the substitutions 1, 2 33 1 o 5 29
dA =/ dudvandn = m/./g, it simplifies to = pRiGiE + gRimE6 + prae  (29)
mm’ We now have a complete quadid: Applying the for-
A= / Vi dudv (21) mula for the optimal vertex position = —A~'b, we
g find that
The matrix . T
K207 Riksuy  —kyu v=100 — 6(/@16% + Ko€l) (30)
mm' = | KkiKouv ﬁgvz —KaU (22) . . )
kU ko 1 and its error with respect 1@ is
. . . . . 4
is easy to integrate by itself, but not witlfy in the de- Q(v) = E( 2%y + Kier€5) (31)

nominator. To tackle this problem, we use the Taylor se-

rles approximation 4.2 Theoretical Aspect Ratio

1 1-— %nfuz — %n%vz + O(u* + u?v? + v?) We now know the parameters of the quadric at any point
va as a function of the principal curvatures and«x- and the

(23) neighborhood siz@¢; x 2¢5. The former are determined



by the original surface, but the latter are properties of theNote that in approximation theory analysis of bivari-
neighborhoods. We must eliminate these latter variabblge functions, an.. metric uses distance measured ver-
to make a complete analysis. tically, while for optimal surface approximation, the

So we push further and ask: what neighborhood shagreor metric is generally defined using perpendicular dis-
is optimal, and what does this tell us about the quadtence to the surface. The two could thus disagree when ap-
error metric and the shape of triangles in the approximalied to finite neighborhoods, but for infinitesimal neigh-
tion? We restrict ourselves to rectangular neighborhodatsrhoods and parabolic patches sucp@s v), these dis-
oriented parallel to the principal directions. We show thagnce vectors converge. This is what allows us to apply
in the limitas neighborhood area goes to zero, minimizitige bivariate optimality criteria of Nadler to smooth man-
the quadric error metric generates triangles with optirmigdlds.
aspect ratio. There are two special cases worth noting. Where the

To find the neighborhood aspect ratio that minimizesirface is locally flat, both principal curvatures are zero,
error, we take the expression for minimum quadric esnd the above formula is undefined, but in this case, any
ror (31) and reparametrize it in terms abpect ratio aspect ratio is optimal. And where one principal curva-
p = €1/e; and mean size = ,/c¢e;.  Substituting ture is zero and the other is nonzero, the aspect ratio of

€1 = ep'/? andey, = ep~ /2 yields triangles will be infinite. (This does not happen in prac-
4 tice, since such a triangulation would result in an infinite
Q) = E?(nfpz + k3p77) (32) number of triangles.)

Now, let us fix the area by holding the size parameterProperties of Minimized Quadric.
constant, and find the aspect ratithat minimizexQ(v).
This occurs when

We can determine
the properties of the quadrics in more detail using the de-
rived neighborhood aspect ratio. We rewrite the dimen-
0Q, . 4 4. 0 3y sions of the parameter space Bfase; = ¢|ky/r|"/*
3, V) = g5¢ (2mip —2n3p77) = 0 (33) ande; = ¢|ry1/ko|'/*. Substituting these values into (25)

Jp 45
Solving forp, we find that minimization of the quadric er-'¢ find that the components @ for this neighborhood

ror metric yields neighborhoods with limiting aspect ratio

4
g |12 an1 = §€4|/€1|3/2|/€2|1/2 (35)

p= P (34) 4
1 oy = §€4|/€1|1/2|/§2|3/2 (36)

We can show that the aspect ratio (34) that results from . 4
minimizing the quadric error metric agrees with the opti- agg = 4e” + O(€") (37)

mum determined by Nadler. Becausg:, v) has the sim- i oo nirms our intuition fron§2: the eigenvalues of

ple.form (16), the Hgssu’gn of its third coordinatepatis A are indeed related to the curvature of the surface, and

a diagonal matrix with eigenvalueg = £1 andAz = k2. e quadrics are elongated in the direction of minimum

Thereforee; should be proportional tp:;|~'/2, and the curvature

optimal aspect ratio isy/ca = v/|s2/#%1]. At points of Similarly, we can compute the optimal position

positive Gaussian curvature, the aspect ratio “preferred”

by the quadric error metric is the unique optimum; at - 1, 1/ T

points of negative curvature, it is one of the optima. V=100 — e |k1k2| = (s1 + 52) (38)
Since the vertex for each mgiborhood is centered

within its neighborhood, the aspect ratio of the approyheres; is the signum function

imating triangles is identical to the aspect ratio of the

neighborhood. We have thus shown that, in the limit, min- -1 ?f ki <0,
imization of the quadric error metric achieves an optimal s5i =40 ifk; =0,
triangle aspect ratio. This is our main result. 1 if k; > 0.



and its corresponding error is metric over rectangular neighborhoods oriented parallel
3 to the principal directions. The real quadric-based simpli-
Qv) = Ee6|/-f1/-c2| (39) fication algorithm is not this idealized, however. It works
with sums over finite sets of triangles, not integrals; and
Note that, in this casel(v) is purely a function of the somewhat irregular neighborhoods (Figure 7), not perfect
Gaussian curvaturé&’. Hence, the minimal error is anrectangles.
intrinsic property of the surface; it depends only on the We know from experience that our algorithm is not op-

metric tensoiG. timal for most real simplification tasks, but we suspect
that as the original models become more finely tessel-
4.3 Relation to Dupin Indicatrix lated, for surfaces with slowly changing curvature, far

from the boundary, the algorithm will approach this the-

Nadler's optimal triangle aspect ratio is also predicted yetical limiting behavior. For example, we find that the
a simple geometric construction. At a pointon the origingjgenvectors of our quadrics point approximately in the
surface, take the tangent plane and offset it in the normgincipal directions determined by surface curvature. The
direction inward or outward. For a smooth surface andtgeoretical prediction is least accurate where the surface
small Oﬁset, the curve of intersection of the plane with thﬁjrvature is rap|d|y Changing (e_g_, near a Crease) or near
original surface will be an ellipse or a hyperbola, and thenoundary. Generally, the eigenvectors for the two small-
aSpeCt ratio of these curves will be the Optlmal ratio glV%t eigenva|ues of the quadric matA'Xcorrespond to the
in (14). Thus, slicing a surface with a plane parallel tgrincipal directions, and the the eigenvector for the largest
the tangent gives an approximate indication of the optim@henvalue corresponds to the normal.
triangle shape.

More formally, this intersection curve is called the
Dupin indicatrix [15]. The indicatrix for the surface
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Figure 4: The Dupin indicatrix about a point with positive
Gaussian curvature.

p(u,v) is a conic in the tangent plane @f, which is

1/+/]kn| away fromp, in any tangent direction. Thus,
its principal axes are; = 1/+/|«;|, and its aspect ratio
is \/|xk2/%1|. The conic is an ellipse if the principal cur-

vatures have the same sign (Figure 4), and it is a pair of o ] .
hyperbolas if they have opposite sign. Figure 6: Approximation of Figure 5 using 800 faces.

5 Empirical Results In practice, the neighborhoods are sometimes irregu-
lar in shape. This is due, in part, to the greedy nature of

The theory above tells us the aspect ratio of trianglesdar algorithm. On each iteration it contracts the edge of

the infinitesimal limit as we minimize the quadric erroleast cost. Adjacent ngihhborhoods “compete” for edges
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Figure 7: Neighborhoods of original surface correspong
ing to vertices on the approximation.
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to contract. Thus, the neighborhoodftriangles that
forms around a given vertex is noécessarily the same
as the set of: triangles whose quadric error at that point
is smallest. Finding global minima in this manner would
probably be much slower than the present algorithm.

Nevertheless, the empirical neighborhoods conform
roughly to theory. Since our algorithm aach itera-
tion contracts the edge of least error, we would predict
that edges along directions of low curvature will tend to
be contracted first, and neighborhoods will become elon-
ated in the direction of low curvature. This tends to ori-
nt the neighborhoods parallel to the principal directions.
On a smooth surface, iiborhoods are roughly centered
aroundp, because, for such surfaces, curvature changes
slowly, and the optimal vertex location for a neighbor-
hood is near the center of that neighborhood. It is only
when curvature changes within a neighborhood that the
optimal vertex location moves far off-center.

A good check of our theoretical results is to test on a
smooth, closed surface with fine tessellation, such as the
ellipsoid in Figure 5. A simplified version of the ellipsoid
model is shown in Figure 6, with neighborhoods shown in
Figure 7. Consistent with our prediction, neighborhoods
shown in the figure are typically elongated in the direction
of least curvature. We check the aspect ratios of the trian-
gles of Figure 6 in Figure 8. This shows the optimal aspect
ratios (computed from the principal curvatures of the un-
derlying ellipsoid at the center efch triangle) versus the
actual aspect ratios (computed by fitting a tight ellipse to
the triangle, as described). Although we have not proven
convergence of the greedy, quadric-based algorithm to op-
timal aspect ratios, we see that in practice the actual val-
ues track the theoretical values closely for the full range of
aspect ratios. The slight bias toward higher aspect ratios
may be an artifact of our empirical aspect ratio formulas

Figure 8: Graph of theoretically optimal aspect ratios V&I Of pairwise contraction.
actual aspect ratios. An aspect ratio of 1 means equilatThe algorithm is further demonstrated in Figure 9,
eral, and larger values correspond to more stretched {iyich shows a model simplified to 1% of its original size,

angles. Vertical bars show mean and plus or minus 05§ the appropriately stretched triangles that result. This
standard deviation for each bucket.

shows that the algorithm behaves well in regions of both
positive and negative curvature.

10



(a) Original (b) Approximation

Figure 9: A 47,904 face brontosaurus model (a) along with a 500 face approximation (b), the latter generated with
guadric-based simplification. Note how the triangles stretch along the neck.

11



6 Conclusions ¢ Verify empirically that the results are invariant to the
size and orientation of triangles in the original trian-

We have taken the quadric error metric from our previ-  gulation.

ously published quadric-based surface simplification al-

gorithm and analyzed its asymptotic behavior. Using® EXxtract curvature information from the error

methods from differential geometry and approximation quadrics and use it in other ways. One could, for

theory, we have shown that the quadric error metric is di- €xample, extract quadrics that locally fit the surface

rectly related to surface curvature, and that its minimiza-  (up to the sign of;).

tion yields triangulations with optimal aspect ratio in the

limit. ' "
More precisely, we have proven that when used Orpgp.//www.cs.cmu.edu/

differentiable manifold, in the limit as the areas of the tri-

angles in the o'r|g|nal model go to zero and. the.are'a of751 Acknowledgments

rectangular neighborhood goes to zero, minimization of
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optimal aspect ratio is the square root of the ratio of thg. 5 and the Schiumberger Foundation and NSF grants

absolute values of principal curvatures of the surface 8tr_9357763 and CCR-9505472 for funding
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