
y

Proceedings of DETC’01
2001 ASME Design Engineering Technical Conferences

September 9-12, 2001, Pittsburgh, Pennsylvania, USA

DETC2001/DAC-21068

FINDING AND REMOVING FEATURES FROM POLYHEDRA

Jos é Ribelles
Dep. de Lenguajes y Sistemas Informáticos

Universitat Jaume I
Campus de Riu Sec, E-12080

Castellón, Spain
http://nuvol.uji.es/∼ribelles/

Paul S. Heckbert ∗

Computer Science Dept.
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3891
http://www.cs.cmu.edu/∼ph/

Michael Garland
Dept. of Computer Science

University of Illinois
1304 West Springfield Ave

Urbana, Illinois 61801
http://graphics.cs.uiuc.edu/∼garland/

Tom Stahovich
Dept. of Mechanical Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

http://www.me.cmu.edu/faculty1/stahovich/

Vinit Srivastava
Dept. of Mechanical Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

vinit@andrew.cmu.edu

ABSTRACT
Geometric models of solids often contain small features that

we would like to isolate and remove. Examples include bumps,
holes, tabs, notches, and decorations. Feature removal can be de-
sirable for numerous reasons, including economical meshing and
finite element simulation, analysis of feature purpose, and com-
pact shape representation. In this work, an algorithm is presented
that inputs a polyhedral solid, identifies and ranks its candidate
features, and outputs solid models of the feature and the origi-
nal object with the feature removed. Ranking permits a user or
higher level software to quickly find the most desirable features
for the task at hand. Features are defined in terms of portions
of the surface that are classified differently from the rest of the
solid’s surface with respect to one or more split planes. This ap-
proach to feature definition is more general than many previous
methods, and generalizes naturally to quadric surfaces and other
implicit surfaces.
Keywords: feature removal, defeaturing, surface simplification,
hole filling

∗Address all correspondence to this author.

1 Introduction
Most geometric shapes have features whose removal can fa-

cilitate mathematical modeling. For example, removal of bolt
heads, rivets, holes, or tabs from a solid model can facilitate finite
element analysis. Their removal will often cause negligible error
to a structural analysis, for example, while reducing the number
of mesh elements and speeding the analysis significantly. Feature
identification and removal is also useful in reverse engineering.

Both for design conceptualization and for manufacturing,
it is commonplace to represent solid objects using construc-
tive solid geometry (CSG), describing complex shapes as nested
unions or differences of a big “body” part and a small “feature”
part.

If we are given a boundary representation for a detailed solid
shape, and no CSG model is not available, often we would like to
find its features and to derive a CSG representation. Such a CSG
model is not unique, and often a user prefers to be “in the loop”
in the search for a good CSG model, since human designers have
application-specific definitions of the features of interest.

In this paper we present a general technique for feature iden-
tification and removal that is applicable to polyhedral objects and
is amenable to interactive applications.

1 Copyright  2001 by ASME



2 Background
When describing or analyzing shapes, it is quite natural for

us to conceive of them as some base shape together with some
set of smaller features which modulate the underlying shape. For
instance, most users would probably describe the object in Figure
3 as a box with a box-shaped protrusion on top of it. For this
reason, and because it often simplifies automated analysis, there
has been significant interest over the years in automatic methods
for segmenting and identifying individual features from object
models.

Feature extraction is the problem of particular concern for
us. This is the process by which features are separated from the
rest of the model. A related problem is feature classification,
which is concerned with classifying the resulting features based
on their form into protrusions, holes, slots, and so on. We will
not address the problem of classification, although it might be a
post-process operating on the results of feature extraction.

2.1 Representation
We will assume that we are given a 2-manifold1 M that is

composed of a set of verticesV and a set of polygonal faces
F. For the sake of simplicity, and without loss of generality, we
will assume that the set of facesF consists solely of triangles.
While in generalM may be an open surface (i.e. a manifold with
boundary) we will focus on the case whereM is a closed surface,
defining the boundary of a solid model. To avoid ambiguity in
our discussion, we will use the termfacet to refer to any maxi-
mal, connected planar region of the surface. Thus, a cube always
has exactly 6 facets, but may be represented using any number of
triangular faces. It is important to keep in mind that essentially
all prior methods discussed in the next section assume that the
surface is decomposed into faces which are identical to its facets,
thus making the two terms interchangeable.

A common construction used in feature extraction, and one
which we will use in later sections, is thedual graph, or edge–
face graph, of the surfaceM. This dual is constructed by creating
a node for every face ofM and connecting every pair of nodes
whose corresponding faces are adjacent on the surface.

2.2 Feature Extraction
Before reviewing possible methods for performing feature

extraction, we must consider how to define what we mean by a
“feature”. An often cited definition, due to Pratt and Wilson [12],
is that “a feature is a region of interest on the surface of a part”.
While quite vague, and hence almost universally applicable, this
definition does not help us in forming an operational definition
for use in a computational process. Instead, we propose the fol-
lowing general definition: A feature is a connected region of a

1Recall that a manifold is a surface all of whose points have a neighborhood
which is homeomorphic to a disk (or half-disk in the case of manifolds with
boundary).

surface that can be easily separated from the rest of the surface.
This definition fits well with many of the actual algorithms that
have been developed to perform feature extraction. We will now
review the feature extraction methods which are most relevant to
our work. More extensive surveys of related methods are avail-
able elsewhere [15].

2.3 Volume Decomposition
Kim [11] generates volume features using a convex decom-

position method called the alternating sum of volumes with par-
titioning (ASVP). This method is an extension of an earlier ap-
proach called alternating sum of volumes (ASV) decomposition
[14]. The procedure is iterative. In each iteration, the polyhe-
dron is subtracted from its convex hull, using a reguralized dif-
ference operator. The result is taken as the polyhedron for the
next iteration. When the process converges, the resulting shape
is a feature. Sometimes the iterations do not converge, and the
polyhedron is partitioned into pieces, each of which is then de-
composed with ASV and further partitioning, if necessary. Their
method is best at isolating indented features. The method we
describe works well for both indented and protruding features.

Sakurai [13] presents an approach for identifying form fea-
tures by decomposing a polyhedron into maximal convex cells
(MCCs). A polyhedron can be decomposed into convex cells by
intersecting the polyhedron with the half spaces of its faces hav-
ing concave edges. A maximal convex cell is a convex cell whose
half spaces are those of the polyhedron and that is not totally in-
cluded by any other such cell. Individual features are obtained
by subtracting various MCCs from each other. Currently this
method constructs only convex features, however, Sakurai, sug-
gests that it is possible to produce concave features by consider-
ing combinations of MCCs rather than differences. Our approach
produces both convex and concave features.

The primary difference between Sakurai’s approach and
ours, is the type of features produced. Sakurai’s approach pro-
duces features that are decompositions of the volume, and thus
the approach does not directly identify negative features such as
pockets. To identify negative features, it is first first necessary to
select a shape for the raw material from which the part is made.
A delta volume is obtained by subtracting the part from the raw
material. Negative features are then identified by decomposing
the delta volume. Our approach directly identifies both positive
and negative features. Furthermore, identifying negative features
with our method does not require a delta volume, but instead ex-
isting part faces are used to define the volumes of the features.

2.4 Loop-Based Methods
One common approach to feature extraction is to select a set

of one or more edge loops which separate features from the base
shape. Selection of these separating loops may be based on some
simple criterion, such as requiring that they be composed solely

2 Copyright  2001 by ASME



of concave edges. Other more complex criteria have also been
proposed.

Gadh and Prinz [4, 6, 5] describe a technique that recognizes
feature by identifying loops consisting entirely of “positive” or
entirely of “negative” edges. The positive edges are obtained
by viewing the solid from a variety of viewing directions and
identifying those edges that are adjacent to both a visible and a
hidden face (i.e., convex edges). The negative edges are obtained
by performing the same operations on the complement of the
solid. They define five fundamental feature classes on the basis
of the loops that are identified. For example, a blind depression
is defined by a single positive loop, while a through depression
has two positive loops. Because features are defined byclosed
loops, the approach cannot identify certain classes of features.
For example, if a small cube is on top of a large cube, and the
two cubes have a vertical face in common, the small cube will
not be identified as a protrusion. There is no closed loop at the
base because there is no edge separating the two cubes along the
common face.

Lu et. al. [16] extend this approach to handle certain fea-
tures that do not have closed loops of positive or negative edges.
They allow a loop to simultaneously contain convex, concave,
hybrid, and neural edges. Hybrid edges are convex in some re-
gions and concave in others. Neutral edges are created by extend-
ing parts faces and intersecting them with other faces. There are
some restrictions on the allowable combinations of edge types
within a single loop, thus there are likely to be features that our
method will find and their method will not. Furthermore, there
approach for filling the hole in the surface that results when a
feature removed is less general than ours.

2.5 Connected Components Methods

As an alternative, others have suggested partitioning the set
of faces directly into disjoint connected subsets, which we will
termclusters. Separating loops are thus implicitly defined by the
boundaries between adjacent clusters, and we are thus freed from
tracking their many interrelationships. Other authors work with
thedual graph– the graph of faces and their adjacencies. De Flo-
riani [3] proposed cutting the dual graph into biconnected and
triconnected components [2], which has the effect of partitioning
the set of faces into clusters. Note that this is a purely topolog-
ical approach; the geometry of the surface is merely implicit in
its decomposition into planar faces. Gavankar and Henderson [9]
explore heuristics that attempt to accelerate the decomposition
into biconnected components. These methods can isolate a given
feature as a single cluster provided that it meets the base shape
in only 1 or 2 faces. Features with higher degrees of connectivity
cannot be extracted without using additional methods.

2.6 Other Methods
In the last decade several methods, surveyed in detail else-

where [1, 7, 10], have been developed for simplifying polygo-
nal surfaces. When given a triangulated surface, these simplifi-
cation systems attempt to produce an approximation containing
fewer triangles which is nevertheless as similar to the original
surface as possible. However, existing simplification methods
are not suitable for the task of feature extraction. Since preserv-
ing surface shape is generally their primary goal, they tend to
approximate rather than cleanly remove features. More impor-
tantly, while they may produce a resulting surface with some set
of features (more or less) removed, they do not provide any rep-
resentation of these removed features.

In the following sections we present a new algorithm for fea-
ture extraction. It combines an emphasis on face partitioning,
thus avoiding some of the shortcomings of loop-based methods,
with geometric separators, thus being sensitive to the object’s
shape rather than merely its connectivity.

3 Feature Removal
Our approach to feature definition is explained first intu-

itively, in terms of simple examples, and then presented more
precisely.

3.1 Feature Removal Examples
In this work, we define a “feature” of a polyhedral solid us-

ing a classification of space relative to one or more split planes.
A single oriented plane separates space into three regions: IN,
ON, and OUT corresponding to inside relative to the plane, on
the plane, and outside, respectively. Figure 1 shows how a two-
dimensional shape can be decomposed, using a split line, into
the union of a simpler “body” and a feature. We draw the ON
region with exaggerated thickness for clarity. Note that, in this
case, all of the feature edges are OUT, and all of the body edges
are classified as IN or ON.

This first approach to feature definition has limitations, how-
ever. Many features of interest cannot be cut off with a single line
or plane, (see figure 2a, for example). More troubling, if the fea-
ture is a pit and not a bump, both the feature and body polygons
are classified as IN, so splitting and classification alone are not
sufficient to identify such a feature.

These difficulties are easily overcome, however. The use of
multiple split planes permits features on edges and corners to be
defined. And to isolate indentated features, we use adjacency
information. Both of these generalizations are illustrated in the
two-dimensional example of figure 2. We describe the algorithm
in detail later in the paper; for now we concentrate on intuition.
Here, the clearest feature is the small rectangle that has been sub-
tracted from the bigger rectangle (there are others, but let’s con-
centrate on this one for now). This feature can be defined by

3 Copyright  2001 by ASME



b c

ON

IN

feature

split line

a

body

OUT

Figure 1. Simple example of splitting for feature removal: a small rect-

angular feature on a bigger rectangle. a) original object, b) classified by

one split line, c) feature and body exploded.

feature

OUT
a b

sp
lit

 li
ne

 2

OUT

ON IN

IN

ON

c d

feature

3

2

1

4

body

6
5

split line 1

1,2

6

3

4,5

ON,IN

IN,ON

IN,IN

IN,IN

Figure 2. Removal of a more complex feature in 2-D: A small rectangular

feature subtracted from a big rectangle. a) original, b) classified by two

split lines, c) cluster graph, showing the set of edges stored with each

node and its class label, d) feature and body exploded.

splitting with the two lines defined by edges 3 and 6. This clas-
sifies edges 1, 2, 4, and 5 as (IN, IN) – (IN with respect to both
line 1 and line 2). Edge 3 is (ON, IN) and edge 6 is (IN, ON).
Now we introduce the central data structure of our method. If we
collect all edges that are classified identically and also adjacent
into a cluster, we get thecluster graphof Figure 2c. Each node
stores a set of edges and a class label. Edges 1 and 2 form a clus-
ter because they are both (IN, IN), butnone of their neighbors
(edges 6 and 3) are, and similarly for edges 4 and 5.

Note that the cluster graph combines geometric classifica-
tion information and topological adjacency information. Neither
of these two types of information is by itself sufficient to isolate
the feature, but their combination is.

Every node of the cluster graph defines a potential feature
(some invalid). In this example, the feature we have chosen cor-
responds to the node labeled “4,5”. Solid models of the feature
and body can be built using the two feature edges (4 and 5) and
the two split lines (3 and 6).

A simple three-dimensional example is shown in figure 3.
The small box feature on top of the larger box is extracted by

Figure 3. Simple three-dimensional feature showing removal of a small

box feature from a larger box. Left: original object. Right: feature and

body exploded.

splitting with a single plane.

3.2 Feature Removal Method
More generally, our approach to feature removal uses the

following steps:

input: triangulated surface model of a bounded solid polyhe-
dron.

1. splitting the original solid withn chosen split planes, subdi-
viding any triangles that are split by a plane;

2. classifyingeach triangle as IN, ON, or OUT with respect to
each split plane;

3. clustering adjacent, identically classified triangles to build
a cluster graph;

4. regarding eachnode in this graph which is not ON with re-
spect to any of the split planes as a potential feature; and

5. hole filling to build solid models of the body and feature.

output: triangulated surface models of a solid feature and solid
body and the Boolean operator (union or difference) to combine
them.

We elaborate on each of these steps in the followingsections.
An advantage of this approach to feature definition is that it

generalizes naturally to solid models built by constructive solid
geometry from implicit surface primitives such as quadric sur-
faces, toroids, and other algebraic surfaces. The basic operations
required are splitting of one surface by another, point classifica-
tion queries, and adjacency tests. These are already supported in
many CSG modeling systems.

Splitting. To simplify classification, each triangle that inter-
sects a split plane is split (figure 4). Doing so permits each tri-
angle of the surface model to be classified as IN, ON, or OUT
with respect to each plane. Splitting changes the surface mesh,
but not the solid.

4 Copyright  2001 by ASME



Figure 4. When an object is split with a plane (shown transparent), tri-

angles are subdivided so that each triangle can be classified as IN, ON,

or OUT with respect to that plane. Left: before split, right: after split.

Classifying. Once the model has been split,each triangle is
classified with respect to the split planes. The three classes are
coded using two bits per triangle, per plane. For example, 00=IN,
01=ON, 10=OUT. Thus, the classification with respect to up to
16 planes can be stored in a 32 bit word that is stored with the
triangle. Typically, we will isolate features using five or fewer
planes, so 32 bits is plenty.

Clustering. Once the model has been classified, the cluster
graph is constructed (e.g. Figure 1c). The nodes of the cluster
graph correspond to adjacent, identically-classified groups of tri-
angles, and the links correspond to the adjacencies between these
groups. This graph is constructed starting from a dual graph of
the triangulation, where nodes correspond to triangles and links
correspond to pairs of triangles that share a triangle edge. Each
node holds a set of triangles and a classification bit string. All
links of this dual graph that lie between identically-classified
nodes are then collapsed (a link is deleted and two nodes are
merged). On completion, the result is the cluster graph.

Feature Selection. Next, the feature of interest is selected. Of
course, the definition of a “feature” is subjective and application-
specific. For generality, our system imposes only loose con-
straints on this definition. We regard eachnode in the cluster
graph which is not ON with respect to any of the split planes as
a potential feature. More precisely, any such node is a group of
adjacent, identically-classified triangles that is either IN or OUT
with respect to each plane (note that the cluster might be IN with
respect to one plane but OUT with respect to another). The clus-
ter will typically not be a closed surface, however, so it is not a
complete model of the feature. But these triangles can often be
used to generate a solid feature, so we refer to them as thefeature
polygon set.

Separation of the feature polygons from the rest of the sur-
face leaves a hole in the surface. We attempt to fill that hole to
build solid models of the feature and the body. If hole filling is
successful, we regard the feature as valid, otherwise it is invalid.

Other cluster graph nodes can yield other features. As discussed
in section 5, a number of higher level feature ranking algorithms
and user interfaces can be built on this low level foundation. First
we discuss hole filling, the most technically challenging step.

4 Hole Filling
Once a node of the cluster graph has been selected, this iden-

tifies a feature polygon set. Typically, this polygon set is not a
closed polyhedron, however, and neither is its complement (the
original polygon set minus the feature polygon set). Instead they
are triangulated manifolds with boundary. To clarify our termi-
nology: We call the void insideeachboundary cycle ahole. Fill-
ing holes builds solid models of the feature and the body. Typ-
ically (but not necessarily), the feature is the smaller shape and
the body is the larger shape.

We first explain the hole filling algorithm abstractly, then
describe its implementation using quadric error metrics.

4.1 Hole Filling Approach
The hole filling algorithm takes two triangulated manifolds

with boundary as input, namely the feature polygon set and the
body polygon set, and produces two triangulated solid models as
output: the feature and the body. Hole filling is done incremen-
tally by inserting triangles into the hole, shortening the boundary
one edge at a time.

When the boundary is planar, the problem reduces to trian-
gulating a concave polygon, for which solutions are well known.
As seen in figure 5, however, many features have non-planar
boundaries, so hole filling is not as trivial as it might seem.

There are potentially many ways to fill a hole. To best ac-
complish feature removal, the rule we follow is that all inserted
triangles must lie in one of the split planes.

In our figures, we will illustrate the hole filling process by
showing hole filling applied to the body, but recall that hole fill-
ing is applied to the body and the feature simultaneously.

To represent the planes along which we want to fill a hole,
we associate aconstraint setwith eachboundary vertex. These
are used to guide the choice of triangles to fill the hole. A con-
straint set is a set of split planes coincident with the vertex, in
particular, it represents the positional constraints imposed on the
point by the split planes passing through the vertex.

A vertex with one constraint plane corresponds to a bound-
ary vertex in a planar region; hole filling in its local neighborhood
must lie in this plane. A vertex with two constraint planes corre-
sponds to a boundary vertex on an edge between two planes (e.g.
an edge of a cube); hole filling in its neighborhood must proceed
in one plane or the other, and the edge between these two planes
can be extended. A vertex with three constraint planes corre-
sponds to a boundary vertex where three or more planes intersect
(e.g. a corner of a cube); hole filling in its neighborhood can

5 Copyright  2001 by ASME



=⇒

Figure 5. Steps of hole filling. Image 1: Original object. The feature

of interest is the groove. Image 2: Triangles of groove are isolated by

splitting, classification, and clustering with three split planes (near, top,

and far planes of the larger box) and made invisible, leaving a hole that

allows us to see the inside. Images 3-8: Six new triangles are inserted

sequentially, each coplanar with one of the split planes, to fill the hole and

form a solid model of the body. A similar procedure is followed to form a

solid model of the feature.

proceed in one of these three planes.
The algorithm repeatedly inserts valid triangles formed by

triples of consecutive vertices along the boundary. In order to be
value, a there must be a split plane common to its three vertices’
constraint sets. Triangles can be inserted in any order subject to
the above conditions. This procedure uniquely determines the re-
sulting solid, even though the triangulation is not unique. (Note,
for example, that there are two ways to triangulate a planar, rect-
angular hole). Figure 5 shows how the boundary for a three-plane
feature is filled with this algorithm.

4.2 Quadric Error Metric
The constraint sets can be represented in constant space and

with built in numerical tolerances using the quadric error met-
ric. Our implementation of the hole filling algorithm uses these
quadrics.

A quadric error metricis a general second degree function
of position. Previously, it has been used primarily for surface
simplification [8, 7], but it is also closely related to techniques in

multidimensional least squares fitting.
In its standard form, the quadric error metric measures the

sum of squared distances between an arbitrary point in space and
a set of planes. Ifpi andni are a point and the unit normal of
planei, andv is the point of interest, then the sum is given by

Q(v) = ∑
i

((v−pi) ·ni)2 . (1)

This sum can be expanded into a second degree polynomial inv:

Q(v) = vTAv +2bTv +c

= vT
(
∑
i

nini
T
)
v−2

(
∑
i

nini
Tpi
)

Tv +
(
pi

Tnini
Tpi
)

. (2)

This functionQ(v) is called a quadric error metric because its
isosurfaces are quadric surfaces (ellipsoids, cylinders, or parallel
planes). As defined, the quadric matrixA will always be posi-
tive semidefinite. Rather than keep track of each of the planes
in the constraint set, the quadric error metric stores(A,b,c), us-
ing 10 coefficients to represent the symmetric 3×3 matrixA, the
3-vectorb and the scalarc. We refer to computing these coeffi-
cients as “computing the quadric” and we sometimes refer to the
quadric(A,b,c) in terms of the shape of its quadric isosurface.
Intuitively, the quadric represents how much freedom a vertex
on the surface has while still staying on all the planes in its con-
straint set.

We can associate a quadric with each vertex of a triangulated
surface using the planes of the surrounding triangles. When the
neighborhood is planar, the quadric will be two parallel planes,
and the rank of the matrixA is one. When the neighborhood is
linear in one direction, as in the middle of an edge on a polyhe-
dron, the quadric will be a cylinder, and the rank is two. When
the neighborhood is curved in both directions, as at the vertex of
a cube, the quadric will be an ellipsoid, and the rank ofA is three.
The quadric is thus a natural representation for the constraint set
spoken of earlier.

Theoptimal point– the point that minimizes the quadric er-
ror metric – is

v̄ =−A−1b (3)

and itscostis

Q(v̄) = bTv̄ +c =−bTA−1b +c . (4)

The quadric error metricQ(v) quantitatively encodes a set of ge-
ometric coplanarity constraints. The optimal point satisfies the
constraints iff its cost is zero:Q(v̄) = 0.

6 Copyright  2001 by ASME



s

rq

p

e

Figure 6. Inserting a triangle near four boundary points p, q, r , and s.

Note that in the case ofA matrices of rank 1 or 2 (which
are particularly important for hole filling),A−1 does not exist,
and the optimal point is not unique, but would be all points on a
plane or line, respectively. When the rank ofA is less than three,
or equivalently when the quadric has no single optimal point, we
say that the vertex “can move”, otherwise it is “fixed”.

If we define the quadric for each edge to be the sum of the
quadrics for its two endpoints, then the cost of an edge is zero
if and only if the optimal point for the edge has zero error with
respect to the quadrics of each of the edge’s endpoints. Relating
the definition to constraint sets, an edge has cost zero if and only
if the edge’s optimal point satisfies the constraints of each of the
edge’s endpoints.

4.3 Hole Filling Algorithm
To fill a hole, we start by computing the quadric for each

vertex in the boundary using only the split planes that contain
each vertex. Next, the quadric for each edge of theboundary is
computed by summing the two endpoint quadrics.

On each iteration of the hole filling algorithm, we make one
or two passes over the edges of the boundary, attempting to insert
one or more triangles.

On the first pass, we visit each edge attempting to insert a
single triangle connecting three consecutive boundary vertices.
To test an edge, the edge quadric is evaluated at each of the edge’s
endpoints. As shown in figure 6 we test edgee between vertices
q andr . The quadric error associated withe is evaluated at points
q andr . Four cases result:

Qe(q) = 0 andQe(r) = 0: consider inserting triangleqrs (or
pqr),
Qe(q) = 0 andQe(r) 6= 0: consider inserting trianglepqr ,
Qe(q) 6= 0 andQe(r) = 0: consider inserting triangleqrs,
Qe(q) 6= 0 andQe(r) 6= 0: do nothing.

If any of the above succeeds with an insertion for any edge, the
algorithm advances to the next iteration.

If no triangle is inserted in the first pass, a second pass over
the edges of the boundary is made, attempting to insert a pair of
triangles connecting three consecutive vertices to a new vertex.
To test edgee, we query the quadrics of the edge and of the edge’s
first vertexq. If q can move, and the optimal pointv for edgee
is zero, trianglespqv andqrv are inserted. An example is shown
in figure 7.

Figure 7. If input object is a shape from which a corner has been cut,

insertion of an inferred vertex not present in the input is necessary in

order to build solid models of the body and the feature, in this case a box

and a tetrahedron, respectively.

plane

triangles

a

to be
inserted

cb d

split

hole

Figure 8. Overlap detection. a) A concave, planar hole (light gray). b-d)

Region surrounding hole is a triangulated surface. b) Test triangle (dark

gray) does not intersect existing triangles, so it can be inserted. c,d) Test

triangles intersect existing triangles, so they cannot be inserted.

At each iteration,boundary and quadrics are updated.

4.4 Validity Checks

Coincident triangles formingoverlapscannot be permitted
during hole filling. As shown in figure 8, triangles being consid-
ered for insertion are checked for overlap with existing triangles.
If an overlap is detected, the triangle is not inserted.

5 Feature Finding Algorithm

The feature removal algorithm is built on the methods for
feature representation and hole filling described earlier. Various
algorithms could be built using the approach we are describing in
this paper. Below, we describe the algorithm of our current im-
plementation to demonstrate one way in which a simple program
for polyhedral feature detection and removal can be constructed.
The algorithm is first summarized in pseudocode, after which we
explain some of the new components.

7 Copyright  2001 by ASME



Split line 1Split line

Split line 2

Figure 9. Elimination of redundant features. The small shaded box fea-

ture on top could be generated by a single split line (left) or using two split

lines (right). Clearly these are identical solid features; we must detect that

they are redundant and eliminate the latter.

read originalmodel from file
make a list of the planes of the faces of the model
ask user how many planes are desired (nmax)
featurelist ={}
for n = 1 .. nmax

loop over all combinations of n planes
model = originalmodel
split the model using the chosen planes
classifyeach triangle relative to these planes
cluster adjacent, identically labeled triangles to build cluster graph
for all clusters that are not ON with respect to any plane

each such cluster is a potential feature polygon set
if feature polygons are adjacent to split plane polygons and

feature polygons are not in featurelist then
fill hole inside boundary
if hole filling successful then

results of hole filling are solid models ofbody and feature
compute volume of feature
if volume> half of original, reject this feature
compute “value” of feature
save feature polygon set, plane list, and value in featurelist

else
this is an invalid feature, ignore

sort features by value
present features and allow user to pick one

The approach we have chosen is to iterate through the var-
ious combinations of split planes, and for each, do the appro-
priate splitting and classification. This keeps the preprocessing
relatively small. An alternative approach would be to split and
classify the triangles of the model with respect to all split planes
as a preprocess. There might be many tens or even hundreds of
potential split planes, so splitting could generate a highly subdi-
vided model. Consequently, the preprocessing could be slow and
take up a lot of memory. On the other hand, this approach could
be faster overall, since it could eliminate redundant splitting and
classification. We have chosen the former, more “lightweight”
approach, since it provides greater flexibility.

5.1 Removal of Redundant Features
In a brute force enumeration of feature polygon sets, many

redundant features are found. We can reduce the number of fea-
tures detected by the algorithm and ease the job of the user or

software examining the feature list by eliminating redundancy.
Figure 9 illustrates the problem, in 2-D. Briefly, this can be done
using subset tests on the sets of triangles in a feature polygon set
and coplanarity tests with respect to each of the split planes.

5.2 Feature Ranking
The above criteria generate a number of features but do not

distinguish or rate features as “good” or “bad” the way a subjec-
tive user might. After experimenting with various volume-based
and surface-area-based formulas, we have found the following
quantitative measure to provide a ranking fairly consistent with
most human users:

value=
( surface area of inserted triangles)( surface area of original object

coincident with one of the splitting planes
)

This value will be small for “good” features.

6 Results
The above algorithm has been implemented in C++. The

software reads in polyhedral models in a variant of the Wavefront
OBJ file format, allowing the user to either manually select split
planes and invoke hole filling, or use the automatic algorithm
described above to search for the leading features. All of the
perspective 3-D figures in this paper were generated with this
software.

Figure 10 shows the results when our system is run on a
model of a vice. Automatic feature identification using up to
three split planes runs in 2 minutes total. After examining 575
combinations of three or fewer split planes, the system identified
1761 potential features, filled holes, and eliminated redundan-
cies, outputing 73 valid features. As shown in the figure, the
top-ranked features conform closely to those that a human might
pick.

Figure 11 shows the features of a more complex object. Pro-
cessing of this polyhedron with three planes took 18 minutes,
examined 1793 combinations of planes and 6127 potential fea-
tures, from which 128 were found to be valid. The figure shows
the ability of our system to deal with rather complex, abutting
features.

7 Conclusions
The use of a combination of topological and geometric infor-

mation permits a general definition of features in solid models.
In particular, we define a feature in terms of a connected surface
region that is classified consistently when an object is split by
one or more surfaces. Filling the holes created with the feature is
topologically removed from the body builds solid models of both

8 Copyright  2001 by ASME



Figure 10. Top features of a vice model after splitting with three planes.

a) original object, b) feature 1 is one corner groove, feature 2 is its mate,

c) feature 3 is extension of groove, feature 4 is its mate, d) feature 5 is

block between the rails.

the feature and the body. A variety of features can be found au-
tomatically by splitting an object with extensions of its surfaces,
elimination of redundancy, and intelligent ranking. The approach
could be used to help designers coarsen CAD models for finite
element analysis, to aid in the analysis and documentation of the
purpose of features.

This approach to feature identification and removal has been
implemented for polyhedral objects. The approach has advan-
tages over previous methods as it employs a very general defini-
tion of “feature”. It could also be generalized for solid models
employing quadrics and other implicit surfaces.

8 Acknowledgments
We are grateful to NSF grant DMI-9813259 and Fundaci´o

Caixa Castell´o - Bancaixa for financial support.

REFERENCES
[1] P. Cignoni, C. Montani, and R. Scopigno. A comparison

Figure 11. Top features of a multi-holed object after splitting with three

planes. Original object, plus features 1, 2, 3, 4, and 38.

of mesh simplification algorithms.Computers & Graphics,
22(1):37–54, 1998.

[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest.Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[3] Leila De Floriani. Feature extraction from boundary models
of three-dimensional objects.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(8):785–798, August
1989.

[4] R. Gadh and F. B. Prinz. Recognition of geometric forms
using the differential depth filter.Computer-Aided Design,
24(11):583–598, November 1992.

[5] Rajit Gadh and F. B Prinz. Automatic determination of
feature interactions in design-for-manufacturing analysis.
ASME Journal of Mechanical Design, 117(1):2–9, 1995.

[6] Rajit Gadh and F. B Prinz. A computationally efficient
approach to feature abstraction in design-manufacturing
integration.ASME Journal of Engineering for Industry,
117(1):16–27, 1995.

[7] Michael Garland. Quadric-Based Polygonal Surface

9 Copyright  2001 by ASME



Simplification. PhD thesis, Carnegie Mellon Univer-
sity, CS Dept., 1999. Tech. Rept. CMU-CS-99-105.
http://www.cs.cmu.edu/˜garland/thesis/ .

[8] Michael Garland and Paul S. Heckbert. Surface
simplification using quadric error metrics. InSIG-
GRAPH 97 Proc., pages 209–216, August 1997.
http://www.cs.cmu.edu/˜garland/quadrics/ .

[9] P. Gavankar and M. R. Henderson. Graph-based extraction
of protrusions and depressions from boundary representa-
tions.Computer-Aided Design, 22(7):442–450, September
1990.

[10] Paul S. Heckbert and Michael Garland. Survey of polyg-
onal surface simplification algorithms. InMultiresolution
Surface Modeling Course Notes. ACM SIGGRAPH, 1997.
http://www.cs.cmu.edu/˜ph .

[11] Y. S. Kim. Recognition of form features using convex
decompositon.Computer Aided Design, 24(9):461–476,
1992.

[12] M. J. Pratt and P. R. Wilson. Requirements for support of
form features in a solid modeling system. Technical Report
R-85-ASPP-01, CAM-I Inc., Arlington, Texas, June 1985.

[13] Hiroshi Sakurai. Volume decomposition and feature recog-
nition: Part 1 — polyhedral objects.Computer-Aided De-
sign, 27(11):833–843, November 1995.

[14] T. Woo. Feature extraction by volume decomposition. In
CAD/CAM Technology in Mechanical Engineering, 1982.

[15] M. C. Wu and C. R. Liu. Analysis on machined feature
recognition techniques based on B-rep.Computer-Aided
Design, 28(8):603–616, 1996.

[16] Rajit Gadh Yong Lu and Timothy J. Tautges. Feature de-
composition for hexahedral meshing. InASME Design Au-
tomation Conference, Las Vegas, NV, September 1999.
DETC99/DAC-8618.

10 Copyright 2001 by ASME


