
Flexible Hardware Acceleration for Instruction-Grain Program Monitoring

Shimin Chen1, Michael Kozuch1, Theodoros Strigkos2, Babak Falsafi3, Phillip B. Gibbons1,

Todd C. Mowry1,2, Vijaya Ramachandran4, Olatunji Ruwase2, Michael Ryan1, Evangelos Vlachos2

1Intel Research Pittsburgh 2Carnegie Mellon University
3École Polytechnique Fédérale de Lausanne 4University of Texas at Austin

Abstract

Instruction-grain program monitoring tools, which check

and analyze executing programs at the granularity of indi-

vidual instructions, are invaluable for quickly detecting bugs

and security attacks and then limiting their damage (via con-

tainment and/or recovery). Unfortunately, their fine-grain

nature implies very high monitoring overheads for software-

only tools, which are typically based on dynamic binary in-

strumentation. Previous hardware proposals either focus on

mechanisms that target specific bugs or address only the

cost of binary instrumentation. In this paper, we propose

a flexible hardware solution for accelerating a wide range

of instruction-grain monitoring tools. By examining a num-

ber of diverse tools (for memory checking, security track-

ing, and data race detection), we identify three significant

common sources of overheads and then propose three novel

hardware techniques for addressing these overheads: Inheri-

tance Tracking, Idempotent Filters, and Metadata-TLBs. To-

gether, these constitute a general-purpose hardware acceler-

ation framework. Experimental results show our framework

reduces overheads by 2–3X over the previous state-of-the-art,

while supporting the needed flexibility.

1 Introduction

Systems designers have traditionally focused on maximiz-

ing performance, and more recently on minimizing power.

From a user’s perspective, however, both of these issues are

of secondary concern when the software is misbehaving. In

other words, if the software is broken, it is little consolation

that it is misbehaving quickly or power-efficiently. As sys-

tems have become faster over the years, the corresponding in-

creases in both software and hardware complexity have raised

concerns that applications and systems are becoming increas-

ingly error-prone. While writing bug-free code has always

been difficult, recent studies suggest that bug rates are get-

ting worse over time as software complexity increases [4], de-

spite the software industry’s pre-release testing efforts. In a

networked world, even obscure bugs—benign under normal

conditions—can leave a system vulnerable to security attacks

after the code has been released [31].

There is a long history of developing tools to help diagnose

and fix software problems. These tools can be invoked at var-

ious phases of the software development and execution cycle:

e.g., static tools attempt to identify problems before the pro-

gram executes [2, 9, 11], post-mortem tools attempt to recon-

struct what went wrong after the application crashes [15, 39,

40], and dynamic tools—which we call lifeguards—monitor

an application as it executes to diagnose and hopefully ei-

ther contain or fix problems [1, 10, 14, 20, 27]. These three

classes of tools are generally complementary. Moreover, the

granularity of software execution events that lifeguards care

about form a spectrum, from system-call-level [12, 24] to

instruction-level [18, 20, 21, 25, 27]. Instruction-grain life-

guards, which perform invariant checking and analysis at the

granularity of individual instructions, have two unique ad-

vantages: (i) highly-detailed information regarding dynamic

events, such as memory references, address computations, and

information flow, is available at the instruction level, and (ii)

software errors may be captured earlier and more accurately.

The former enables a wide range of powerful lifeguards (e.g.,

detecting memory-access violations [18, 20], data races [27],

and security exploits [21, 25]), while the latter provides a

better starting point for damage containment, on-site diagno-

sis [32], and hopefully on-the-fly fixes and recovery [26].

Instruction-grain lifeguards are too slow. Unfortunately,
existing approaches to instruction-grain lifeguards are very

slow, because lifeguard functionality is invoked on (nearly)

every instruction. Software-only solutions (mainly based on

dynamic binary instrumentation, DBI [1, 14, 20]) typically

slow down the monitored program by 10–100 times [17, 20,

33], limiting their utility to program debugging back at the

development sites. To address this overhead, a number of

hardware optimizations have been proposed, each tailored to

a specific class of lifeguards: e.g., memory-access monitor-

ing [28, 35, 42], data-race detection [41], and information-

flow tracking with simple metadata [7, 8, 30, 34]. Unfortu-

nately, these mechanisms are useful only for the narrow class

of lifeguards that they support. Other studies [3, 5] have

proposed more general-purpose hardware solutions. For ex-

ample, our previous study proposed Log-Based Architectures

(LBA) [3], which capture a log from a monitored program

and ship it to another on-chip core that executes the moni-

toring functionality. An earlier study [5] proposed Dynamic

Instruction Stream Editing (DISE), which performs pattern-

matching-based dynamic rewriting of a processor’s instruc-

tion stream to insert calls to monitoring code. Both DISE and

our earlier work on LBA focus only on reducing the costs of

DBI, such as reducing the resource competition between mon-

itored programs and lifeguards. As a result, the instruction-

grain monitoring overhead, although significantly reduced, is

still large (e.g., 3–5X slowdowns [3]).

Fast and flexible hardware acceleration. In this paper, we
study hardware acceleration for speeding up a diverse range

of instruction-grain lifeguards. Figure 1 depicts the general

setting we consider, which reflects existing general-purpose

lifeguard platforms such as DISE and LBA. On the left, an

event-capture runtime observes the instructions executed by

rare events

update events

event-capture

runtime

(e.g., DISE, LBA)

application

event

mux

malloc/free - R

lock/unlock - R

syscalls, etc - R

addr. computation - C

memory access - C

data movement - U

computation - U
ra

re
fr

eq
u

en
t

event stream lifeguard

rare events

update metadata

check metadata

h
an

d
lers

IT

IF

metadata

alloc/init

R

C

U

M-TLB

Figure 1. Our framework targets metadata updates (via Inheritance Tracking (IT)), metadata
checks (via Idempotent Filters (IF)) and metadata mapping (via Metadata­TLB (M­TLB)).

IT IF M-TLB

ADDRCHECK yes yes

MEMCHECK yes yes yes

TAINTCHECK yes yes

TAINTCHECK w/ yes yes
detailed tracking

LOCKSET yes yes

Figure 2. Applying our hardware
acceleration framework to the life­
guards in this study. See Table 1
for lifeguard descriptions.

the monitored program, and creates a corresponding stream

of event records. The dashed box on the left shows examples

of rare and frequent events of interest. On the right, a lifeguard

tracks the state of the application (e.g., which memory regions

have been allocated) by maintaining applicationmetadata. To

consume the event stream, the lifeguard issues event handlers

that may update its metadata, use the metadata to check the

event against some invariant, or both.

This paper presents a hardware acceleration framework

for instruction-grain lifeguards. By analyzing a number of

lifeguards representing diverse monitoring requirements, we

identify three main sources of overheads for instruction-grain

lifeguards. Our framework provides novel techniques for ad-

dressing each of these sources:

(i) Propagation tracking. One key source of lifeguard over-

head is propagation tracking (or dynamic information flow

tracking [30]). Given an executed application instruction I ,

the metadata of I’s destination location is computed as a com-

bination of the metadata of all I’s source locations (e.g., if one

of I’s sources contains “suspect” data, then I’s destination

now contains “suspect” data). Previous work on propagation

tracking [7, 8, 21, 30] has considered only such generic prop-

agation tracking, which is challenging to optimize because of

the strong dependence among application instructions. Our

key insights are that generic propagation tracking is more

general than needed for important invariants, that a more re-

stricted version suffices, and moreover, that such a version can

be supported with significantly lower overhead using a novel

technique called Inheritance Tracking (IT).

(ii) (Redundant) checking. For many lifeguards, checking

is performed on every memory reference and/or on every

address computation. To reduce this second key source of

overhead, our idea is to take advantage of the fact that life-

guards do not need to check “redundant” events, where the

corresponding metadata are not changed. Hence, we design

hardware Idempotent Filters (IF) to identify (and discard) re-

dundant events without the overhead of accessing the meta-

data. Previously, redundant event filtering has been applied to

address-checking lifeguards using other mechanisms [28], but

we show how our technique can be applied more generally.

(iii)Metadata mapping. The third key source of overhead is

the mapping from an application address to the corresponding

metadata location(s) that is performed in almost every life-

guard event handler. We propose Metadata-TLB (M-TLB), a

novel mechanism that speeds up such metadata address trans-

lation. The M-TLB resides in user space. It can be configured

at runtime for a variety of metadata sizes and organizations.

In this way, our framework achieves the performance of

lifeguard-specific hardware approaches, while supporting a

wide range of lifeguards, as illustrated in Figure 2.

Contributions. This paper makes the following main con-

tributions. First, we analyze a number of diverse life-

guards to understand the requirements and commonalities of

instruction-grain lifeguards, identifying three main sources of

lifeguard overheads (Section 2). We use LBA as a case study

lifeguard platform (Section 3). Second, we propose a hard-

ware acceleration framework highlighted by three novel tech-

niques for addressing these overheads: Inheritance Tracking

(IT) for accelerating propagation-stylemetadata updates (Sec-

tion 4), Idempotent Filters (IF) for identifying and discard-

ing redundant checking events that will not alter metadata

state (Section 5), and Metadata-TLBs (M-TLB) for acceler-

ating the translation from application address to metadata ad-

dress (Section 6). Finally, we implemented our techniques

within LBA and evaluated them through simulation studies

(Section 7). Our experiments with CPU-intensive benchmark

programs (the most challenging case, because of their high in-

struction rate) show a 2–3X reduction in LBA’s overheads for

all of the studied lifeguards, down to a 2–51% overall slow-

downs for all but one of the lifeguards.

2 Requirements for Efficiently Supporting
Instruction-Grain Lifeguards

Our goal is to provide hardware accelerators for a wide

range of instruction-grain lifeguards, addressing the major

performance bottlenecks in such lifeguards while being suf-

ficiently flexible to support their diverse requirements. This

section analyzes a range of lifeguards in order to understand

their commonalities and differences. We identify three signif-

icant, common sources of overheads for lifeguards, as well as

five important axes on which lifeguards differ even in these

common sources. Finally, we discuss related work in the con-

text of these commonalities and differences.

2.1 Understanding Instruction­Grain Lifeguards

We focus on four diverse instruction-grain lifeguards that

detect memory violations, security exploits, and data races, as

detailed in Table 1. In the table, we describe for each life-

guard its purpose, the basic idea, the metadata maintained,

and when/how metadata updates and checks are performed.

To simplify the descriptions, we ignore checks that consume

only a negligible fraction of the lifeguard’s time.

From Figure 1 and Table 1, we see that execution events

in the monitored program correspond to specific lifeguard

Table 1. Example instruction­grain lifeguards.
A
D
D
R
C
H
E
C
K
[1
7
]

Purpose: Check whether every memory access is to an allocated region of memory.

Idea: By intercepting memory allocation routines such as malloc and free, ADDRCHECK maintains metadata for each byte of

the monitored program’s address space indicating whether or not that byte is currently accessible. The metadata are checked on

every memory operation for (mainly) invalid heap accesses and invalid stack accesses.

Metadata: One “accessible” bit per address byte of the monitored program.

Metadata updates: malloc and free events change the accessible state of the affected heap blocks.

Metadata checks: For every memory access, check the accessible bit for the memory address.

Auxiliary structures: A list of records for observed malloc’s and a list of records for observed free’s, which are used to detect

double free’s, invalid free’s, and memory leaks.

M
E
M
C
H
E
C
K
[1
8
,
1
9
]

Purpose: Extend ADDRCHECK to detect the use of uninitialized values.

Idea: A memory load of an uninitialized value is not an error in itself (e.g., copying a partially initialized structure). Rather, an error

is raised only if uninitialized values are dereferenced as pointers, used in conditional tests, or passed into system calls. To achieve

this, MEMCHECK tracks the propagation of uninitialized values in the monitored program.

Metadata: Same as ADDRCHECK + one “initialized” bit per address byte + “initialized” state per register.

Metadata updates: Accessible bits are updated as in ADDRCHECK. Initialized bits are cleared after free’s and set for constant

value writes and system call returns. Propagation tracking: For every executed instruction, the destination becomes uninitialized

if at least one of the sources is uninitialized.

Metadata checks: Accessible bits are checked as in ADDRCHECK. Initialized bits are checked for base/index registers of memory

accesses, conditional test inputs, and system call inputs.

Auxiliary structures: Same as ADDRCHECK.

T
A
IN
T
C
H
E
C
K
[2
1
]

Purpose: Detect overwrite-related security exploits (e.g., due to buffer overruns and format string vulnerabilities).

Idea: All unverified program input data, such as data from the network, are marked as suspect, or tainted. Subsequently, the

propagation of tainted data through the program is carefully tracked. If a tainted value is loaded from memory, the destination

register is marked as tainted. A computation destination is marked as tainted if a source is tainted. An error is raised if tainted

data are used in critical ways, such as in jump target addresses, format strings of printf-like calls, or system call arguments.

Metadata: One “tainted” bit per address byte of the monitored program + “tainted” state per register.

Metadata updates: Set “tainted” bits to untainted after malloc’s. Memory buffers used in read or recv system calls obtaining

data from untrusted sources are marked as tainted. Tainted status is propagated for every executed instruction.

Metadata checks: Check tainted status of register or memory locations of indirect jump target addresses, format strings of printf-

like calls, and system call arguments.

TaintCheck with detailed tracking: We also study a TAINTCHECK variant that records a history of the taint propagation, using an

8-byte metadata structure (4-byte “from” address, 4-byte instruction pointer) per 4-byte application word (see Section 7.1).

L
O
C
K
S
E
T
[2
7
]

Purpose: Detect data races by checking whether accesses to shared memory locations are protected by consistent sets of locks.

Idea: For each thread t, LOCKSET maintains the current set St of locks held by the thread. For each shared memory location m, it

maintains a candidate set Sm of locks. m is known to be a shared location if a second thread accesses it; at this moment, Sm is

initialized with the current lock set of the second thread. Afterwards, whenever a thread t referencesm, Sm is set to Sm ∩ St. If

Sm ever becomes empty, then no consistent common lock set protects accesses tom, and an error is raised.

Metadata: A lockset is implemented as a sorted list of lock addresses. A 32-bit record is maintained for every 4-byte word in the

monitored program. It consists of a compressed 30-bit pointer to the actual candidate lockset and a 2-bit state for the location

(virgin, exclusive, shared read-only, shared read-write). If the state is exclusive, the 30-bit pointer is reused for recording its

owner thread ID. For every thread, an uncompressed pointer to the thread’s current lockset is maintained.

Metadata updates: malloc’s set metadata to be virgin. A virgin location becomes exclusive after the first memory access. An

exclusive location becomes shared after a memory access from a thread other than the owner. For shared locations, lockset

intersection is performed for every memory access.

Metadata checks: For every shared memory access, check if the resulting lockset after intersection is empty.

Auxiliary structures: All the known locksets, each being a sorted list of lock addresses.

handler functionality, and that the interesting events are typ-

ically either important library/system calls or individual in-

structions. The former are often expensive to handle, but rare,

while the latter are inexpensive individually, but so frequent

that lifeguard performance is very sensitive to their cost.

Table 1 shows that the role of many instruction-grain event

handlers centers around accessing lifeguard metadata (also

called shadow values [20]), which represent the state infor-

mation maintained by lifeguards regarding the monitored ap-

plication’s address space (e.g., which addresses have been

tainted), often including application registers. Consequently,

these handlers perform the following three major activities:

(1) Metadata updates: While some metadata (e.g., AD-

DRCHECK’s accessible bits and LOCKSET’s 32-bit records)

are updated only at infrequent events such as library calls, oth-

ers are updated at nearly every monitored instruction. The lat-

ter metadata arise in propagation tracking lifeguards such as

MEMCHECK and TAINTCHECK, which propagate metadata

status from sources to destinations on every instruction. Be-

cause each such update takes multiple instructions to perform,

propagation tracking is a key source of lifeguard overhead.

(2) Metadata checks: Checks are often performed in

instruction-grain events (e.g., for every application memory

access in ADDRCHECK and MEMCHECK and every shared

memory access in LOCKSET). Intuitively, in a well-behaved

program, metadata converge into stable states quickly. This

insight can be exploited in lifeguard handlers by checking the

frequent case—stable state—in a fast path while branching

into a slow path for more detailed checks. However, even the

most optimized checking operation has to do metadata access,

comparison, and branch. Thus, (redundant) metadata checks

are a second key source of lifeguard overhead.

(3) Metadata mapping: An address of the monitored appli-
cation is mapped into a metadata location (e.g., an application

address is mapped to an accessible bit in ADDRCHECK). This

operation involves a sequence of mask and shift instructions,

which often takes a significant portion of handler instructions

(as high as half of the instructions, as will be illustrated in Sec-

tion 6). Because this translation is required for every metadata

check and update in all our lifeguards, metadata mapping is a

third key source of lifeguard overhead.

As revealed by our experimental study in Section 7, these

three sources of overheads constitute a significant fraction of

the lifeguards’ execution times.

Finally, as shown in Table 1, there are several important

differences in the way that metadata are used by the four

lifeguards. These differences fall along five axes: (i) unit

for metadata (memory or register, per-byte or per-word), (ii)

metadata bits per unit (1–64 bits); (iii) metadata semantics

(e.g., LOCKSET’s pointer plus state encoding); (iv) whether

the metadata are propagation-tracking; and (v) use of auxil-

iary structures. These differences demand flexibility in the

underlying support platform.

2.2 Related Work on Hardware Proposals
for Instruction­Grain Lifeguards

Lifeguard-specific techniques. One class of prior hardware

proposals achieves low overhead, but targets only one or a

subset of lifeguards. HARD [41] implements hardware-based

LOCKSET by extending every cache line with a hardware

bloom filter representing the candidate lockset and augment-

ing the snoopy-based cache coherence protocol for lockset

communication and updates. MemTracker [35] focuses only

on memory access monitoring (propagation tracking, for in-

stance, is not supported). The scheme adds an extra processor

pipeline stage that performs lifeguard metadata updates and

checks based on a state transition table with events such as

load, store, alloc, and free. It cannot handle flexible meta-

data semantics such as that in LOCKSET. Similarly, several

recent hardware proposals [7, 8, 30, 34] focus on improving

the performance of propagation tracking—also known as dy-

namic information flow tracking (DIFT)—by introducing mi-

croarchitectural changes to enable the processor to manage

metadata directly. While several of these proposals provide

some policy flexibility (addressing axis (ii), above), they still

restrict the metadata format and semantics (axes (i) and (iii))

to reduce the hardware complexity; hence, lifeguard general-

ity is sacrificed. For example, they do not support non-DIFT

lifeguards such as LOCKSET and cannot support propagation

tracking with more flexible metadata such as TAINTCHECK

with detailed tracking.

Techniques targeting binary instrumentation cost. The
second class of hardware proposals strive to support a wide

range of lifeguards. However, they focus only on reducing the

P

PP

P P P P

P

P

P

P

PPPPP

Core 1 Core 2

fetch &
decompress

compress
& store

log record
capture

log record
dispatch

log transport via cache

Application Lifeguard

log producer components log consumer components This paper

M-TLB

IT&IF

last-level

on-chip

cache

Figure 3. LBA on a many­core processor, including the compo­
nents (IT, IF, M­TLB) proposed in this paper.

costs incurred by dynamic binary instrumentation [1, 14, 20],

the state-of-the-art software-only lifeguard platform. In par-

ticular, they seek to reduce (i) code translation costs for in-

serting event handlers into application code; (ii) competition

for resources such as cycles, registers and caches; and/or (iii)

the cost of re-creating hidden instruction states, such as mem-

ory addresses in IA32. DISE [5] removes cost (i) by extending

the instruction fetch and decode unit with a macro-expansion

capability for pattern-matching triggering events and insert-

ing lifeguard event handlers on the fly. It also reduces cost

(ii) somewhat by providing special registers for lifeguards.

iWatcher [42] enables event handlers to be associated with ad-

dress ranges, triggers event handlers based on cache line tags,

and executes handlers and the monitored program in separate

hardware threads, thus reducing all three costs. However,

the scheme does not support propagation tracking or large

tags. Several recent studies (Heapmon [28], INDRA [29],

and LBA [3]) propose to take advantage of many-core proces-

sors and run lifeguards on otherwise idle cores. While Heap-

mon and INDRA studied only specific lifeguards, LBA is a

general-purpose replacement for the dynamic binary instru-

mentation approach, reducing all three costs.

In contrast to this prior work, we provide hardware accel-

erators that address the three major performance bottlenecks

in instruction-grain lifeguards, while being sufficiently flexi-

ble to support their diverse requirements.

3 Case Study: Log-Based Architectures

As our work was done in the context of the Log-Based

Architectures (LBA) project, we will use LBA as our running

case study. Note, however, that our framework is not tied to

LBA and can also be used to accelerate any lifeguard platform

having the generic structure of Figure 1 (e.g., DISE [5]).

Figure 3 depicts a many-core processor enhanced with

LBA producer components (darker/green rectangles with out-

going arrows) and LBA consumer components (lighter/yellow

rectangles with incoming arrows) for every core. Given users’

relative preferences of performance, power, and correctness,

lifeguard monitoring can be dynamically enabled. In Figure 3,

the dashed/blue rectangles on the consumer side are the new

components proposed in this paper.

The zoom-in picture in Figure 3 shows that a lifeguard run-

ning on core 2 is monitoring an unmodified application run-

ning on core 1. As an application instruction retires, LBA

captures a record, compresses it, and transports it through a

buffer in on-chip cache. An instruction record (conceptually)

consists of the program counter, instruction type, input/output

(1) mov A, %eax

(2) add B, %eax

(3) shr 8, %eax

(4) mov C, %ecx

(5) and 0xff, %ecx

(6) sub %ecx, %eax

(7) mov %eax, D

(8) mov E, %eax

(9) mov %eax, F

mem_to_reg

dest_reg_op_mem

mem_to_reg

dest_reg_op_reg

reg_to_mem

mem_to_reg

reg_to_mem

1

2

7

6

4

5

3

8

9

A B C E

D

F

A−F: memory locations; rtaint/mtaint: taint values for register/memory; IT: filter state; xx_to_xx: delivered event

rtaint(%eax)=mtaint(A)

rtaint(%eax) |= mtaint(B)

rtaint(%ecx)=mtaint(C)

rtaint(%eax) |= rtaint(%ecx)

mtaint(D)=rtaint(%eax)

mtaint(F)=rtaint(%eax)

rtaint(%eax)=mtaint(E)

Application Data Flow
Event after Filtering

mem_to_mem

imm_to_mem (D)

(E,F)

Instruction Sequence
Example Application Events Delivered

To Lifeguard
TaintCheck Operation

For Each Event
IT Filter State &

IT(%eax)=addr(A)

IT(%eax)=clear

IT(%ecx)=addr(C)

IT(%eax)=clear

IT(%eax)=addr(E)

Figure 4. Propagation tracking for an example sequence of application instructions.

operand identifiers, and any data addresses (the compressed

log records are less than a byte [3]). In addition, LBA supports

software-inserted annotation records representing high-level

events (e.g., malloc library calls), which can be captured via

wrapper libraries. The consumer components support event-

driven execution. A lifeguard is organized as a set of event

handlers registered with LBA in an event type configuration

table (ETCT); each instruction record corresponds to one or

more events. Every handler ends with a special control trans-

fer instruction—nlba (next LBA event). nlba does not have

target addresses, instead it determines the event type from log

records, looks up the ETCT, and changes program control to

the entrance of the registered handler. Certain event values

(such as data addresses) are automatically placed in registers

for ready handler access.

LBA reduces the producer-consumer synchronization

overhead by using a large (64KB–1MB) log buffer; however,

if the buffer becomes full (empty), the application (lifeguard)

must stall. Because of the decoupled nature of execution and

checking, bug detection at the lifeguard lags bug occurrence at

the application. LBA relies on OS level support for fault con-

tainment. The monitored application is stalled at each syscall

until the lifeguard finishes checking all the remaining records

in the log buffer; this prevents any damage from propagating

into the OS kernel and affecting other applications.

4 Optimizing Propagation Tracking

Lifeguards such as TAINTCHECK and MEMCHECK (and

generally all DIFT lifeguards [30]) track the propagation of

data characteristics through the application’s address space.

While lifeguards that do not track data propagation may ig-

nore certain classes of events (e.g., LOCKSET may ignore

events that do not reference memory, such as register-register

ALU operations), propagation-style lifeguards must track the

flow of data through every operation that handles data, and

hence must be triggered for nearly every event.

Consequently, propagation-tracking lifeguards often suffer

high execution overhead. For example, Figure 4 shows a se-

quence of application instructions, the corresponding events,

and the TAINTCHECK operations that would be triggered to

handle them. Except for the two “self” operations, (3) and

(5), an event is delivered for every application instruction.

(See Figure 5 for the full list of propagation-tracking events.)

Note that each TAINTCHECK operation may comprise mul-

tiple instructions. For example, the operation associated with

event (1) must determine the metadata address associated with

application address A, fetch A’s metadata (taint value), deter-

mine the metadata address associated with application register

%eax, and finally store the taint value. Clearly, reducing the

number of events that must be delivered to the lifeguard could

result in significant performance savings.

4.1 Hardware­assisted Propagation Tracking

To improve the performance of propagation-tracking life-

guards, several studies [7, 8, 30, 34] have proposed hardware

designs that automatically track metadata values. Unfortu-

nately, these designs are quite narrow in scope—supporting

only a single lifeguard or, at best, only a particular metadata

size and organization (so that the hardware engine can access

the lifeguard’s metadata without software support). As a re-

sult, even simple modifications to lifeguards that performwell

in their unmodified form, such as adding detailed tracking to

TAINTCHECK, may reduce the lifeguard’s performance from

an acceptable level to a prohibitively low one.

As an alternative to propagating metadata values in hard-

ware, we propose an optimization that tracks the data inher-

itance instead. The difference can be illustrated by returning

to instruction (1) in Figure 4. A value propagationmechanism

would require that hardware retrieve the metadata correspond-

ing to memory address A, and associate it with register %eax.

Inheritance tracking, in contrast, suggests that the hardware

associate %eax with the address A, rather than its metadata.

By separating the tracking of inheritance from the propagation

of metadata values, we support a wider range of lifeguards

because the hardware need not comprehend the metadata or-

ganization. Additionally, the lazy evaluation of the metadata

often enables further optimizations, as we shall see later.

4.2 Unary Inheritance Tracking

Inheritance Tracking is particularly useful for eliminating

events associated with the flow of data through registers. Con-

sequently, an initial sketch for propagation performance ac-

celeration would essentially be a small shadow register file

that associates each architectural register with the addresses

from which it inherits. The challenge with this design is that,

with generic propagation, a particular register could havemul-

tiple ancestors. For example, after instruction (6) in Figure 4,

%eax’s inheritance list contains A, B, and C.

Fortunately, we observe that in many situations, it is suf-

ficient to track unary propagation instead of generic propaga-

tion. Here, unary propagation includes single-source/single-

destination (“copy”) operations (register-to-memory and

memory-to-register), as well as binary computations that use

an immediate value as a source operand. We assume that non-

unary operations (those that combine more than one meta-

data source) propagate a “clean” result to the destination (e.g.,

untainted for TAINTCHECK or initialized for MEMCHECK).

While at first thought this assumption may appear too liberal,

we argue it is valid if (a) the lifeguard reports an error if a

source of a non-unary operation is unclean, or (b) the seman-

tics underlying the metadata values imply that, for all practical

purposes, the result of a non-unary operation is a clean value.

Perhaps surprisingly, both MEMCHECK and TAINTCHECK

are candidates for unary inheritance tracking as MEMCHECK

satisfies property (a) and TAINTCHECK satisfies property (b).

MemCheck. MEMCHECK monitors memory references to
detect the use of unallocated locations or uninitialized values.

To avoid false positives associated with the harmless copying

of uninitialized memory values (e.g., in a padded struct),

MEMCHECK does not report an error on the first load of an

uninitialized value, but rather tracks the propagation of such

values until one is used for a pointer dereference, conditional

test input, or system call input [18, 19]. While this lazy evalu-

ation of uninitialized value use is sufficient to eventually catch

use of uninitialized memory, we argue that an eager eval-

uation that flags the first use of an uninitialized value in a

non-unary computation is equally valid (e.g., flagging when

uninitialized values are added). Our modified MEMCHECK

checks the source operands of non-unary operations (identify-

ing any uninitialized values as errors) and treats the destina-

tion operands as initialized, in order to avoid a cascading of

error reports all based on the same uninitialized value.

TaintCheck. TAINTCHECK tracks the propagation of mem-
ory taint values to detect memory overwrite-based security

exploits [21], and for all practical purposes, unary propaga-

tion appears to suffice for detecting such exploits. This claim

is supported through four observations. First, the security

literature [6, 37] reports that overwrite attacks (e.g., buffer

overflow) rely almost exclusively on direct copying. Second,

third-party analysts [31] often identify overwrite-based secu-

rity vulnerabilities in proprietary software by causing a soft-

ware crash through the introduction of a long input composed

of a known pattern (e.g., repeating 0x55). A vulnerability is

identified if the pattern is observed in expected locations in

the core dump. This technique relies on a direct (unary) prop-

agation of the input, and any identified vulnerability will be

detected under unary-only propagation. Third, to empirically

evaluate these claims, we analyzed the first six months of CVE

security alert entries in 2007 [31]. For the entries involving

open source software, we studied the source code patches and

found that every memory overwrite vulnerability was due to

unary propagation. Finally, while there is always a concern

that attackers can specifically work around unary-only prop-

agation, note that TAINTCHECK identifies attacks (including

format string and function pointer attacks) before any attack-

ing code executes. Thus, the attack is constrained to exploit

the original application code, not any injected code. (This task

could be made even more challenging by providing applica-

tion developers with static analysis tools that identify when

M
U

X

State Transition
and Action Table

Conflict Detection
IT table with

transformed

deliver
event

event

IT(%rd)IT(%rs)

event
original

mem_to_reg

conflict?

IT state addr size addr&~3 4bits (addr&~3)+4 4bits

used for conflict detectionIT table

IT state: 00 − clear, 01 − addr, 10 − in lifeguard

reg1
regN

example app. operation
Original Event

imm_to_reg
mov $imm, %rd

imm_to_mem
mov $imm, mem(daddr)

reg_self
op $imm, %rd

mem_self
op $imm, mem(daddr)

reg_to_reg

mov %rs, %rd

reg_to_mem

mov %rs, mem(daddr)

mem_to_reg

mov mem(saddr), %rd

mem_to_mem
copy saddr to daddr

dest_reg_op_reg
op %rs, %rd

dest_reg_op_mem
op mem(saddr), %rd

dest_mem_op_reg
op %rs, mem(daddr)

other

other instructions

do nothing

IT(%rd) := clean

do nothing

do nothing

IT(%rd) := IT(%rs)

imm_to_mem

IT(%rd) := saddr

IT(%rd) := clean

do nothing imm_to_mem

mem_to_mem

addr

IT(%rd):=IT(%rs)
reg_to_reg

in lifeguard
Starting IT(%rs) State

clean

imm_to_mem

reg_to_mem

mem_to_mem

IT(%rd) := clean

flush all relevant registers’ IT to "in lifeguard"
imm_to_reg/mem_to_reg,by delivering

then deliver other.

State Transition and Action Table

Figure 5. A unary inheritance tracking design.

the structure of their code provides an opportunity for a non-

unary attack.) For these reasons, we believe that assuming

taintedness does not propagate through non-unary operations

represents a good performance/coverage trade-off.

By limiting the inheritance tracking to unary propagation,

each register in the inheritance table described above can be

associated with at most one source—making such a struc-

ture feasible. Moreover, because non-unary operations act

as “sinks” for propagation (the result is always clean), many

propagation events can be eliminated. In Figure 4, for ex-

ample, unary propagation removes the need for accessing the

metadata for A, B, and C.

4.3 A Unary Inheritance Tracking Design

Figure 5 presents a hardware design for unary inheritance

tracking. The events are chosen to support the IA32 archi-

tecture. Note, however, that one can remove several mem-

ory related events to support RISC architectures. We use a

table, IT, to hold inheritance information for each general-

purpose register. Each entry either specifies the memory ad-

dress from which the register inherits or indicates that the reg-

ister is “clean”. (A third state, “in lifeguard”, is discussed be-

low.) For each incoming original propagation event, we look

up the state transition and action table using the event type and

the state of the source register. The action is either to update

an entry in the IT table, to deliver an event to the lifeguard,

or to simply discard the event. For example, if the event is a

reg to reg type (mov %rs, %rd) and IT(%rs) holds an ad-

dress addr, then IT(%rd) is updated to addr.

Three issues complicate the picture somewhat. First, be-

cause the inherited metadata values are lazily evaluated, a

write-after-read conflict may occur if a “store to A” event (e.g.,

imm to mem) arrives when a register r currently inherits from

A. A problem arises if the store event were delivered, up-

dating A’s metadata, and later a reg to mem event were to

propagate r’s metadata to another location B’s metadata. B’s

metadata should inherit the previous value of A’s metadata,

which had been overwritten. We solve this potential problem

by detecting the conflict and delivering a mem to reg event

to the lifeguard just prior to the “store to A” event, so that the

lifeguard can appropriately maintainA’s previousmetadata as

the current state of r. IT (r) is then set to “in-lifeguard”, indi-
cating that r’s metadata is now maintained in software (until

the next overwriting of register r).

Second, architectures such as IA32 support unaligned

memory accesses and accesses with multiple sizes. To be

conservative, we would like the conflict detection mechanism

to match any recorded memory accesses that have overlap-

ping ranges with the current store. As shown in Figure 5, the

four rightmost columns in the IT table store a pair of 4-byte

aligned addresses with bitmaps indicating used bytes. An in-

coming store can first match its 4-byte aligned addresses and

then check the bitmaps to determine if there is a conflict.

Third, there may be instructions not represented by the ex-

plicit event types in Figure 5 (e.g., xchg in IA32). Since these

instructions are typically less frequent, we deliver an other

event where the lifeguard software can analyze the instruction

record in a slow path to determine the appropriate action. Be-

fore delivering an other event, our unary tracking hardware

flushes the IT state of relevant registers to ensure that the life-

guard has all the relevant up-to-date metadata states.

Moreover, we have optimized the state transition for binary

operations with known “clean”%rs. In such cases, we choose

to “do nothing”, leaving the destination’s metadata unmodi-

fied, which follows generic propagation.

In summary, because many of the events are processed

solely by the IT mechanism and not by the lifeguard, the life-

guard overhead can be significantly reduced. For example,

in Figure 4, IT reduces the number of delivered events from

seven to two, as shown on the right of the figure.

5 Idempotent Filters for Checking Events

Checking metadata states upon observing certain applica-

tion events is a fundamental operation of any lifeguard. While

some lifeguards perform only a modest number of checks

(e.g., TAINTCHECK), others perform checks very frequently

(e.g., ADDRCHECK, MEMCHECK, and LOCKSET logically

check every memory operation). However, many checks are

idempotent (redundant). For example, once ADDRCHECK

checks that a memory location is allocated, subsequent loads

and stores to the same address need not be checked—until the

next free() event. In this section, we present an Idempotent

Filter design for reducing lifeguard checking overhead.

The idea is to introduce a lifeguard-configurable IF cache

of recently observed checking events. If an incoming event

hits in the cache, it is discarded (filtered). Upon a miss in

the IF cache, an event E is delivered to the lifeguard. If E

is configured to be cacheable, it is inserted into the IF cache

with the LRU replacement policy.

Since different lifeguards have different checking require-

ments, the IF hardware extends the event type configuration

table (ETCT), which specifies event handler addresses, to in-

clude the following fields that control the IF behavior. First,

a cacheable bit specifies whether the lifeguard classifies the

event as checking-only (non-updating). If set, events of that

type can be filtered by the IF cache. Second, a “check catego-

rization” (CC) field enables lifeguards to specify whether two

event types result in the same checks (such as load and store

events in ADDRCHECK). Third, there is a cacheable bit for ev-

ery field of the instruction record. A line in the IF cache con-

sists of the CC value and the set of selected record field values.

The line is indexed by a hash code computed from the entire

line. If the CC value and the selected fields of an incoming

event match an existing cache entry, the IF hardware consid-

ers it a “hit” and assumes that the two events are idempotent.

For example, ADDRCHECK would use the same CC value for

load and store event types, and specify that the memory ad-

dress and the size fields are cacheable. MEMCHECK employs

IF similarly for accessibility checking. In contrast, LOCKSET

must treat load and store operations as separate with respect

to filtering by using different categorization values for them

(surprisingly, IF does apply to LOCKSET despite only being

able to observe a single thread at a time1).

Moreover, the ETCT specifies invalidation policies for the

IF cache. Note that checks are only idempotent as long

as the underlying metadata remain unmodified. If the rele-

vant metadata changes, cached checks must be invalidated.

We further augment the ETCT with two bits: one indicating

whether an event of this type invalidates the entire IF cache

(e.g., malloc/free calls or system calls), and one indicating

whether the event invalidates records that match the specified

CC value and selected fields of the event.

Perhaps most interestingly, we find that relatively small

cache sizes (e.g., 32-entry) and associativity (e.g., 4-way) are

remarkably useful for idempotent filtering. Extensive results

are presented in Section 7.

6 Reducing the Cost of Metadata Mapping

As described in Section 2.1, instruction-grain lifeguards

typically keep metadata for every byte or word in the address

space of the monitored applications, and typically, this meta-

data is consulted and/or updated for each (unfiltered) mem-

ory reference event. Because metadata accesses are so fre-

quent, providing a fast translation from application addresses

1For LOCKSET, we choose to invalidate the filter for all annotation

records (including lock/unlock). Consider two redundant accesses to the same

memory location m from the same thread t. Because there is no lock/unlock

in between, t’s lockset St at the two accesses must be the same. Intersecting

m’s candidate set Sm with the same St twice does not shrink Sm further.

Lifeguard Metadata Designs

One−Level Two−Level
MetadataMetadata

code
global data

heap

mmaped

stack

library

Application

unused

Figure 6. Two alternative lifeguard metadata designs. (We focus
on the more flexible two­level design.)

to metadata addresses is essential for good lifeguard perfor-

mance.

6.1 Lifeguard Metadata Organizations

From a survey of previous studies [7, 8, 17, 18, 21, 25, 27,

30, 35], we have identified the two possible metadata organi-

zations shown in Figure 6. In the one-level design, a single

contiguous metadata region represents a (possibly scaled) di-

rect translation of the entire application address space. While

this organization enables address translation through a simple

scale-and-offset mechanism, it presents several drawbacks.

First, sparsely-used application address spaces consume

an unnecessarily large portion of the lifeguard address space.

Second, because both extremes of an application’s virtual ad-

dress space are typically occupied, the one-level design is only

viable when metadata consume less space than normal data

(e.g., 1 taint bit representing 1 byte), limiting its applicabil-

ity. Third, the waste of metadata address space is particularly

challenging when the application and lifeguard must share the

same address space as in many proposals (including DISE); in

face of the challenges of getting the application data, lifeguard

metadata, lifeguard auxiliary data, and the lifeguard code to fit

into a single virtual address space, robustness and portability

considerations2 often favor the two-level design [19].

The two-level design avoids these drawbacks by employ-

ing an indexing structure similar to a page table to perform the

translation between application addresses and metadata ad-

dresses. This structure is clearly more space-efficient and flex-

ible. The two-level design also requires fewer modifications

to the normal loader, runtime, and OS behavior because the

lifeguard can make better use of its available address space.

Because our goal is to support a wide range of lifeguards, we

consider the two-level design to be the baseline configuration.

6.2 Lifeguard­managed Address Translation

The one negative attribute of the two-level structure is per-

formance, as the extra level of indirection requires additional

lifeguard instructions and memory references. Figure 7 shows

a representative event handler in TAINTCHECK, which com-

bines the taint of a memory location and a register. The origi-

nal C code is shown on the left along with the generated IA32

assembly instructions. Of the eight instructions, the first five

performs metadata mapping, which is over half of the instruc-

tions in this handler! Our goal is to achieve the advantages of

the two-level design while minimizing the cost.

2particularly given (1) large, uncooperative programs, or (2) tools which

target multiple operating systems, and/or diverse hardware platforms.

Noting that the two-level metadata structure resembles

page-tables, a hardware TLB mechanism suggests itself as a

possible solution to the performance problem. Rather than

translating virtual addresses to physical ones, however, such

a mechanism would translate application-space virtual ad-

dresses to lifeguard-space (metadata) virtual addresses. Note

that, because the output of the mechanism are lifeguard-space

virtual addresses, the lifeguard can be permitted to manage the

structure directly—minimizing (if not obviating) the need for

OS support. In fact, a software-managed TLB [13] augmented

to handle user-selectable metadata structure sizes would mini-

mize the negative performance impact of the two-level design

while preserving its flexibility.

6.3 The LMA (Load Metadata Address) Instruction

In the context of the IA32 architecture, we propose ex-

posing a TLB-like address translation mechanism, which we

call Metadata-TLB (M-TLB), through a new instruction, LMA

(Load Metadata Address), which translates an application ad-

dress directly to a metadata address. Such a mechanism en-

ables us to replace the first five instructions on the left side

of Figure 7 with a single LMA instruction on the right side,

thus reducing the handler’s instruction count by half. Figure 8

describes the complete extension to the architecture.

Figure 9 depicts an M-TLB design. A lifeguard en-

ables LMA support by configuring the metadata mapping with

lma config. Because the M-TLB is software managed (by the

user-space lifeguard), a miss handler address is specified. An

application data address is broken down into three parts: the

highest part is the level1 index, the middle part is the level2

index, the lowest part is the index into each level2 element.

The LMA config register records the number of level1 and

level2 bits as well as the size of level2 elements. As shown

in Figure 9, an lma instruction converts an application data

address into a metadata address using a fast hardware lookup

table (CAM). If successful, it takes one cycle. However, if the

mapping is not found, the application address is pushed onto

the stack and the software miss handler is called, which uses

lma fill to insert the missing mapping. When the miss handler

returns, the lma instruction is re-executed.

We make the following three design choices. First, to sup-

port a wide range of lifeguards, our design is flexible in terms

of the number of bits in level1 and level2 index and the ele-

ment size. In fact, an lma config flushes the M-TLB, and can

be used to dynamically configure the mapping. Section 7.3

shows that such flexibility can significantly reduce M-TLB

miss rates. Second, to reduce hardware complexity, LMA only

performs address translation; it does not issue any memory

accesses for metadata. Third, LMA only obtains the starting

(byte) address of a level2 element; determining the offset of

fields within an element (e.g., which bit corresponds to the

taint of a given application byte address) is the responsibil-

ity of the lifeguard. In our experiences, this does not incur

significant overhead because lifeguards can often use a level2

element as the most frequent metadata size, as in Figure 7.

7 Experimental Evaluations

We evaluate the performance benefits and design choices

of our framework through both a simulation and a profiling

// mov %eax, %ecx
// shr $16, %ecx
// mov level1_index(,%ecx,4), %ecx

map *mp = level1_index[src_addr>>16];

// and $0xffff, %eax
// shr $2, %eax

int idx = (src_addr & 0xffff) >> 2;

// movzbl (%ecx,%eax,1), %eax
UChar mem_taint = mp[idx];

// or %a1, reg_taint(%edx)
reg_taint[dest_reg] |= mem_taint;

// nlba
next_lba_record();

UChar *p = LMA_macro(src_addr);
// LMA %eax, %ecx

// mov (%ecx), %al

UChar mem_taint = *p;

next_lba_record();

// nlba

reg_taint[dest_reg] |= mem_taint;

// or %al, reg_taint(%edx)

/* Applying LMA */

void dest_reg_op_mem_4B(UINT32 src_addr/*in %eax*/, UINT32 dest_reg/*in %edx*/)

// App instruction event: dest_reg = dest_reg op mem(src_addr)

// Handler performs: reg_taint(dest_reg) |= mem_taint(src_addr)

Figure 7. Applying LMA to a TAINTCHECK event handler. (Two­level metadata structure: 16­bit
level1 index, 14­bit level2 index, 2­bit in­byte offset. 2­bit tainted metadata is used so that the
frequent 4­byte operations on IA32 are handled with 1­byte metadata accesses.)

lma config $imm, $miss

Set LMA config register
and miss handler

lma %rs, %rt

map an application address
(%rs) into metadata
address (%rt)

lma fill %ra, %rb

fill M-TLB with an entry
given by application
address (%ra) and metadata
address (%rb)

Figure 8. New instructions
for LMA.

AND

level1 index (20 bits) level2 start address (32 bits)

AND

SHIFT

00: 1−byte
01: 2−byte
10: 4−byte
11: 8−byte

ADD

shift = 32 − level1_bits − level2_bits

− level2_element_size

upper 20 bits

Level1 mask

0xffff0

0xb3fb0

2

32 bits

Level2 mask

0x0000fffc

0x00007038

all 32 bits

0x00001c0e

metadata address (to %rt)

20 bits

Fast lookup table

00

2

0111010000reserved

31 12 11 7 6 01

level1 level2 level2
of bits # of bits element

size

register
LMA config

0x08046000
start address

0x08047c0e

invoke miss handler

Application data address (from %rs)
0xb3fb703a

at lma_config
at lma

Legend

Configured
Example

Figure 9. A 32­bit LMA hardware design illustrated with the TAINTCHECK example in Figure 7.

study. In the simulation study, we perform full-system simu-

lations of five diverse instruction-grain lifeguards monitoring

CPU-intensive benchmarks. However, due to simulation time

constraints, reduced input sets are used. In contrast, we use

the full-scale inputs in the profiling study, and investigate the

impact of design choices on miss rates and filtered events.

7.1 Experimental Setup

Simulation Study. We implemented LBA by extending the

Simics [36] full-system simulation platform with log record

capture and event dispatch support. As described in Sec-

tion 3, we extend our original LBA design with the capability

of delivering multiple (hardwired) events per log record. The

three proposed techniques, namely Inheritance Tracking (IT),

Idempotent Filters (IF), and Load Metadata Address (LMA),

are implemented in the event dispatch module, and are indi-

vidually configurable by the lifeguard software.

Table 2 describes the simulation setup. We model a dual-

core IA32 system with LBA, running an application on one

core and a lifeguard monitoring the application on a second

core. Because the choice of ISA may significantly affect the

mix of monitored events, we choose the currently most pop-

ular ISA, IA32, in our study. Lacking a complete, publicly

available model for out-of-order IA32 simulations, we model

in-order cores. We simulate a two-level cache hierarchy with

private L1 caches and a shared L2 cache, which contains a

64KB log buffer. The log buffer accesses are modeled as fol-

lows. To reduce L1 interference, a one-cache-line (64-byte)

record buffer is used at both cores for caching compressed log

records. The producer core writes an entire line of records to

the L2 cache when the 64-byte buffer is filled. Likewise, the

consumer core reads an entire line of records at a time.

In the simulation, we assume an 8-entry IT table (for 8

general-purpose registers), a 32-entry fully-associative cache

for the IF filter, and a 1-cycle latency for the LMA instruction.

We explore the design space in the profiling study.

Profiling Study. We instrument the benchmark executables
with PIN [14] to obtain memory access, propagation, and ad-

dress computation events. We build three modules that model

the IT, IF, and LMA mechanisms, respectively. The modules

take the events as input and collect statistics on miss rates and

filtered events. We vary the design parameters of the tech-

niques to explore the design space.

Lifeguard Implementations. We implemented five diverse

lifeguards as shown in Figure 2. In addition to the common

TAINTCHECK supported by previous lifeguard-specific hard-

ware DIFT proposals [7, 8, 30, 34], we implemented a version

of TAINTCHECK enhanced with detailed tracking. It keeps

8-byte metadata for every 4-byte application word. When a

memory location is tainted by an instruction, the enhanced

TAINTCHECK records the 4-byte “from”memory address and

the 4-byte eip. In this way, a taint propagation trail can be

reconstructed upon a security violation.

Table 2. Simulation Setup.

Simulator description

Simulator Virtutech Simics 3.0.17

Extensions Log capture and dispatch

Target OS Fedora Core 5 for IA32

Processor core Dual-core, in-order scalar

Cache simulation g-cache module

Simulation parameters

Private L1I 16KB, 64B line, 2-way assoc, 1-cycle access lat.

Private L1D 16KB, 64B line, 2-way assoc, 1-cycle access lat.

Shared L2 512KB, 64B line, 8-way, 10-cycle access lat., 4 banks

Main Memory 200-cycle latency

Log buffer 64KB, assuming 1B per compressed record [3]

Table 3. Multithreaded Benchmarks for LOCKSET.
Benchmark Description and Input

blast v2.2.16 [16] Searching a nucleotide and protein
database of 134K sequences

pbzip2 v1.0.1 [22] Parallel data compressor, compress half
of CPU2000’s ref input.source

pbunzip2 v1.0.1 [22] Decompress pbzip2’s output in parallel

water-nq SPLASH-2 [38] Water simulation, 343 molecules

zchaff 2002.7.15 [23] SAT (Boolean Satisfiability Problem)
solver, circuit fault analysis

We strive to write the lifeguard code as optimized as possi-

ble. First, as shown previously in Figure 4, we use 2-bit meta-

data per application byte for the common TAINTCHECK. In

this way, the frequent 4-byte operations in IA32 applications

correspond to 1-byte metadata accesses, avoiding sub-byte ac-

cess costs. MEMCHECK employs a similar scheme. Second,

we optimize the code path for the frequent (stable) cases in

metadata checking. For example, given a memory access, our

LOCKSET implementation first checks if the 32-bit metadata

is one of the recently seen stable cases3 before performing the

expensive lockset intersection operation. Third, we compile

the lifeguards with gcc where event handlers are C functions

with register parameters. We examine the disassembly of the

frequent code path (typically less than 10 instructions) for the

frequent event handlers. In cases that we see suboptimal code,

we hand optimize the assembly code.

Benchmarks and Inputs. We choose CPU-intensive bench-
marks to “stress test” instruction-grainmonitoring. In the sim-

ulation study, we use the SPEC2000 integer benchmarks to

evaluate all but the LOCKSET lifeguard. Because of the sim-

ulation time constraints, the test inputs are used. In contrast,

we explore the design space in the profiling study with the

ref inputs for the SPEC2000 integer benchmarks. For the data

race detection lifeguard, LOCKSET, we use five multithreaded

benchmarks in the simulation study, as shown in Table 3. Each

benchmark spawns two working threads that are restricted to

run on core 1 using Linux’s sched setaffinity call. Note

that running multiple application threads on separate cores re-

quires synchronizing both event delivery and lifeguard meta-

data access, and is beyond the scope of the paper. All bench-

marks were run to completion in both the simulation and the

profiling study.

7.2 Performance Study using Simulations

We evaluate the performance benefits of our framework us-

ing five diverse lifeguards. Figure 10 reports lifeguard perfor-

mance with and without our proposed optimizations. The Y-

axis reports the slowdowns of benchmark runs monitored by a

lifeguard compared to benchmark runs without lifeguards. We

see that compared to the LBA baseline bar, our techniques dra-

3That is, Sm ∩ St = Sm, hence the metadata does not change.

matically reduce the slowdowns for all the lifeguards, achiev-

ing less than 51% overhead on our challenging benchmarks

for all but the MEMCHECK lifeguard.

The still poor performance of MEMCHECK is not sur-

prising. Like ADDRCHECK, MEMCHECK checks memory

accesses. Like TAINTCHECK, it propagates metadata. In

addition, MEMCHECK also monitors other instruction-grain

events, such as address computation for checking pointer

dereference. Therefore, the events monitored by MEMCHECK

is a super-set of ADDRCHECK and TAINTCHECK. Its slow-

down is expected to be larger than the sum of ADDRCHECK’s

slowdown and TAINTCHECK’s slowdown.

Figure 11 shows the performance improvement by apply-

ing one by one our three techniques (LMA for metadata map-

ping, IT for metadata updates, and IF for metadata checks).

The Y-axis reports the average slowdowns across the bench-

marks. As described in Figure 2, LMA is applicable to all

the lifeguards, while IT and IF are relevant to a subset of

the lifeguards. Moreover, IF is a flexible mechanism where

a lifeguard can configure which event to filter and how to

invalidate the filter. Both ADDRCHECK and LOCKSET re-

quire that memory accesses are filtered and the filter is in-

validated at high-level events. However, they differ in that

ADDRCHECK does not distinguish memory loads and stores

while LOCKSET does. Like ADDRCHECK, MEMCHECK also

checks memory accesses therefore employing the same filter.

In addition, MEMCHECK also checks the base and index reg-

isters of address computations.

From Figure 11, we see that applying an additional tech-

nique achieves significant performance gains in all cases; the

three techniques are complementary. This is because they are

targeting different aspects of the lifeguard overhead. LMA re-

duces the average event handler lengths by replacing multiple

metadata mapping instructions with a single LMA instruction.

As shown in Figure 12, it reduces the total lifeguard dynamic

instruction count by 16.7%–49.3%. IT and IF complement

LMA by reducing the event frequency for update events and

checking events, respectively. As shown in Figure 12, IT and

IF filter out 24.9%–77.8% of the update and checking events.

7.3 Exploring Design Space using PIN Analysis

IT. We use PIN to instrument the SPEC2000 integer bench-

marks with ref input. Figure 13(a) shows the percentage of

reduced propagation events using Inheritance Tracking. IT

removes 35.8%–82.0% of the propagation events.

IF. Figure 13(b) and (c) shows the average percentage of re-
duced check events by applying Idempotent Filters on the

SPEC benchmarks with ref input while varying the number

of filter entries and the set associativity of the filter design.

Figure 13 (b) and (c) correspond to accessibility checking in

ADDRCHECK and data race checking in LOCKSET, respec-

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

tw
ol
f

vo
rte

x
vp

r
Avg

s
lo

w
d

o
w

n
s

AddrCheck

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

bz
ip

2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

tw
ol
f

vo
rte

x
vp

r
A
vg

s
lo

w
d

o
w

n
s

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

bz
ip

2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

tw
ol
f

vo
rte

x
vp

r
A
vg

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

bl
as

t

pb
un

zi
p2

pb
zi
p2

w
at

er

zc
ha

ff
Avg

0.0

2.0

4.0

6.0

8.0

10.0

12.0

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

tw
ol
f

vo
rte

x
vp

r
Avg

LBA Baseline

LBA Optimized

MemCheck

TaintCheck TaintCheck w/ Detailed Tracking LockSet

Figure 10. Performance benefits of our framework on five diverse lifeguards.

3
.2

3

1
.9

0

1
.0

2

7
.8

0

6
.0

5

3
.8

1

3
.2

7

3
.3

6

2
.2

9

1
.3

6

4
.2

1

2
.7

1

1
.5

1

4
.2

5

3
.2

0

1
.4

0

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

B
A

S
E

L
M

A

L
M

A
+

IF

B
A

S
E

L
M

A

L
M

A
+

IT

L
M

A
+

IT
+

IF

B
A

S
E

L
M

A

L
M

A
+

IT

B
A

S
E

L
M

A

L
M

A
+

IT

B
A

S
E

L
M

A

L
M

A
+

IF

a
v
e

ra
g

e
 s

lo
w

d
o

w
n

s

AddrCheck MemCheck TaintCheck TaintCheck

w/ Detailed

Tracking

LockSet

Figure 11. Applying our three techniques one by one.

LMA: Reduced IT: Reduced IF: Reduced
dynamic instr update events check events

ADDRCHECK 28.9%–49.3% – 38.2%–65.1%

MEMCHECK 16.7%–23.6% 24.9%–59.7% 38.2%–62.8%

TAINTCHECK 20.2%–42.4% 37.4%–74.4% –

TAINTCHECK w/ 38.9%–44.3% 37.4%–74.4% –
detailed tracking

LOCKSET 18.2%–39.0% – 43.5%–77.8%

Figure 12. Statistics on reduced instructions and events across
the benchmarks.

0

10

20

30

40

50

60

70

80

90

100

b
z
ip

2

c
ra

ft
y

e
o

n

g
a

p

g
c
c

g
z
ip

m
c
f

p
a

rs
e

r

tw
o
lf

v
o

rt
e

x

v
p

r

re
d

u
c

e
d

 u
p

d
a

te
 e

v
e

n
ts

 (
%

)

0

10

20

30

40

50

60

70

80

8 16 32 64 128 256

number of filter entries

re
d

u
c
e

d
 c

h
e

c
k
 e

v
e

n
ts

 (
%

)

fully-assoc
16-way
8-way
4-way
2-way
1-way

0

10

20

30

40

50

60

70

80

8 16 32 64 128 256

number of filter entries

re
d

u
c
e

d
 c

h
e

c
k
 e

v
e

n
ts

 (
%

)

(a) IT (b) IF for combined loads and stores (c) IF for separate loads and stores

Figure 13. IT and IF filtering for metadata updates and checks with PIN­based analysis.

parser(12) 0.0055 0 0

twolf(11) 0 0 0

vortex(15) 0.403 0.0936 0.0128

vpr(10) 0 0 0

0

1

2

3

4

5

6

7

8

9

20 19 18 17 16 15 14 13 12 11 10 9 8

number of level 1 bits

M
-T

L
B

 m
is

s
 r

a
te

 (
%

)

16-max

32-max

64-max

128-max

256-max

16-avg

32-avg

64-avg

128-avg

256-avg

bzip2(20) 1.8832 0.9412 0.2563

crafty(20) 4.1975 0.4897 0.0181

eon(20) 0.0531 0 0

gap(20) 1.3378 0.0891 0.0386

gcc(20) 0.1299 0.0402 0.0142

gzip(20) 2.0729 0.002 0.0013

mcf(20) 8.4477 7.0698 5.2523

parser(20) 3.5168 0.5706 0.1223

twolf(20) 2.5142 1.058 0.0422

vortex(20) 1.6045 0.3225 0.1565

vpr(20) 3.843 1.3543 0.1814

variable level 1 bits (using up to 1% total pages or up to 10% space increase)

bzip2(12) 0 0 0

crafty(10) 0 0 0

eon(10) 0 0 0

gap(11) 0.0027 0 0

gcc(12) 0 0 0

0

1

2

3

4

5

6

7

8

9

b
z
ip

2
(2

0
)

c
ra

ft
y
(2

0
)

e
o

n
(2

0
)

g
a

p
(2

0
)

g
c
c
(2

0
)

g
z
ip

(2
0

)

m
c
f(

2
0

)

p
a

rs
e

r(
2

0
)

tw
o

lf
(2

0
)

v
o

rt
e

x
(2

0
)

v
p

r(
2

0
)

b
z
ip

2
(1

2
)

c
ra

ft
y
(1

0
)

e
o

n
(1

0
)

g
a

p
(1

1
)

g
c
c
(1

2
)

g
z
ip

(1
1

)

m
c
f(

1
3

)

p
a

rs
e

r(
1

2
)

tw
o

lf
(1

1
)

v
o

rt
e

x
(1

5
)

v
p

r(
1

0
)

M
-T

L
B

 m
is

s
 r

a
te

 (
%

)

16-entry

64-entry

256-entry

Flexible Level-1 bitsFixed Level-1 bits

(a) Varying number of level-1 bits (b) Fixed-bit vs. variable-bit design (level-1 bits in parenthesis)

Figure 14. Exploring the design space of M­TLB with PIN­based analysis.

tively. The difference is that the latter treats loads and stores

separately while the former does not distinguish loads and

stores. We see that IF can effectively reduce the number of

check events, and a set-associative design with 4 or more ways

works as well as the fully-associative design.

M-TLB. Figure 14(a) varies the number of level-1 bits from

20 to 8 bits in M-TLB and varies the number ofM-TLB entries

from 16 to 256. For every configuration, the maximum and

the average miss rates of all benchmarks are depicted. As the

number of level-1 bits decreases, the total number of level-1

entries decreases exponentially, thus resulting in the dramatic

decrease of miss rates in the figure. On the other hand, life-

guard space overhead increases as level-1 bits decrease be-

cause small holes in the application space can no longer be

distinguished. In Figure 14(b), we explore this trade-off and

compare a fixed-level-1 design (left) with our flexible design

(right). For the latter, the level-1 bits are chosen so that ei-

ther the lifeguard space grows less than 10% or the lifeguard

uses up to 1% of the total 32-bit address space (assuming a

1-1 mapping from application byte to metadata byte). We see

that our flexible design dramatically reduces the M-TLB miss

rates. In most cases, the miss rates are negligible.

8 Conclusion

This paper presented a hardware acceleration framework

for a wide range of instruction-grain lifeguards. Three novel

techniques—Inheritance Tracking, Idempotent Filters, and

Metadata-TLBs—are shown to significantly reduce the ma-

jor sources of overheads in such lifeguards. For all the life-

guards studied (but MEMCHECK), we found that these tech-

niques reduced the overheads of LBA from 3.2–4.2X down

to 1.02–1.5X on challenging CPU-intensive benchmarks. Our

future work seeks to reduce these overheads further and also

to study the performance on less challenging memory-bound

benchmarks. The negligible overheads for our sole memory-

bound benchmark (mcf) are encouraging in this regard.

Acknowledgments. This work is supported by grants from

the National Science Foundation and from Intel. Ramachan-

dran is supported in part by NSF grant CCF-0514876.

We thank Anastassia Ailamaki, Limor Fix, Greg Ganger,

Michelle Goodstein, Bin Lin, and Radu Teodorescu for their

contributions and inputs to the LBA project.

References
[1] D. Bruening. Efficient, transparent, and comprehensive runtime code

manipulation. PhD thesis, MIT, 2004.
[2] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for find-
ing dynamic programming errors. Software – Practice and Experience,
30(7), 2000.

[3] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry, R. Teodor-
escu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and S. W. Schlosser.
Log-based architectures for general-purpose monitoring of deployed
code. In ASID Workshop at ASPLOS, 2006.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating systems errors. In SOSP, 2001.

[5] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A programmable macro
engine for customizing applications. In ISCA, 2003.

[6] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In USENIX Secu-
rity, 1998.

[7] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In MICRO, 2004.

[8] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible informa-
tion flow architecture for software security. In ISCA, 2007.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules us-
ing system-specific, programmer-written compiler extensions. InOSDI,
2000.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynami-
cally discovering likely program invariants to support program evolu-
tion. IEEE TSE, 27(2), 2001.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In PLDI, 2002.

[12] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using
sequences of system calls. J. of Computer Security, 6(3), 1998.

[13] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.
[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In PLDI, 2005.

[15] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
recording program execution for deterministic replay debugging. In
ISCA, 2005.

[16] National Center for Biotechnology Information (NCBI). Basic local
alignment search tool (BLAST). ftp://ftp.ncbi.nih.gov/blast/.

[17] N. Nethercote. Dynamic binary analysis and instrumentation. PhD
thesis, U. Cambridge, 2004. http://valgrind.org.

[18] N. Nethercote and J. Seward. Valgrind: A program supervision frame-
work. Electronic Notes in Theoretical Computer Science, 89(2), 2003.

[19] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In VEE, 2007.

[20] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In PLDI, 2007.

[21] J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In NDSS, 2005.

[22] Parallel Bzip2. http://compression.ca/pbzip2/.
[23] Princeton Zchaff. http://www.princeton.edu/∼chaff/zchaff.html.
[24] N. Provos. Improving host security with system call policies. In

USENIX Security, 2003.
[25] F. Qin, C.Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A low-

overhead practical information flow tracking system for detecting secu-
rity attacks. In MICRO, 2006.

[26] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies - a safe method to survive software failures. In SOSP, 2005.

[27] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic race detector for multi-threaded programs. ACM
TOCS, 15(4), 1997.

[28] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heapmon: A
helper-thread approach to programmable, automatic, and low-overhead
memory bug detection. IBM J. on Research and Development, 50(2/3),
2006.

[29] W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. An integrated framework
for dependable and revivable architectures using multicore processors.
In ISCA, 2006.

[30] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program exe-
cution via dynamic information flow tracking. In ASPLOS, 2004.

[31] The MITRE Corporation. Common vulnerabilities and exposures
(CVE). http://cve.mitre.org/.

[32] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: Diagnosing
production run failures at the user’s site. In SOSP, 2007.

[33] G.-R. Uh, R. Cohn, B. Yadavalli, R. Peri, and R. Ayyagari. Analyz-
ing dynamic binary instrumentation overhead. In WBIA Workshop at
ASPLOS, 2006.

[34] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Flexi-
Taint: A programmable accelerator for dynamic taint propagation. In
HPCA, 2008.

[35] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. Mem-
Tracker: Efficient and programmable support for memory access mon-
itoring and debugging. In HPCA, 2007.

[36] Virtutech Simics. http://www.virtutech.com/.
[37] J. Wilander and M. Kamkar. A comparison of publicly available tools

for dynamic buffer overflow prevention. In NDSS, 2003.
[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The

SPLASH-2 programs: Characterization and methodological consider-
ations. In ISCA, 1995.

[39] M. Xu, R. Bodik, and M. D. Hill. A ’Flight Data Recorder’ for enabling
full-system multiprocessor deterministic replay. In ISCA, 2003.

[40] M. Xu, R. Bodik, and M. D. Hill. A regulated transitive reduction (RTR)
for longer memory race recording. In ASPLOS, 2006.

[41] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-assisted
lockset-based race detection. In HPCA, 2007.

[42] Y. Zhou, P. Zhou, F. Qin, W. Liu, and J. Torrellas. Efficient and flexible
architectural support for dynamic monitoring. ACM TACO, 2(1), 2005.

