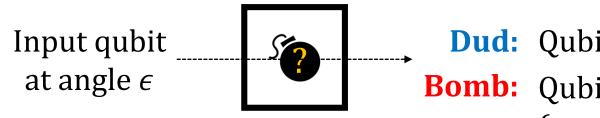
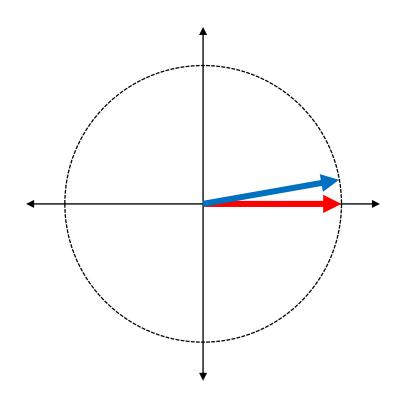
Lecture 4.5: Discriminating Two Qubits



Dud: Qubit at angle ϵ

Bomb: Qubit at angle 0

(assuming no explosion)



Discriminating Quantum States:

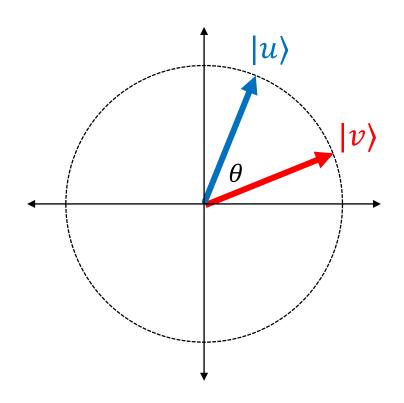
Given an *unknown* quantum state $|\psi\rangle$.

You're *promised* it's either $|u\rangle$ or $|v\rangle$.

(These are two states you *know*.)

Must guess whether $|\psi\rangle = |u\rangle$ or $|\psi\rangle = |v\rangle$.

Apply a unitary transformation? Let's put their bisector at 45°.



Discriminating Quantum States:

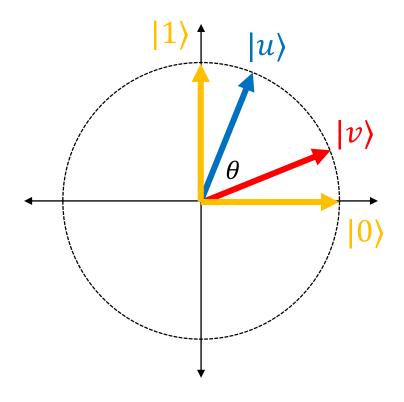
Given an *unknown* quantum state $|\psi\rangle$.

You're *promised* it's either $|u\rangle$ or $|v\rangle$.

(These are two states you *know*.)

Must guess whether $|\psi\rangle = |u\rangle$ or $|\psi\rangle = |v\rangle$.

Measure in the **standard basis**...



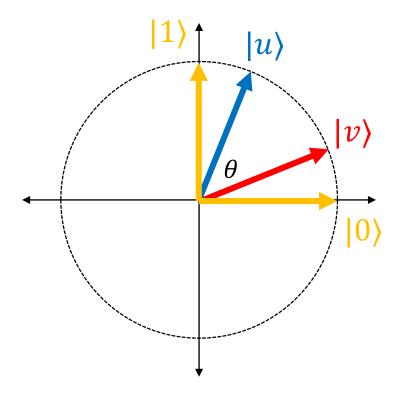
Discriminating Quantum States:

Given an *unknown* quantum state $|\psi\rangle$.

You're *promised* it's either $|u\rangle$ or $|v\rangle$.

(These are two states you know.)

Must guess whether $|\psi\rangle = |u\rangle$ or $|\psi\rangle = |v\rangle$.

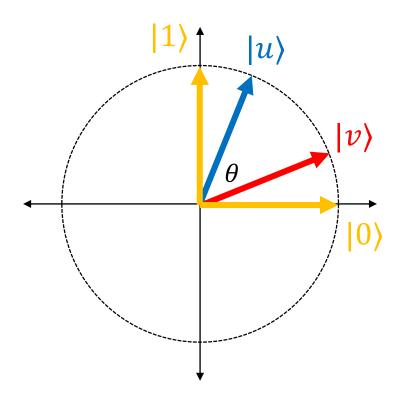


Measure in the standard basis...

- If readout $|0\rangle$, guess $|v\rangle$
- If readout $|1\rangle$, guess $|u\rangle$

Error?

• If $|\psi\rangle = |u\rangle$ then $\Pr[\text{error}] = (\cos \gamma)^2$, where $\gamma = \text{angle between } |u\rangle$ and $|0\rangle$ $= \cos^2(45^\circ + \theta/2)$ $= \frac{1}{2} - \frac{1}{2}\sin\theta$

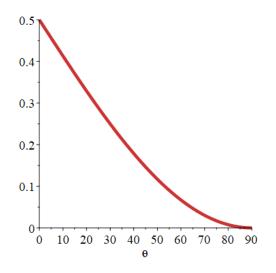


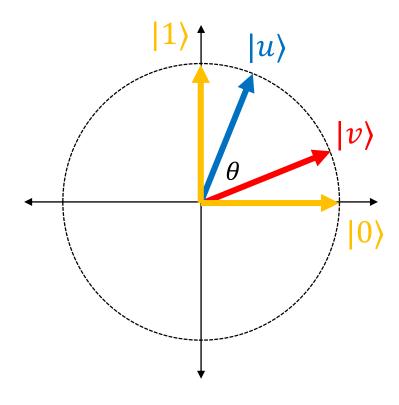
Measure in the standard basis...

- If readout $|0\rangle$, guess $|v\rangle$
- If readout $|1\rangle$, guess $|u\rangle$

Error?

• If $|\psi\rangle = |u\rangle$ then $\Pr[\text{error}] = \frac{1}{2} - \frac{1}{2}\sin\theta$





Measure in the standard basis...

- If readout $|0\rangle$, guess $|v\rangle$
- If readout $|1\rangle$, guess $|u\rangle$

Error?

- If $|\psi\rangle = |u\rangle$ then $\Pr[\text{error}] = \frac{1}{2} \frac{1}{2}\sin\theta$
- If $|\psi\rangle = |v\rangle$ then $\Pr[\text{error}] = \frac{1}{2} \frac{1}{2}\sin\theta$



Measure in the standard basis...

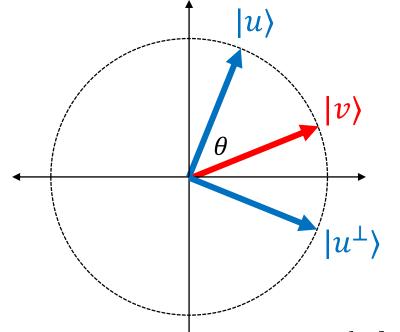
- If readout $|0\rangle$, guess $|v\rangle$
- If readout $|1\rangle$, guess $|u\rangle$

Error?

- If $|\psi\rangle = |u\rangle$ then $\Pr[\text{error}] = \frac{1}{2} \frac{1}{2}\sin\theta$
- If $|\psi\rangle = |v\rangle$ then $\Pr[\text{error}] = \frac{1}{2} \frac{1}{2}\sin\theta$

This is a "two-sided error" algorithm.

A "one-sided error" algorithm?



Measure in the $\{|u\rangle, |u^{\perp}\rangle\}$ basis...

- If readout $|u\rangle$, guess $|u\rangle$
- If readout $|u^{\perp}\rangle$, guess $|v\rangle$

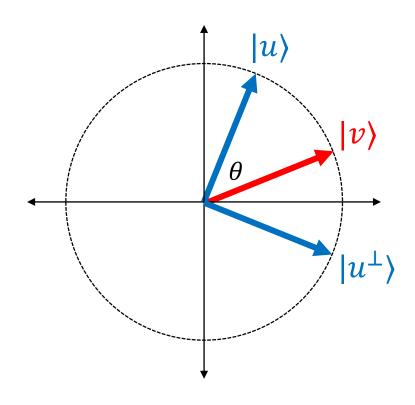
Error?

- If $|\psi\rangle = |u\rangle$ then **Pr**[error] = 0
- If $|\psi\rangle = |v\rangle$ then **Pr**[error] = $(\cos \theta)^2$

"No false positives" (where
$$|v\rangle$$
 = bomb = 'positive')

 $= 1 - (\sin \theta)^2$ same as prob.
of explosion

A "one-sided error" algorithm?

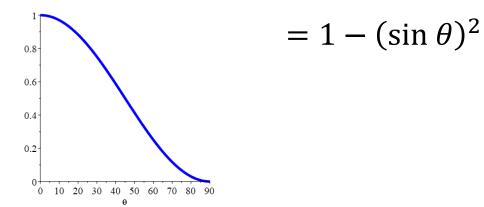


Measure in the $\{|u\rangle, |u^{\perp}\rangle\}$ basis...

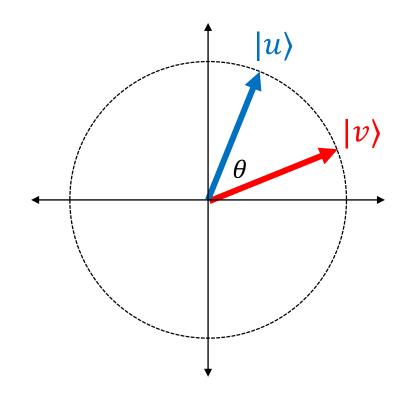
- If readout $|u\rangle$, guess $|u\rangle$
- If readout $|u^{\perp}\rangle$, guess $|v\rangle$

Error?

- If $|\psi\rangle = |u\rangle$ then $\Pr[\text{error}] = 0$
- If $|\psi\rangle = |v\rangle$ then **Pr**[error] = $(\cos \theta)^2$



A "zero-sided error" algorithm?



We have a "no false positives" algorithm.

By symmetry, we have an equally good "no false negatives" algorithm.

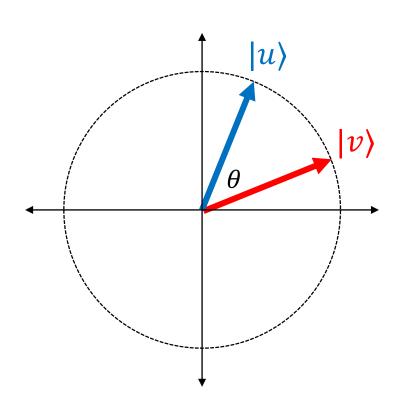
For a **zero**-sided error algorithm:

- With probability ½, do no-false-positives test;
 With probability ½, do no-false-negatives test
- If you get the answer you're "sure of", guess it;
 Otherwise, output "don't know"

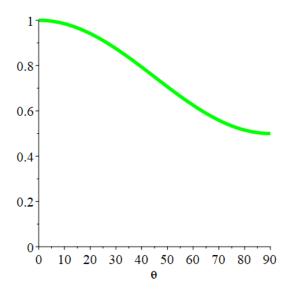
$$\mathbf{Pr}[\text{don't know}] = \frac{1}{2} + \frac{1}{2}\mathbf{Pr}[\text{error in one-sided alg.}] = 1 - \frac{(\sin \theta)^2}{2}$$

A "zero-sided error" algorithm?

We have a "no false positives" algorithm.

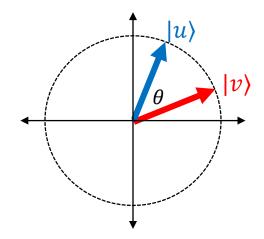


By symmetry, we have an equally good "no false negatives" algorithm.



$$\mathbf{Pr}[\text{don't know}] = \frac{1}{2} + \frac{1}{2}\mathbf{Pr}[\text{error in one-sided alg.}] = 1 - \frac{(\sin \theta)^2}{2}$$

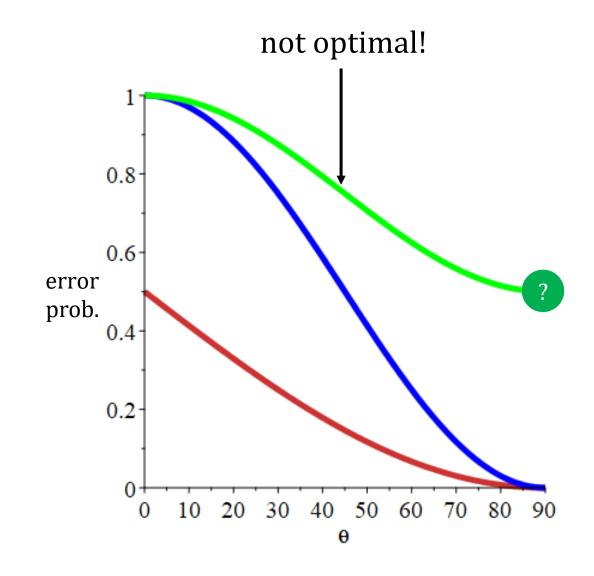
Discriminating Two Quantum States at Angle θ



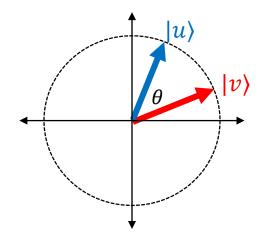
Two-sided error: $\frac{1}{2} - \frac{1}{2} \sin \theta$

One-sided error: $1 - (\sin \theta)^2$

Zero-sided error: $1 - \frac{(\sin \theta)^2}{2}$



Discriminating Two Quantum States at Angle θ



Two-sided error: $\frac{1}{2} - \frac{1}{2} \sin \theta$

One-sided error: $1 - (\sin \theta)^2$

Zero-sided error: $1 - \frac{(\sin \theta)^2}{2}$

