
15-855: Intensive Intro to Complexity Theory
Spring 2009

Lecture 24: Expander Graphs

Recall we always deal with connected, n-vertex, d-regular undirected graphs with self-loops and
multiple edges allowed. Some basics of expanders to recall from last time:

Definition 0.1. We say G is an (n, d, ρ)-combinatorial expander if for all S ⊆ V with |S| ≤ n/2,

|E(S, S)| ≥ ρ · d|S|.

where |E(S, S)| denotes the number of edges between S and its complement S = V \ S.

Definition 0.2. (The MGG expander.) V = Z2
m, with (x, y) connected to (x± y, y), (x± y+ 1, y),

(x, y ± x), (x, y ± x+ 1). This is an (m2, 8, ρ)-combinatorial expander for some explicit ρ > 0.

1 Random walks and error reduction

Perhaps the most useful fact about expanders is that random walks on them mix fast. I.e., if you
start at any vertex and take a very short random walk, soon enough your position will be almost
uniformly random. For example, we will see the following theorem:

Theorem 1.1. Let G be an (n, d, .01)-combinatorial expander. Let B ⊆ V be a set of “bad” vertices
with |B| ≤ (1− δ)n. Suppose we pick a random vertex u1 ∈ V , then take t− 1 steps in a standard
random walk: to u2, u3, . . . , ut. Then it’s exponentially unlikely all ui’s fall into B:

Pr[ui ∈ B ∀i ∈ [t]] ≤ (1− .00001δ)t.

Let’s see why this is useful in derandomization. Let L ∈ RP. Perhaps the best algorithm A we
know uses ` = `(n) random bits and has one-sided error 1− δ; i.e., if x 6∈ L then A always says No,
if x ∈ L then A says Yes with probability at least δ. Suppose we would like to get the error down
to 1/2. The straightforward solution would be to repeat A for O(1/δ) times; this requires using
O(`/δ) random bits. If random bits are precious, here is a better solution:

“Take” (implicitly) a strongly explicit (N, 8, .01)-combinatorial expander G (like the MGG one),
where N = 2`.1 We interpret the vertices V as strings in {0, 1}`. We spend ` random bits to pick
an initial random vertex r1. We then take a random walk r2, . . . , rt of t = O(1/δ) steps. Note
that this can be done with 3(t − 1) random bits and t · polylog(N) = t · poly(`) time, by strong
explicitness; indeed O(t · `) = O(`/δ) time for the MGG graphs. We run our algorithm with these
random strings r1, . . . , rt and accept if it ever accepts.

Total random bits used: `+O(1/δ), much better than O(`/δ).

1This is a square if ` is even, which we can assume without loss of generality.

1



But why does this get the error down to 1/2? If x 6∈ L the algorithm still says No. Other-
wise, if x ∈ L, let B ⊆ {0, 1}` be the random strings which cause A to say No. By assumption,
|B| ≤ (1− δ)2` = (1− δ)L. By the Theorem, the probability that all r1, . . . , rt ∈ B and hence the
algorithm says No is at most (1− .00001δ)t = (1− .00001δ)O(1/δ) ≤ 1/2, taking the O(·) constant
large enough.

That’s nice.

Exercise 1.2. Show how to efficiently find an n-bit prime whp using O(n) random bits.

One can also get the same randomness reduction for BPP algorithms; i.e., two-sided error.

Now that we’ve shown an application, let’s go back and prove some theorems.

2 Spectral analysis

We would like to analyze random walks on (regular) graphs. This may be more familiar to you as
the analysis of Markov chains. The first step is to form the n× n transition matrix K:

K[i, j] =
1
d
A = Pr[going from vertex i to vertex j] =

{
1/d if (i, j) ∈ E
0 else,

where A is the adjacency matrix. Note that K is symmetric and doubly stochastic (all entries
nonnegative, all row and column sums are 1). You can also easily see that

Kt[i, j] = Pr[walk of length t starting at i ends at j].

Suppose π is a probability distribution on vertices; think of it as a row vector with nonnegative
entries summing to 1. Suppose u ∼ π and then we take one random step. What is the resulting
probability distribution? It’s easily seen to be πK. In particular, if π = [ 1

n
1
n · · ·

1
n ] represents the

uniform distribution, πK = π, since all column-sums in K are 1. We say that the uniform dis-
tribution is the stationary distribution for the random walk. We also prefer to work with column
vectors from now on; since K is symmetric, we’ve just seen that Kπ> = π>.

We now take a detour to linear algebra, a topic we hope you remember. Because Kπ> = 1 ·π>,
the vector π> is an eigenvector with eigenvalue 1. To study eigenvalues further, define the Laplacian
matrix

L = id−K.
The following identity is the key to several observations:

Exercise 2.1. Let x ∈ RV ∼= Rn be any vector, with coordinates indexed by the vertices. Then

x>Lx =
n

2
· E
(u,v) rand. edge

[(x[u]− x[v])2]. (1)

Since the RHS is always nonnegative, we conclude that L is a “positive semidefinite (PSD)”
matrix. We now recall a fact from linear algebra:

Fact 2.2. Since L is PSD, it has n real, nonnegative eigenvalues, which we sort as

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn,

and a corresponding orthonormal basis of eigenvectors, ψ1, . . . , ψn.

2



Since K = id− L, we immediately conclude that ψ1, . . . , ψn are eigenvectors for K with eigen-
values

1 ≥ β1 ≥ β2 ≥ · · · ≥ βn, βi = 1− λi.

Actually, we already saw β1 = 1, with unit eigenvalue
√
n · π>; i.e.,

ψ1 = [ 1√
n

1√
n
· · · 1√

n
]>.

Since we’re assuming G is connected, λ2 must be strictly positive. This can be seen from (1):
if x is an eigenvector with eigenvalue 0 then one sees that x must be constant on all connected
components of G; hence x must be parallel to [11 · · · 1]>. Hence:

β2 < 1.

Exercise 2.3. Show that βn ≥ −1 with equality iff G is bipartite. (Hint: consider id+K and get
a + sign on the RHS of (1).)

Exercise 2.4. Form G′ from G by making it “lazy”: adding d self-loops to each vertex. The
random walk on G′ is like the one on G, except at each tick it stays put with probability 1/2. Show
β′i = 1

2 + 1
2βi, hence all β′i are nonnegative.

We now come to an important definition:

Definition 2.5. The “second largest eigenvalue” is

β := max{β2, |βn|};

i.e., the maximum of |βi| over all i 6= 1. This quantity is strictly less than 1 assuming G is not
bipartite. 1− β is called the “spectral gap”.

The reason this parameter is key is as follows. From the eigenvector/eigenvalue decomposition
of K, we have:

Fact 2.6. For any x ∈ Rn, the vector Kx is equal to β1 = 1 times the projection of x on ψ1 =
[ 1√

n
· · · 1√

n
], plus β2 times the projection of x on ψ2 plus · · · plus βn times the projection of x on

ψn.

In particular, the components of x orthogonal to [11 · · · 1] get contracted by a factor of β (or
smaller).

3 Algebraic expanders

Why have we gone through all this eigenvalue analysis? The idea is that the second largest eigen-
value β gives an excellent measure of expansion for G.

Definition 3.1. We say G is an (n, d, ε)-algebraic expander if the second largest eigenvalue β is
at most 1− ε.

Proposition 3.2. If G is an (n, d, ε)-algebraic expander then it is an (n, d, ε/2)-combinatorial
expander.

3



This is extremely useful: The reason is that it’s in P to determine the algebraic expansion
of a given graph (just compute eigenvalues) whereas it’s known to be coNP-hard to certify the
combinatorial expansion. For this reason, it’s much easier to analyze and use the algebraic expansion
of graphs. Indeed, the LPS and MGG expanders are proved via the algebraic definition.

Proof. Assume G is an (n, d, ε)-algebraic expander and let S ⊆ V have 0 < |S| ≤ n/2 (for |S| = 0
there’s nothing to prove). Let x ∈ RV be the 0-1 indicator of S. From (1) we have

x>Lx =
n

2
Pr

(u,v) rand. edge
[(u, v) cut by S] =

n

2
· |E(S, S)|

dn/2
=
|E(S, S)|

d
. (2)

On the other hand, by the eigenvector/eigenvalue decomposition of L, writing xi for the projection
of x onto ψi, we have

x>Lx =
n∑
i=1

λi‖xi‖22 ≥ λ2

n∑
i=2

‖xi‖22 = λ2(‖x‖22 − ‖x1‖22) (3)

Here we used λ1 = 0 and “the Pythagorean Theorem” (orthonormality of ψi’s). Clearly

‖x‖22 = |S|. (4)

And

‖x1‖22 = 〈x, ψ1〉2 =

(∑
v∈V

x[v]√
n

)2

=
|S|2

n
. (5)

Combining (2), (3), (4), (5):

|E(S, S)|
d

≥ λ2

(
|S| − |S|

2

n

)
= (1− β2)

|S|(n− |S|)
n

,

hence
|E(S, S)| ≥ (1− β2)d|S|(1− |S|/n) ≥ (1− β)d|S|(1− |S|/n).

The last factor here is at least 1/2 since |S| ≤ n/2, completing the proof.

There is also a reverse to this theorem, which we won’t need, which is good because it’s a bit
trickier to prove:

Proposition 3.3. If G is an (n, d, ρ)-combinatorial expander then its β2 is at most 1− ρ2/2.

There is also an extension of Proposition 3.2 called:

The Expander Mixing Lemma: Let G be an (n, d, ε)-algebraic expander and let S, T ⊆ V .
Then ∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣ ≤ (1− ε)d
√
|S||T |.

Proof. Exercise. Mimic the proof of Proposition 3.2 but with y>Lx, where x is the indicator of S
and y is the indicator of T .

Thus we see that expanders have nice “pseudorandomness” properties: the number of edges
between S and T is close to “what you would expect” for a random d-regular graph.

Here’s one more simple fact that follows from (1); every graph is at least “slightly expanding”:

4



Proposition 3.4. Assume G is not bipartite. Then β ≤ 1− 1
dn2 .

Proof. The result is not too hard; we leave it as an exercise to prove

β ≤ 1− Ω
(

1
dndiam(G)

)
.

The hint is to take x to be the second unit eigenvector in (1) and note that, since x⊥ψ1, its
coordinates sum to 0. Hence it has at least one component x[u] with |x[u]| ≥ 1/

√
n, and at least

one other component x[v] with the opposite sign to x[u]. Now consider a path from u to v. . .

4 Fast mixing

Here we’ll see the first utility of studying eigenvalues:

Proposition 4.1. (Fast mixing.) Let G be an (n, d, ε)-algebraic expander. Suppose p is a probability
distribution on V (thought of as a column vector); we start a random walk from distribution p and
run it for t steps. Then the resulting distribution, Ktp, is very close to the uniform distribution
π = [ 1

n · · ·
1
n ]>:

‖Ktp− π‖2 ≤ (1− ε)t.

Proof. Decompose p in the eigenvector decomposition as p = αψ1 + p′, where p′⊥ψ1. We have

α = 〈p, ψ1〉 =
1√
n

∑
v

p[v] =
1√
n

;

hence αψ1 = π. Note also that ‖p′‖2 ≤ ‖p‖2 ≤ ‖p‖1 = 1. Thus

‖Ktp− π‖2 = ‖Ktp′‖2 ≤ βt‖p′‖2 ≤ βt = (1− ε)t,

by definition of β.

Corollary 4.2. The diameter of G is at most d lnnε e.

I.e., good expanders have diameter O(log n). This will be key in the proof of SL = L.

Proof. Fix u, v ∈ V . Let p be the distribution with all its probability on u. Take t ≥ lnn
ε in

the above proposition, so (1 − ε)t < exp(−εt) = 1/n. It follows that Ktp cannot have any zero
components (else the 2-norm of the difference from π would be at least 1/n); in particular, its
component on v is positive. Hence for a random walk of t steps starting at u, there is a positive
probability of reaching v.

Exercise 4.3. Using Proposition 3.4 and the idea in the proof of Corollary 4.2, show USTCON is
in RL. (This was discussed in Lecture 9.)

5 Proof of error-reduction by random walks

In this section we prove Theorem 1.1; more specifically, the more detailed version for algebraic
expanders.

5



Theorem 5.1. Let G be an (n, d, ε)-algebraic expander. Let B ⊆ V be a set of “bad” vertices with
|B| ≤ (1 − δ)n. Suppose we pick a random vertex u1 ∈ V , then take t − 1 steps in a standard
random walk: to u2, u3, . . . , ut. Then it’s exponentially unlikely all ui’s fall into B:

Pr[ui ∈ B ∀i ∈ [t]] ≤
√

1− δ · (1− εδ)t ≤ (1− εδ)t. (6)

Note that Theorem 5.1 implies the earlier Theorem 1.1, using Proposition 3.2.

Proof. Let P be the projection matrix which “zeroes out” components of a probability vector which
are not in B: i.e., P [u, u] = 1 if u ∈ B, and all other entries are 0. We leave it as an exercise to
check the following:

Pr[ui ∈ B ∀i ∈ [t]] = ‖
t times︷ ︸︸ ︷

PK · · ·PKPK Pπ‖1,

where π = [ 1
n · · ·

1
n ]> denotes the uniform distribution on vertices. Since P 2 = P , we can also write

this as
‖(PKP )tPπ‖1 ≤

√
n · ‖(PKP )tPπ‖2,

using Cauchy-Schwarz. Note that ‖Pπ‖2 =
√

(1− δ)/n. Hence we can complete the proof by
showing that the maximum eigenvalue (spectral norm) of PKP is at most 1− εδ. I.e., we want to
show

max
‖x‖=1

x>PKPx ≤ 1− εδ. (7)

Now given any unit x ∈ RV , write y = Px so that the LHS above is y>Ky. Write y = y1 +y′, where
y1 is the projection of y onto ψ1 and y′ is the orthogonal component. By eigenvector/eigenvalue
decomposition of K,

y>Ky ≤ ‖y1‖22 + (1− ε)(‖y‖22 − ‖y1‖22) = ε‖y1‖22 + (1− ε)‖y‖22. (8)

But
‖y1‖22 = 〈y, ψ1〉2 = 〈y, Pψ1〉2 ≤ ‖y‖22‖Pψ1‖22 = (1− δ)‖y‖22

where the second equality uses that y = Px, so in the inner product it doesn’t hurt to replace
ψ1 by Pψ1, the inequality is Cauchy-Schwarz, and the last equality is the definition of P and
ψ1 = [ 1√

n
· · · 1√

n
]>. Hence (8) is at most

ε(1− δ)‖y‖22 + (1− ε)‖y‖22 = (1− εδ)‖y‖22 ≤ (1− εδ)‖x‖22 = 1− εδ,

where the inequality is because y = Px and P is a projection. This completes the proof.

6


