15-855: Intensive Intro to Complexity Theory Spring 2009

Lecture 14: The Switching Lemma

Starting in this class, we will give another proof that Parity is not in AC^0 . In fact, we will be able to show the essentially tight result, that depth-k (unbounded fan-in) circuits for Parity require size $2^{\Omega(n^{1/(k-1)})}$. (This is tight up to the $\Omega(\cdot)$.)

Given that we already saw a proof of this with the slightly weaker 1/4k in the exponent, why bother? There are a few reasons. The first is that this result gives us something strong for every k, even k=3. The second one is basically "because we can". It's so rare to get a strong lower bound at all in complexity theory that it's worth really exploring the ones you get. The third reason is that the proof will give us a much greater understanding of AC^0 circuits than Razborov-Smolensky does. And this is great, because constant-depth AND-OR circuits with unbounded fan-in are about the strongest class which we can "understand", or really "get a handle on". I will remind you that as far as we know, every language in NEXP — indeed, every language in EXP^{NP} — can be solved by linear-size constant-depth AND-OR circuits with Mod-6 gates.

1 The Switching Lemma

This new proof that Parity is not in AC^0 was given by Håstad in 1986. It is based on a theorem called Håstad's Switching Lemma. It is a pretty hard theorem, so it's ironic that it's known merely as a "lemma". To state it, we need to first recall some basic definitions.

1.1 Basic definitions

Definition 1.1. A DNF is an OR (disjunction) of terms, where each term is an AND (conjunction) of literals. E.g.,

$$f = x_1 x_3 \overline{x}_6 \vee x_2 \overline{x}_7 \vee x_5 x_6 x_8 x_{11} \vee \cdots$$

(Here the \land signs in each term are omitted.) A DNF is a syntactic object, but we also think of it as computing a function $f: \{0,1\}^n \to \{0,1\}$ in the obvious way. The size of f is the number of terms, and the width of f is the maximum number of literals in a term.

Definition 1.2. Similarly, a CNF is an AND (conjunction) of clauses, each of which is an OR (disjunction) of literals. Its size and width are defined in the same way.

Definition 1.3. A decision tree (DT) is an object that looks like this: [[draw picture]]. It is again a syntactic object, but we identify it with a Boolean function in the obvious way. Its depth is the maximum path length (in terms of number of variables along the path; i.e., the constant DT has depth 0). Its size is the number of leaves. Given a Boolean function f, we write $DT_{depth}(f)$ for the least depth of a DT that computes f.

Here is a trivial fact:

Fact 1.4. If $DT_{depth}(f) \leq d$ then f has a DNF of width d and also a CNF of width f.

Proof. Given the depth-d DT for f, to get the DNF take the OR of all paths which lead to a 1-leaf. To get the CNF, note that there is clearly a depth-d DT for $\neg f$, so there is a width-d DNF for $\neg f$. But by de Morgan, we can make the negation of a width-d DNF into a width-d CNF.

Definition 1.5. Assume we are concerned with functions f over n Boolean variables x_1, \ldots, x_n . A restriction or partial assignment α means fixing some of the variables to 0 or 1, and leaving the remaining variables free. We also say that the free variables are set to "star", \star . We write $\operatorname{stars}(\alpha)$ for the set of coordinates which α leaves free. We also write $f|_{\alpha}$ for the restricted function $\{0,1\}^{\operatorname{stars}(\alpha)} \to \{0,1\}$.

Definition 1.6. We write \mathcal{R}_s for the set of all restrictions α with exactly s stars. (We suppress from the notation the dependence on n.)

1.2 Statement of the Switching Lemma

The Switching Lemma is concerned with how applying a random restriction simplifies a DNF f.

Definition 1.7. A random restriction with s stars is just a uniformly random restriction α from \mathcal{R}_s . Equivalently, the star set S is chosen uniformly at random from the $\binom{n}{s}$ possibilities, and then the unstarred coordinates $[n] \setminus S$ are fixed uniformly at random from the 2^{n-s} possibilities.

The Switching Lemma says the following. Suppose you have a DNF f with small width, w. Further, suppose you hit it with (i.e., apply to it) a random restriction α with extremely few stars; i.e., you fix almost all the coordinates randomly. Then $f|_{\alpha}$ likely has tiny DT-depth. Precisely:

Theorem 1.8. (Håstad's Switching "Lemma") Let f be a DNF of width at most w over n variables. Let α be a random restriction with $s = \sigma n$ stars, where $\sigma \leq 1/5$. Then for each $d \geq 0$ (and $\leq s$),

$$\mathbf{Pr}[\mathrm{DT}_{\mathrm{depth}}(f|_{\alpha}) > d] \le (10\sigma w)^d.$$

Some comments:

- 1. The same theorem is of course true for CNFs.
- 2. Sometimes you will see different constants in there rather than 10; sometimes 7, sometimes 5. Håstad even managed to prove 4.16 or something. The point is, never mind; it only matters that it's a constant.
- 3. Note that there is no dependence on the *size* of f.
- 4. Think of σ as the fraction of coordinates that gets stars.
- 5. Further, think of $\sigma = 1/(1000w)$ (and perhaps think of $w = \log n$). In this case, the expected number of \star 's per term of the DNF is at most 1/100, much less than 1! So out of 1000 terms in the DNF, perhaps just one or so will pick up even a single \star . And further, note that even this term with a \star will very likely be fixed to 0. So the restriction is really hitting the DNF extremely hard.
- 6. On the other hand, note that there will still be n/(1000w) variables which get stars, and if $w = \log n$ this is $\Omega(n/\log n)$ variables which remain free.

1.3 Why does this help prove Parity not in AC^0 ?

It's fairly easy to get the size lower-bound for depth-k circuits computing Parity out of the Switching Lemma. We will do the precise calculations later, but here is the very rough idea. Given an AC^0 circuit, we know that a random restriction is very likely to severely simplify each DNF at the bottom two layers [[draw picture]], at least assuming it has small width. Specifically, it's quite likely that each small-width DNF will simplify to a small-depth decision tree. But we know a small-depth decision tree can be computed by a small-width CNF. So we have "switched" all the small-width DNFs at the bottom two layers into small-width CNFs. This lets us merge two layers of AND gates, and we've shrunk the depth by 1. We then repeat, overall making k random restrictions. This leads to two things: first, we can compute the final restriction subfunction by a small-depth decision tree. But also, since each random restriction leaves a decent fraction of variables unset, there is still a decent fraction of variables unset after k restrictions. But any restriction of Parity is either Parity or its negation! And Parity on m variables (or its negation) requires a maximal-depth decision tree, depth m (this is easy to check). This leads to a contradiction. Again, we'll do the details later.

2 Proof of the Switching Lemma

There are many many letters in the proof; please refer frequently to the following table:

 $f = T_1 \vee T_2 \vee T_r \vee \cdots$ a DNF

n: total number of variables f is on

w: the width of f (max size of a term)

 σ : fraction of stars in the random restriction

 $s = \sigma n$: number of stars in the random restriction

 \mathcal{R}_s : set of all restrictions; has cardinality $\binom{n}{s} 2^{n-s}$

d: goal DT-depth for the restriction of f

 \mathcal{B} : the set of bad restrictions β (making $DT_{depth}(f|_{\beta}) > d$)

 β : a fixed bad restriction

 π : a restriction on d variables such that $f_{\beta\pi}$ is still not constant (gotten from the canonical DT for $f|_{\beta}$)

As mentioned, the proof of the Switching Lemma is somewhat hard. We give a combinatorial proof due to Razborov which most people consider simpler than Håstad's probabilistic proof. This proof uses a very unusual strategy which I haven't seen in many (any?) other proofs.

2.1 Proof strategy.

Let \mathcal{B} be the set of all bad restrictions, where a restriction β is bad if $DT_{depth}(f|_{\beta}) > d$. Our goal is to show

$$\frac{|\mathcal{B}|}{|\mathcal{R}_s|} \le (10\sigma w)^d. \tag{1}$$

We do this in a bit of a strange way. We define an "encoding" $\operatorname{Enc}(\beta)$ of each bad restriction β . This encoding will consist of a restriction β' which is the same as β with a few *more* variables fixed — i.e., a few *fewer* stars — plus a little auxiliary info:

 $\operatorname{Enc}(\beta) = \operatorname{some} \beta' \in \mathcal{R}_{s-d} + \operatorname{a little bit of auxiliary info.}$

We will then show that there is a "decoding" procedure Dec which takes $\operatorname{Enc}(\beta)$ and returns β . In other words, the encoding maps each bad restriction $\beta \in \mathcal{B}$ to something *unique*; we can recover β from the encoding. Thus we have an injective mapping

$$\mathcal{B} \hookrightarrow \mathcal{R}_{s-d} \times (\text{a small auxiliary set}).$$

Forgetting about the auxiliary set, this shows that \mathcal{B} is *small*; it's at most $|\mathcal{R}_{s-d}|$. And how big is $|\mathcal{R}_{s-d}|$? Or more pertinently, given (1), how big is it compared to \mathcal{R}_s ? Intuitively, \mathcal{R}_{s-d} is much smaller because the real killer, information-theoretically, in specifying a restriction is saying where the \star 's go. And in \mathcal{R}_{s-d} , you have to say this for d fewer \star 's.

We're being rough for now, so let's say that

$$|\mathcal{R}_s| = \binom{n}{s} 2^{n-s} \approx \frac{n^s}{s!} 2^{n-s}.$$

And,

$$|\mathcal{R}_{s-d}| = \binom{n}{s-d} 2^{n-(s-d)} \approx \frac{n^{s-d}}{(s-d)!} 2^{n-(s-d)}.$$

So

$$\frac{|\mathcal{R}_{s-d}|}{|\mathcal{R}_s|} \approx \frac{s!2^d}{(s-d)!n^d} \approx \left(2\frac{s}{n}\right)^d = (2\sigma)^d.$$

Great! This is even better than (1). What's going to happen is that

"little bit of auxiliary info" = about $d \lg w$ bits

(where $lg = log_2$). Hence the small auxiliary set will be of size

$$\approx 2^{d \lg w} = w^d$$
.

This will make the final upper bound on the size of the encoding set $(2\sigma)^d \cdot w^d = (2\sigma w)^d$.

Well, we've been a bit sloppy/casual, and in the end we collect a few extra factors of 2^d ; hence the final bound of $(10\sigma w)^d$ in (1).

2.2 A good start

Going straight for that encoding is a bit ambitious, so we will start a bit slow. Let β be a bad restriction, so $\mathrm{DT}_{\mathrm{depth}}(f|_{\beta}) > d$. Let's think about the function $f|_{\beta}$ a bit. We can imagine getting $f|_{\beta}$ by applying β to each term T_1, T_2, T_3, \ldots of f. It will be quite important in the proof that we consider these terms as *ordered*.

What happens when a term T is restricted by β ? Since β is a restriction with few stars, probably most literals in T get fixed, and maybe a small number stay free (i.e., get \star 's). An important thing to remember, though, is that β is bad, hence $f|_{\beta}$ is not constantly 1 (else it would have a depth 0 decision tree!). Hence β does not fix any terms T_i to 1; otherwise, it would make the whole DNF f constantly 1. On the other hand, β will probably "kill" many terms — i.e., fix them to 0. This is because it just has to fix one literal the "wrong" way to kill the whole term. In the unlikely event that β does not kill T, it leaves it a nontrivial term $T|_{\beta}$ over the starred literals (of which

there are presumably few).

When we talk now about applying β to f, we know that it kills most terms, fixes no terms to 1, and leaves a few terms alive, but on fewer variables. Let's focus now on the *first* term (in the ordering T_1, T_2, \ldots) which β does not kill. We'll write T_{i_1} for that term, and we'll write $U_1 = (T_{i_1})|_{\beta}$ for the restricted version of that term, which is a conjunction on starred variables. [[Draw picture, with $U_1 = x_3x_4\overline{x}_9$.]] Say for example U_1 has 3 literals, and let's assume for now that $d \geq 3$.

Claim 2.1. Since $DT_{depth}(f|_{\beta}) > d \geq 3$, there is some way to fix x_3 , x_4 , x_9 such that $f|_{\beta}$ is still undecided.

Let π_1 be, say, the lexicographically least assignment to x_3 , x_4 , x_9 such that $f|_{\beta}$ is still undecided. Given a partial assignment π_1 like this, we will write $\beta \pi_1$ for the restriction formed from β by additionally assigning according to π_1 . Note that

$$\beta \pi_1 \in \mathcal{R}_{s-3}$$
,

because π_1 fixes 3 more variables.

You may notice that we've got an object that we were looking for into play; namely, a restriction with even fewer stars than β . For example, suppose we could somehow have

$$\operatorname{Enc}(\beta) = ?= \beta \pi_1.$$

That would be a good start because we know $|\mathcal{R}_{s-3}|/|\mathcal{R}_s| \approx \Theta(1/n^3)$. So we would have encoded β by something from a set $1/n^3$ smaller than the ambient restriction set \mathcal{R}_s .

Only trouble is, it's not clear at all how to recover/decode β from $\beta \pi_1$. Note that we're not allowed to treat $\beta \pi_1$ syntactically as being (β, π_1) ; for our counting purposes, we just know it's some restriction in \mathcal{R}_{s-3} and we don't know which is the " β " part and which is the π_1 part.

A first idea to get out of this is to use the *auxiliary information*; we might tack some bits onto the encoding which say which of the variable-fixings in $\beta \pi_1$ comes from π_1 . This would indeed let us recover β . But unfortunately, we'd need something like $3 \lg n$ bits to specify these three variables, leading to an extra encoding-size factor of n^3 , which defeats the purpose of mapping into \mathcal{R}_{s-3} .

The main trick: Here is the trick. Let γ_1 denote the assignment to the living variables in U_1 which makes U_1 true (i.e., 1). In our example, this is $x_3 = 1$, $x_4 = 1$, \overline{x}_9 . Now instead of encoding β by $\beta \pi_1$, we'll consider

$$\operatorname{Enc}(\beta) = ?? = \beta \gamma_1.$$

This is similarly in \mathcal{R}_{s-3} . But the beauty of this idea is the following: the restriction $\beta \gamma_1$ "tells" us which term U_1 is! More precisely:

Claim 2.2. If we consider $f|_{\beta\gamma_1}$, then T_{i_1} is the first (in the ordering) term which $\beta\gamma_1$ sets to 1.

This takes a tiny bit of thought: the point is that certainly we still have that $T_1, T_2, \ldots, T_{i_1-1}$ are all still fixed to 0 by $\beta \gamma_1$, since they are fixed to 0 by β . And then T_{i_1} is indeed fixed to 1, because γ_1 fixes $U_1 = (T_{i_1})|_{\beta}$ to 1.

Because of this, we can almost decode β from $\beta \gamma_1$. With $\beta \gamma_1$ we can identify T_{i_1} . Now, we still need to pull out γ_1 from $\beta \gamma_1$, but the point is:

Claim 2.3. We can specify the variables γ_1 is fixing in $\beta \gamma_1$ using only $3 \lg w$ bits of auxiliary information, rather than $3 \lg n$.

This is because we only need to specify which variables in the width-w term T_{i_1} are the ones γ_1 fixes.

All in all, we've shown that we can encode β in a decodable way with an object from

$$\mathcal{R}_{s-3} \times \{0,1\}^{3 \lg w}.$$

And from our previous calculations, we have

$$\frac{|\mathcal{R}_{s-3} \times \{0,1\}^{3 \lg w}|}{\mathcal{R}_s} \approx (2\sigma w)^3.$$

This is a pretty good start, except we only have a power of 3, whereas we wanted a power of d. To complete the proof we need to somehow "iterate" the above argument.

One more small trick that will actually be crucial:

Claim 2.4. By adding an additional 3 bits of auxiliary information, we can also "specify" π_1 .

This is because π_1 fixes the same variables as γ_1 (i.e., x_3 , x_4 , and x_9), just in different ways. So we can use 3 extra bits of auxiliary information to specify how π_1 fixes these variables.

2.3 The full argument

We got a power of 3 in the above example because we supposed that in the first unkilled term of $f|_{\beta}$, there were 3 unset variables. Then we took a fairly great loss by just using that d > 3, which implied there was some way to fix these variables to keep $f|_{\beta}$ undetermined. We now improve this argument.

Recall we have a width-w DNF f with an ordered set of terms T_1, T_2, T_3, \ldots , along with some bad restriction β . This means that $\mathrm{DT}_{\mathrm{depth}}(f|_{\beta}) > d$. We will define a canonical decision tree for $f|_{\beta}$, denoted $C(f|_{\beta})$, and therefore we will be able to say that in particular the depth of $C(f|_{\beta})$ is greater than d. This definition is a bit finicky; one needs to pay attention to it carefully.

Definition 2.5. The canonical decision tree $C(f|_{\beta})$ is defined as follows: Take the first term T_{i_1} in order which is not killed by β . Say it reduces to the term U_1 , on d_1 variables. Make a complete depth- d_1 decision tree over the variables in U_1 (querying them in order of their indices). Note that there will be exactly one path, call it γ_1 , which forces $(T_{i_1})|_{\beta}$ to 1; we put a 1-leaf here. [[Draw picture.]] For all the other paths ρ , recursively tack on the canonical decision tree $C(f|_{\beta\rho})$. (If $f|_{\beta\rho}$ is constant, of course just put that constant as a leaf.)

Note the slight intricacy here: We first fix in β , which kills a bunch of terms, and leaves some alive. We take the first living term and query *all* its variables. But now, having made each further assignment ρ of d_1 variables, we may have that $\beta\rho$ kills many more terms which β didn't. Each subtree of the canonical decision tree here moves onto the first surviving term in $f|_{\beta\rho}$.

Certainly $C(f|_{\beta})$ is a decision tree for $f|_{\beta}$. So by assumption that β is bad, it has depth exceeding d. Therefore we may define:

Definition 2.6. Let π be the lexicographically leftmost path of depth exceeding d in $C(f|_{\beta})$. Then trim it if necessary so it fixes exactly d variables. So we have $\beta \pi \in \mathcal{R}_{s-d}$ and is such that $f|_{\beta \pi}$ is still undetermined; i.e., not a constant function.

As in the previous section, though, we won't use $\beta\pi$ in the encoding of β . Rather, we will use assignments that lead to 1-leaves in $C(f|_{\beta})$.

Definition 2.7. Let T_{i_1} be the first term not killed by β , and let U_1 be its restriction under β . Let d_1 be the number of variables in U_1 . Let γ_1 be the setting to the variables in U_1 which makes it 1. On the other hand, let π_1 be the part of π which sets these variables. [[Draw Beame's picture.]]

Assuming π_1 is not all of π , continue the process. Note that in this case, $\beta \pi_1$ must kill U_1 . Let T_{i_2} be the first term not killed by $\beta \pi_1$, and let U_2 be its restriction under $\beta \pi_1$. Let d_2 be the number of variables in U_2 . Let γ_2 be the setting to the variables in U_2 which makes it 1. On the other hand, let π_2 be the part of π which sets these variables. Keep going, until eventually π_ℓ finishes all of π . At this point, truncate γ_ℓ to set just the variables that π_ℓ sets.

Our encoding will now be:

$$\operatorname{Enc}(\beta) = \beta \gamma_1 \gamma_2 \cdots \gamma_\ell + \text{some auxiliary info.}$$

Note that the restriction $B = \beta \gamma_1 \gamma_2 \cdots \gamma_\ell$ here is in \mathcal{R}_{s-d} , which is what we'd like. Let's see what auxiliary info we'll need to decode this B back to β .

First, as before we have that in $f|_B$, the first term set to 1 is indeed T_{i_1} . Thus we can add $d_1 \lg w$ bits of auxiliary information, specifying which variables in T_{i_1} are the ones which γ_1 fixes. (Actually, since the Decoder doesn't actually "know" d_1 , we can have w+1 symbols, the (w+1)st of which is a sentinel; so we actually need to use $d_1\lceil\lg(w+1)\rceil \leq d_1 \lg w + d_1$ bits.) We also add an additional d_1 auxiliary bits to specify how π_1 sets these variables. Hence we've shown:

Claim 2.8. By adding at most $d_1 \lg w + 2d_1$ auxiliary info bits, the Decoder can determine T_{i_1} , γ_1 , and π_1 .

We can proceed with decoding. Since the Decoder knows γ_1 and π_1 , it can consider the restriction $B_2 := \beta \pi_1 \gamma_2 \cdots \gamma_\ell$. By construction, $\beta \pi_1$ kills all terms in f up to T_{i_2} , so the same is true of B_2 . Also, γ_2 sets $U_2 = (T_{i_2})|_{\beta \pi_1}$ to 1, so the same is true of B_2 . Hence:

Claim 2.9. T_{i_2} is the first term in f fixed to 1 by B_2 .

Hence the Decoder can determine T_{i_2} . So again:

Claim 2.10. By adding at most $d_2 \lg w + 2d_2$ auxiliary info bits, the Decoder can also determine T_{i_2} , γ_2 , and π_2 .

The Decoder can continue along, finding γ_3 , π_3 , etc. This proceeds until the Decoder has $B_\ell := \beta \pi_1 \pi_2 \cdots \gamma_\ell$. The only difference now is that $f|_{B_\ell}$ might have a "first term which is still undetermined", rather than a "first term which is 1". In any case, it can sill use $d_\ell \lg w + 2 \lg w$ auxiliary info bits to determine γ_ℓ . At this point the Decoder has completely determined the $\gamma_1 \cdots \gamma_\ell$ part of the encoded restriction $\text{Enc}(\beta)$ (it knows it's done, since it knows this part fixes exactly d variables).

We conclude:

Claim 2.11. By using at most

$$(d_1 \lg w + 2d_1) + (d_2 \lg w + 2d_2) + \dots + (d_\ell \lg w + 2d_\ell) = d \lg w + 2d$$

bits of auxiliary information, there is a Decoder which uniquely recovers β from $B = \beta \gamma_1 \gamma_2 \cdots \gamma_\ell$.

2.4 Calculations

We're now done except for calculations. We've shown that there is an injective mapping from the set \mathcal{B} of bad restrictions into

$$\mathcal{R}_{s-d} \times \{0,1\}^{d \lg w + 2d}.$$

This set has cardinality

$$\binom{n}{s-d} 2^{n-(s-d)} \cdot (4w)^d.$$

Since the cardinality of all s-star restrictions is $\binom{n}{s}2^{n-s}$, we conclude the probability of getting a bad restriction is at most

$$\frac{\binom{n}{s-d}2^{n-(s-d)}\cdot (4w)^d}{\binom{n}{s}2^{n-s}} = \frac{s(s-1)(s-2)\cdots(s-d+1)}{(n-s+d)(n-s+d-1)\cdots(n-s+1)}(8w)^d$$

$$\leq \left(\frac{s}{n-s+d}\right)^d (8w)^d \leq \left(\frac{\sigma}{1-\sigma}\right)^d (8w)^d \leq (10\sigma w)^d,$$

where we used $\sigma \leq 1/5$ in the last step.

3 Lower bounds for Parity circuits

We now give the precise calculations showing that Parity requires depth-k circuits of exponential size:

Theorem 3.1. (Håstad.) Assume $n \geq 2^{O(k)}$, where $k \geq 2$. Then computing Parity of n bits by a depth-k unbounded fan-in AND-OR circuit requires size $S \geq 2^{\Omega(n^{1/(k-1)})}$. In particular, for the circuit to be of polynomial-size it is necessary that $k \geq \Omega(\log n/\log\log n)$.

Remark 3.2. The implied constant can be made pretty good; I think Håstad can achieve .0718.

Proof. Suppose C is any depth-k circuit of size S which computes Parity. It is an exercise to show that C can be converted into a *leveled* depth-k circuit, where the levels alternate AND and OR gates, the inputs wires are the 2n literals, and each gate has $fan\text{-}out\ 1$ (i.e., it's a tree) — and the size increases to at most $(2kS)^2 \leq O(S^4)$. Since this only changes the constant in the $\Omega(\cdot)$ in the statement, we can assume the circuit is of this form. [[Draw picture.]]

Let's first prove the theorem assuming:

every gate at the bottom level has fan-in at most
$$w := 20 \log S$$
. (2)

At the end we'll see how to remove this assumption easily.

Assume without loss of generality that the bottom layer of C is AND gates, so the bottom two layers consist of DNFs of width at most w. Suppose we apply a random restriction α_1 to the circuit, with \star -fraction $\sigma = 1/(20w)$, and target DT-depth d = w. The Switching Lemma tells us that the probability a particular DNF fails, under restriction, to be representable by a depth-w decision tree is at most

$$(10\sigma w)^w = (1/2)^w = (1/2)^{20\log S} \ll 1/S.$$

¹Actually, this is a *slightly* tricky exercise. It's easier if you only have to get size $O(S^k)$, which is almost the same for our purposes if you think of k as a "constant".

So by a union bound over all at most S such DNFs, there is a positive probability (indeed, a high probability) that *every* DNF gets simplified to something representable by a depth-w DT. But we know such functions are also representable by a width-w CNF. If we now "plug in" these CNFs to the circuit, we can collapse layers 2 and 3 and get a new circuit, of depth k-1, which has bottom fan-in at most w.

We can fix such a good restriction, and repeat. We apply restrictions α_2 , α_3 , ..., each with \star -fraction $\sigma = 1/(20w)$, and yielding depths k-2, k-3, etc. We do this k-2 times, at which point we get down to a circuit of depth 2. At this point, the number of variables that are still \star is

$$m := n \cdot \sigma^{k-2} = \frac{n}{(400 \log S)^{k-2}}.$$

But as we mentioned before, every restriction of the Parity function is either Parity (or its negation). And as we saw last class, Parity on m variables requires DNF size 2^{m-1} and also CNF size 2^{m-1} . Hence we better have:

$$S \geq 2^{m-1} \quad \Rightarrow \quad \log S \geq \Omega(m) \quad \Rightarrow \quad O(\log S)^{k-1} \geq n \quad \Rightarrow \quad \log S \geq \Omega(n^{1/(k-1)}),$$

which is what the theorem claims.

It remains to show how to remove the assumption (2). To do this, we simply initially hit the circuit with a random restriction α_0 with \star -probability 1/100. It's easy to check that if this indeed reduces the bottom fan-in of C to at most w with positive probability, then we can run the rest of the argument and only lose a little more on the constant in the $\Omega(\cdot)$.

But this is straightforward. Suppose we have a bottom gate (and AND, say) with fan-in exceeding $w = 20 \log S$. A Chernoff-type bound shows that except with probability exponentially small in w — and hence, $\ll 1/S$ — the gategets at least, say, (3/4)w non- \star 's. And each such non- \star has a 1/2 chance of immediately killing this gate. Hence again, except with probability exponentially small in w — hence $\ll 1/S$ — the gate gets killed. We can now union bound over all bottom-level gates to conclude that there is a high probability this initial restriction α_0 kills all gates with width exceeding w.