
15-855: Intensive Intro to Complexity Theory
Spring 2009

Lecture 14: The Switching Lemma

Starting in this class, we will give another proof that Parity is not in AC0. In fact, we will be
able to show the essentially tight result, that depth-k (unbounded fan-in) circuits for Parity require
size 2Ω(n1/(k−1)). (This is tight up to the Ω(·).)

Given that we already saw a proof of this with the slightly weaker 1/4k in the exponent, why
bother? There are a few reasons. The first is that this result gives us something strong for every k,
even k = 3. The second one is basically “because we can”. It’s so rare to get a strong lower bound
at all in complexity theory that it’s worth really exploring the ones you get. The third reason is
that the proof will give us a much greater understanding of AC0 circuits than Razborov-Smolensky
does. And this is great, because constant-depth AND-OR circuits with unbounded fan-in are about
the strongest class which we can “understand”, or really “get a handle on”. I will remind you that
as far as we know, every language in NEXP — indeed, every language in EXPNP — can be solved
by linear-size constant-depth AND-OR circuits with Mod-6 gates.

1 The Switching Lemma

This new proof that Parity is not in AC0 was given by H̊astad in 1986. It is based on a theorem
called H̊astad’s Switching Lemma. It is a pretty hard theorem, so it’s ironic that it’s known merely
as a “lemma”. To state it, we need to first recall some basic definitions.

1.1 Basic definitions

Definition 1.1. A DNF is an OR (disjunction) of terms, where each term is an AND (conjunction)
of literals. E.g.,

f = x1x3x6 ∨ x2x7 ∨ x5x6x8x11 ∨ · · ·

(Here the ∧ signs in each term are omitted.) A DNF is a syntactic object, but we also think of it
as computing a function f : {0, 1}n → {0, 1} in the obvious way. The size of f is the number of
terms, and the width of f is the maximum number of literals in a term.

Definition 1.2. Similarly, a CNF is an AND (conjunction) of clauses, each of which is an OR
(disjunction) of literals. Its size and width are defined in the same way.

Definition 1.3. A decision tree (DT) is an object that looks like this: [[draw picture]]. It is again
a syntactic object, but we identify it with a Boolean function in the obvious way. Its depth is the
maximum path length (in terms of number of variables along the path; i.e., the constant DT has
depth 0). Its size is the number of leaves. Given a Boolean function f , we write DTdepth(f) for the
least depth of a DT that computes f .

Here is a trivial fact:

1

Fact 1.4. If DTdepth(f) ≤ d then f has a DNF of width d and also a CNF of width f .

Proof. Given the depth-d DT for f , to get the DNF take the OR of all paths which lead to a 1-leaf.
To get the CNF, note that there is clearly a depth-d DT for ¬f , so there is a width-d DNF for ¬f .
But by de Morgan, we can make the negation of a width-d DNF into a width-d CNF.

Definition 1.5. Assume we are concerned with functions f over n Boolean variables x1, . . . , xn.
A restriction or partial assignment α means fixing some of the variables to 0 or 1, and leaving
the remaining variables free. We also say that the free variables are set to “star”, ?. We write
stars(α) for the set of coordinates which α leaves free. We also write f |α for the restricted function
{0, 1}stars(α) → {0, 1}.

Definition 1.6. We write Rs for the set of all restrictions α with exactly s stars. (We suppress
from the notation the dependence on n.)

1.2 Statement of the Switching Lemma

The Switching Lemma is concerned with how applying a random restriction simplifies a DNF f .

Definition 1.7. A random restriction with s stars is just a uniformly random restriction α from
Rs. Equivalently, the star set S is chosen uniformly at random from the

(
n
s

)
possibilities, and then

the unstarred coordinates [n] \ S are fixed uniformly at random from the 2n−s possibilities.

The Switching Lemma says the following. Suppose you have a DNF f with small width, w.
Further, suppose you hit it with (i.e., apply to it) a random restriction α with extremely few stars;
i.e., you fix almost all the coordinates randomly. Then f |α likely has tiny DT-depth. Precisely:

Theorem 1.8. (H̊astad’s Switching “Lemma”) Let f be a DNF of width at most w over n variables.
Let α be a random restriction with s = σn stars, where σ ≤ 1/5. Then for each d ≥ 0 (and ≤ s),

Pr[DTdepth(f |α) > d] ≤ (10σw)d.

Some comments:

1. The same theorem is of course true for CNFs.

2. Sometimes you will see different constants in there rather than 10; sometimes 7, sometimes 5.
H̊astad even managed to prove 4.16 or something. The point is, never mind; it only matters
that it’s a constant.

3. Note that there is no dependence on the size of f .

4. Think of σ as the fraction of coordinates that gets stars.

5. Further, think of σ = 1/(1000w) (and perhaps think of w = log n). In this case, the expected
number of ?’s per term of the DNF is at most 1/100, much less than 1! So out of 1000 terms
in the DNF, perhaps just one or so will pick up even a single ?. And further, note that even
this term with a ? will very likely be fixed to 0. So the restriction is really hitting the DNF
extremely hard.

6. On the other hand, note that there will still be n/(1000w) variables which get stars, and if
w = log n this is Ω(n/ log n) variables which remain free.

2

1.3 Why does this help prove Parity not in AC0?

It’s fairly easy to get the size lower-bound for depth-k circuits computing Parity out of the Switching
Lemma. We will do the precise calculations later, but here is the very rough idea. Given an AC0

circuit, we know that a random restriction is very likely to severely simplify each DNF at the bottom
two layers [[draw picture]], at least assuming it has small width. Specifically, it’s quite likely that
each small-width DNF will simplify to a small-depth decision tree. But we know a small-depth
decision tree can be computed by a small-width CNF. So we have “switched” all the small-width
DNFs at the bottom two layers into small-width CNFs. This lets us merge two layers of AND
gates, and we’ve shrunk the depth by 1. We then repeat, overall making k random restrictions.
This leads to two things: first, we can compute the final restriction subfunction by a small-depth
decision tree. But also, since each random restriction leaves a decent fraction of variables unset,
there is still a decent fraction of variables unset after k restrictions. But any restriction of Parity is
either Parity or its negation! And Parity on m variables (or its negation) requires a maximal-depth
decision tree, depth m (this is easy to check). This leads to a contradiction. Again, we’ll do the
details later.

2 Proof of the Switching Lemma

There are many many letters in the proof; please refer frequently to the following table:

f = T1 ∨ T2 ∨ Tr ∨ · · · : a DNF
n: total number of variables f is on
w: the width of f (max size of a term)
σ: fraction of stars in the random restriction
s = σn: number of stars in the random restriction
Rs: set of all restrictions; has cardinality

(
n
s

)
2n−s

d: goal DT-depth for the restriction of f
B: the set of bad restrictions β (making DTdepth(f |β) > d)
β: a fixed bad restriction
π: a restriction on d variables such that fβπ is still not constant

(gotten from the canonical DT for f |β)

As mentioned, the proof of the Switching Lemma is somewhat hard. We give a combinatorial
proof due to Razborov which most people consider simpler than H̊astad’s probabilistic proof. This
proof uses a very unusual strategy which I haven’t seen in many (any?) other proofs.

2.1 Proof strategy.

Let B be the set of all bad restrictions, where a restriction β is bad if DTdepth(f |β) > d. Our goal
is to show

|B|
|Rs|

≤ (10σw)d. (1)

We do this in a bit of a strange way. We define an “encoding” Enc(β) of each bad restriction β.
This encoding will consist of a restriction β′ which is the same as β with a few more variables fixed
— i.e., a few fewer stars — plus a little auxiliary info:

Enc(β) = some β′ ∈ Rs−d + a little bit of auxiliary info.

3

We will then show that there is a “decoding” procedure Dec which takes Enc(β) and returns β. In
other words, the encoding maps each bad restriction β ∈ B to something unique; we can recover β
from the encoding. Thus we have an injective mapping

B ↪→ Rs−d × (a small auxiliary set).

Forgetting about the auxiliary set, this shows that B is small ; it’s at most |Rs−d|. And how big is
|Rs−d|? Or more pertinently, given (1), how big is it compared to Rs? Intuitively, Rs−d is much
smaller because the real killer, information-theoretically, in specifying a restriction is saying where
the ?’s go. And in Rs−d, you have to say this for d fewer ?’s.

We’re being rough for now, so let’s say that

|Rs| =
(
n

s

)
2n−s ≈ ns

s!
2n−s.

And,

|Rs−d| =
(

n

s− d

)
2n−(s−d) ≈ ns−d

(s− d)!
2n−(s−d).

So
|Rs−d|
|Rs|

≈ s!2d

(s− d)!nd
≈

(
2
s

n

)d
= (2σ)d.

Great! This is even better than (1). What’s going to happen is that

“little bit of auxiliary info” = about d lgw bits

(where lg = log2). Hence the small auxiliary set will be of size

≈ 2d lgw = wd.

This will make the final upper bound on the size of the encoding set (2σ)d · wd = (2σw)d.

Well, we’ve been a bit sloppy/casual, and in the end we collect a few extra factors of 2d; hence
the final bound of (10σw)d in (1).

2.2 A good start

Going straight for that encoding is a bit ambitious, so we will start a bit slow. Let β be a bad
restriction, so DTdepth(f |β) > d. Let’s think about the function f |β a bit. We can imagine getting
f |β by applying β to each term T1, T2, T3, . . . of f . It will be quite important in the proof that we
consider these terms as ordered.

What happens when a term T is restricted by β? Since β is a restriction with few stars, prob-
ably most literals in T get fixed, and maybe a small number stay free (i.e., get ?’s). An important
thing to remember, though, is that β is bad, hence f |β is not constantly 1 (else it would have a
depth 0 decision tree!). Hence β does not fix any terms Ti to 1; otherwise, it would make the whole
DNF f constantly 1. On the other hand, β will probably “kill” many terms — i.e., fix them to 0.
This is because it just has to fix one literal the “wrong” way to kill the whole term. In the unlikely
event that β does not kill T , it leaves it a nontrivial term T |β over the starred literals (of which

4

there are presumably few).

When we talk now about applying β to f , we know that it kills most terms, fixes no terms
to 1, and leaves a few terms alive, but on fewer variables. Let’s focus now on the first term (in
the ordering T1, T2, . . .) which β does not kill. We’ll write Ti1 for that term, and we’ll write
U1 = (Ti1)|β for the restricted version of that term, which is a conjunction on starred variables.
[[Draw picture, with U1 = x3x4x9.]] Say for example U1 has 3 literals, and let’s assume for now
that d ≥ 3.

Claim 2.1. Since DTdepth(f |β) > d ≥ 3, there is some way to fix x3, x4, x9 such that f |β is still
undecided.

Let π1 be, say, the lexicographically least assignment to x3, x4, x9 such that f |β is still undecided.
Given a partial assignment π1 like this, we will write βπ1 for the restriction formed from β by
additionally assigning according to π1. Note that

βπ1 ∈ Rs−3,

because π1 fixes 3 more variables.

You may notice that we’ve got an object that we were looking for into play; namely, a restriction
with even fewer stars than β. For example, suppose we could somehow have

Enc(β) =?= βπ1.

That would be a good start because we know |Rs−3|/|Rs| ≈ Θ(1/n3). So we would have encoded
β by something from a set 1/n3 smaller than the ambient restriction set Rs.

Only trouble is, it’s not clear at all how to recover/decode β from βπ1. Note that we’re not
allowed to treat βπ1 syntactically as being (β, π1); for our counting purposes, we just know it’s
some restriction in Rs−3 and we don’t know which is the “β” part and which is the π1 part.

A first idea to get out of this is to use the auxiliary information; we might tack some bits onto
the encoding which say which of the variable-fixings in βπ1 comes from π1. This would indeed let us
recover β. But unfortunately, we’d need something like 3 lg n bits to specify these three variables,
leading to an extra encoding-size factor of n3, which defeats the purpose of mapping into Rs−3.

The main trick: Here is the trick. Let γ1 denote the assignment to the living variables in U1

which makes U1 true (i.e., 1). In our example, this is x3 = 1, x4 = 1, x9. Now instead of encoding
β by βπ1, we’ll consider

Enc(β) =?? = βγ1.

This is similarly in Rs−3. But the beauty of this idea is the following: the restriction βγ1 “tells”
us which term U1 is! More precisely:

Claim 2.2. If we consider f |βγ1, then Ti1 is the first (in the ordering) term which βγ1 sets to 1.

This takes a tiny bit of thought: the point is that certainly we still have that T1, T2, . . . , Ti1−1

are all still fixed to 0 by βγ1, since they are fixed to 0 by β. And then Ti1 is indeed fixed to 1,
because γ1 fixes U1 = (Ti1)|β to 1.

Because of this, we can almost decode β from βγ1. With βγ1 we can identify Ti1 . Now, we still
need to pull out γ1 from βγ1, but the point is:

5

Claim 2.3. We can specify the variables γ1 is fixing in βγ1 using only 3 lgw bits of auxiliary
information, rather than 3 lg n.

This is because we only need to specify which variables in the width-w term Ti1 are the ones γ1

fixes.

All in all, we’ve shown that we can encode β in a decodable way with an object from

Rs−3 × {0, 1}3 lgw.

And from our previous calculations, we have

|Rs−3 × {0, 1}3 lgw|
Rs

≈ (2σw)3.

This is a pretty good start, except we only have a power of 3, whereas we wanted a power of d. To
complete the proof we need to somehow “iterate” the above argument.

One more small trick that will actually be crucial:

Claim 2.4. By adding an additional 3 bits of auxiliary information, we can also “specify” π1.

This is because π1 fixes the same variables as γ1 (i.e., x3, x4, and x9), just in different ways. So
we can use 3 extra bits of auxiliary information to specify how π1 fixes these variables.

2.3 The full argument

We got a power of 3 in the above example because we supposed that in the first unkilled term of f |β,
there were 3 unset variables. Then we took a fairly great loss by just using that d > 3, which implied
there was some way to fix these variables to keep f |β undetermined. We now improve this argument.

Recall we have a width-w DNF f with an ordered set of terms T1, T2, T3, . . . , along with some
bad restriction β. This means that DTdepth(f |β) > d. We will define a canonical decision tree for
f |β, denoted C(f |β), and therefore we will be able to say that in particular the depth of C(f |β) is
greater than d. This definition is a bit finicky; one needs to pay attention to it carefully.

Definition 2.5. The canonical decision tree C(f |β) is defined as follows: Take the first term Ti1
in order which is not killed by β. Say it reduces to the term U1, on d1 variables. Make a complete
depth-d1 decision tree over the variables in U1 (querying them in order of their indices). Note that
there will be exactly one path, call it γ1, which forces (Ti1)|β to 1; we put a 1-leaf here. [[Draw
picture.]] For all the other paths ρ, recursively tack on the canonical decision tree C(f |βρ). (If f |βρ
is constant, of course just put that constant as a leaf.)

Note the slight intricacy here: We first fix in β, which kills a bunch of terms, and leaves some
alive. We take the first living term and query all its variables. But now, having made each further
assignment ρ of d1 variables, we may have that βρ kills many more terms which β didn’t. Each
subtree of the canonical decision tree here moves onto the first surviving term in f |βρ.

Certainly C(f |β) is a decision tree for f |β. So by assumption that β is bad, it has depth
exceeding d. Therefore we may define:

6

Definition 2.6. Let π be the lexicographically leftmost path of depth exceeding d in C(f |β). Then
trim it if necessary so it fixes exactly d variables. So we have βπ ∈ Rs−d and is such that f |βπ is
still undetermined; i.e., not a constant function.

As in the previous section, though, we won’t use βπ in the encoding of β. Rather, we will use
assignments that lead to 1-leaves in C(f |β).

Definition 2.7. Let Ti1 be the first term not killed by β, and let U1 be its restriction under β. Let
d1 be the number of variables in U1. Let γ1 be the setting to the variables in U1 which makes it 1.
On the other hand, let π1 be the part of π which sets these variables. [[Draw Beame’s picture.]]

Assuming π1 is not all of π, continue the process. Note that in this case, βπ1 must kill U1. Let
Ti2 be the first term not killed by βπ1, and let U2 be its restriction under βπ1. Let d2 be the number
of variables in U2. Let γ2 be the setting to the variables in U2 which makes it 1. On the other hand,
let π2 be the part of π which sets these variables. Keep going, until eventually π` finishes all of π.
At this point, truncate γ` to set just the variables that π` sets.

Our encoding will now be:

Enc(β) = βγ1γ2 · · · γ` + some auxiliary info.

Note that the restriction B = βγ1γ2 · · · γ` here is in Rs−d, which is what we’d like. Let’s see what
auxiliary info we’ll need to decode this B back to β.

First, as before we have that in f |B, the first term set to 1 is indeed Ti1 . Thus we can add
d1 lgw bits of auxiliary information, specifying which variables in Ti1 are the ones which γ1 fixes.
(Actually, since the Decoder doesn’t actually “know” d1, we can have w+ 1 symbols, the (w+ 1)st
of which is a sentinel; so we actually need to use d1dlg(w + 1)e ≤ d1 lgw + d1 bits.) We also add
an additional d1 auxiliary bits to specify how π1 sets these variables. Hence we’ve shown:

Claim 2.8. By adding at most d1 lgw+ 2d1 auxiliary info bits, the Decoder can determine Ti1, γ1,
and π1.

We can proceed with decoding. Since the Decoder knows γ1 and π1, it can consider the restric-
tion B2 := βπ1γ2 · · · γ`. By construction, βπ1 kills all terms in f up to Ti2 , so the same is true of
B2. Also, γ2 sets U2 = (Ti2)|βπ1 to 1, so the same is true of B2. Hence:

Claim 2.9. Ti2 is the first term in f fixed to 1 by B2.

Hence the Decoder can determine Ti2 . So again:

Claim 2.10. By adding at most d2 lgw + 2d2 auxiliary info bits, the Decoder can also determine
Ti2, γ2, and π2.

The Decoder can continue along, finding γ3, π3, etc. This proceeds until the Decoder has
B` := βπ1π2 · · · γ`. The only difference now is that f |B`

might have a “first term which is still un-
determined”, rather than a “first term which is 1”. In any case, it can sill use d` lgw+2 lgw auxiliary
info bits to determine γ`. At this point the Decoder has completely determined the γ1 · · · γ` part of
the encoded restriction Enc(β) (it knows it’s done, since it knows this part fixes exactly d variables).

We conclude:

Claim 2.11. By using at most

(d1 lgw + 2d1) + (d2 lgw + 2d2) + · · ·+ (d` lgw + 2d`) = d lgw + 2d

bits of auxiliary information, there is a Decoder which uniquely recovers β from B = βγ1γ2 · · · γ`.

7

2.4 Calculations

We’re now done except for calculations. We’ve shown that there is an injective mapping from the
set B of bad restrictions into

Rs−d × {0, 1}d lgw+2d.

This set has cardinality (
n

s− d

)
2n−(s−d) · (4w)d.

Since the cardinality of all s-star restrictions is
(
n
s

)
2n−s, we conclude the probability of getting a

bad restriction is at most(
n
s−d

)
2n−(s−d) · (4w)d(

n
s

)
2n−s

=
s(s− 1)(s− 2) · · · (s− d+ 1)

(n− s+ d)(n− s+ d− 1) · · · (n− s+ 1)
(8w)d

≤
(

s

n− s+ d

)d

(8w)d ≤
(

σ

1− σ

)d

(8w)d ≤ (10σw)d,

where we used σ ≤ 1/5 in the last step.

3 Lower bounds for Parity circuits

We now give the precise calculations showing that Parity requires depth-k circuits of exponential
size:

Theorem 3.1. (H̊astad.) Assume n ≥ 2O(k), where k ≥ 2. Then computing Parity of n bits by
a depth-k unbounded fan-in AND-OR circuit requires size S ≥ 2Ω(n1/(k−1)). In particular, for the
circuit to be of polynomial-size it is necessary that k ≥ Ω(log n/ log log n).

Remark 3.2. The implied constant can be made pretty good; I think H̊astad can achieve .0718.

Proof. Suppose C is any depth-k circuit of size S which computes Parity. It is an exercise to show
that C can be converted into a leveled depth-k circuit, where the levels alternate AND and OR
gates, the inputs wires are the 2n literals, and each gate has fan-out 1 (i.e., it’s a tree) — and the
size increases to at most (2kS)2 ≤ O(S4).1 Since this only changes the constant in the Ω(·) in the
statement, we can assume the circuit is of this form. [[Draw picture.]]

Let’s first prove the theorem assuming:

every gate at the bottom level has fan-in at most w := 20 logS. (2)

At the end we’ll see how to remove this assumption easily.

Assume without loss of generality that the bottom layer of C is AND gates, so the bottom
two layers consist of DNFs of width at most w. Suppose we apply a random restriction α1 to the
circuit, with ?-fraction σ = 1/(20w), and target DT-depth d = w. The Switching Lemma tells us
that the probability a particular DNF fails, under restriction, to be representable by a depth-w
decision tree is at most

(10σw)w = (1/2)w = (1/2)20 logS � 1/S.
1Actually, this is a slightly tricky exercise. It’s easier if you only have to get size O(Sk), which is almost the same

for our purposes if you think of k as a “constant”.

8

So by a union bound over all at most S such DNFs, there is a positive probability (indeed, a high
probability) that every DNF gets simplified to something representable by a depth-w DT. But we
know such functions are also representable by a width-w CNF. If we now “plug in” these CNFs to
the circuit, we can collapse layers 2 and 3 and get a new circuit, of depth k− 1, which has bottom
fan-in at most w.

We can fix such a good restriction, and repeat. We apply restrictions α2, α3, . . . , each with
?-fraction σ = 1/(20w), and yielding depths k − 2, k − 3, etc. We do this k − 2 times, at which
point we get down to a circuit of depth 2. At this point, the number of variables that are still ? is

m := n · σk−2 =
n

(400 logS)k−2
.

But as we mentioned before, every restriction of the Parity function is either Parity (or its negation).
And as we saw last class, Parity on m variables requires DNF size 2m−1 and also CNF size 2m−1.
Hence we better have:

S ≥ 2m−1 ⇒ logS ≥ Ω(m) ⇒ O(logS)k−1 ≥ n ⇒ logS ≥ Ω(n1/(k−1)),

which is what the theorem claims.

It remains to show how to remove the assumption (2). To do this, we simply initially hit the
circuit with a random restriction α0 with ?-probability 1/100. It’s easy to check that if this indeed
reduces the bottom fan-in of C to at most w with positive probability, then we can run the rest of
the argument and only lose a little more on the constant in the Ω(·).

But this is straightforward. Suppose we have a bottom gate (and AND, say) with fan-in
exceeding w = 20 logS. A Chernoff-type bound shows that except with probability exponentially
small in w — and hence, � 1/S — the gategets at least, say, (3/4)w non-?’s. And each such
non-? has a 1/2 chance of immediately killing this gate. Hence again, except with probability
exponentially small in w — hence � 1/S — the gate gets killed. We can now union bound over
all bottom-level gates to conclude that there is a high probability this initial restriction α0 kills all
gates with width exceeding w.

9

