Clustering.
Unsupervised Learning

Maria-Florina Balcan
04/06/2015

Reading:
Chapter 14.3: Hastie, Tibshirani, Friedman.

Additional resources:
Center Based Clustering: A Foundational Perspective.
Awasthi, Balcan. Handbook of Clustering Analysis. 2015.




Logistics

* Project:

« Midway Review due today.
* Final Report, May 8.
 Poster Presentation, May 11.

« Communicate with your mentor TAl

« Exam #2 on April 29,



Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of
similar datapoints.

Question: When and why would we want to do this?
Useful for:

- Automatically organizing data.
» Understanding hidden structure in data.

* Preprocessing for further analysis.

* Representing high-dimensional data in a low-dimensional space
(e.g., for visualization purposes).



Appl ications (Clustering comes up everywhere...)

Cluster news articles or web pages or search results by topic.

Cluster protein sequences by function or genes according to expression
profile. —
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Applica’rions (Clustering comes up everywhere...)

» Cluster customers according to purchase history.

- Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

- And many many more applications....



Clustering

Today:

« Objective based clustering
« Hierarchical clustering
« Mention overlapping clusters

[March 4th: EM-style algorithm for clustering for mixture of Gaussians (specific
probabilistic model).]



Objective Based Clustering

Input: A set S of n points, also a distance/dissimilarity
measure specifying the distance d(x,y) between pairs (x,y).

E.g., # keywords in common, edit distance, wavelets coef., etc.

Goal: output a partition of the data.

- k-means: find center pts cq, ¢y, ..., ¢ 10

- k-median: find center pts cq, ¢y, ..., ¢ TO

- K-center: find partition fo minimize the maxim radius



Euclidean k-means Clustering

Input: A set of n datapoints x1,x2, ..., x™ in R4
target #clusters k

Output: k representatives ¢4, ¢y, ..., ¢ € RY

Objective: choose ¢y, ¢y, ..., ¢, € RY to minimize
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Euclidean k-means Clustering

Input: A set of n datapoints x1,x2, ..., x™ in R4
target #clusters k

Output: k representatives ¢4, ¢y, ..., ¢ € RY

Objective: choose ¢y, ¢y, ..., ¢, € RY to minimize

_ 2
Z?=1 MiNjefq,. k) “Xl — Cj”

Natural assignment: each point assigned to s
closest center, leads to a Voronoi partition.




Euclidean k-means Clustering

Input: A set of n datapoints x1,x2,...,x™ in RY
target #clusters k

Output: k representatives ¢4, ¢y, ..., ¢ € RY

Objective: choose ¢y, ¢y, ..., ¢, € RY to minimize

_ 2
Yiz1 MiNjefq,. k) ||Xl — Cj||

Computational complexity:

NP hard: even for k = 2 [Dagupta'08] OF A
d = 2 [Mahajan-Nimbhorkar-Varadarajan09] o

There are a couple of easy cases...



An Easy Case for k-means:

Input: A set of n datapoints x1,x2, ..., x™ in R4

. 2
Output: c € R? to minimize T, [|x' - ||

Solution: The optimal choice is p = %Zi“:l X!

Idea: bias/variance like decomposition

1 : 2 1 : 2
~yi | =l = [Ir—ell + -2k, |Ix - ]

Avg k-means cost wrt ¢ Avg k-means cost wrt p

So, the optimal choice for cis .

K

1



Another Easy Case for k-means: d=1

Input: A set of n datapoints x1,x2, ..., x™ in R4

. 2
Output: c € R? to minimize T, [|x' - ||

Extra-credit homework question
Hint: dynamic programming in time O(n“k).



Common Heuristic in Practice:
The Lloyd's method

[Least squares quantization in PCM, Lloyd, TEEE Transactions on Information Theory, 1982]

Input: A set of n datapoints x1,x2, ..., x" in R4

Initialize centers ¢4, ¢y, ..., ¢, € RY and
clusters C,C,, ..., Cx in any way.

Repeat until there is no further change in the cost.

* For each j: Cj <{x € S whose closest center is c;}

* For each j: ¢; «<mean of C;



Common Heuristic in Practice:
The Lloyd's method

[Least squares quantization in PCM, Lloyd, IEEE Transactions on Information Theory, 1982]

Input: A set of n datapoints x1,x2, ..., x" in R4

Initialize centers ¢4, cy, ..., ¢ € R4 and
clusters C,C,, ..., Cx in any way.

Repeat until there is no further change in the cost.

* For each j: Cj <{x € S whose closest center is c;}

* For each j: ¢; «mean of C;

Holding ¢4, 3, ..., ¢i fixed, Holding C4, C, ..., Cx fixed,
pick optimal Cq,C,, ..., Cx pick optimal ¢4, ¢y, ..., ¢y



Common Heuristic: The Lloyd's method

Input: A set of n datapoints x1,x2, ..., x" in R4

Initialize centers cq, ¢y, ..., cx € RY and
clusters Cy,C,, ..., Cx in any way.
Repeat until there is no further change in the cost.

* For each j: Cj <{x € S whose closest center is c;}

* For each j: ¢; «<mean of C;

Note: it always converges.

* the cost always drops and

* there is only a finite #s of Voronoi partitions
(so a finite # of values the cost could take)



Initialization for the Lloyd's method

Input: A set of n datapoints x1,x2,...,x" in R¢

Initialize centers cq, ¢y, ..., ¢ € RY and
clusters Cy,C,, ..., C in any way.
Repeat until there is no further change in the cost.

* Foreach j: C; <{x € S whose closest center is c;}

* For each j: ¢; «mean of

« TInitialization is crucial (how fast it converges, quality of solution output)
* Discuss techniques commonly used in practice

« Random centers from the datapoints (repeat a few times)
* Furthest traversal

« K-means ++ (works well and has provable guarantees)



Lloyd's method: Random Initialization



Lloyd's method: Random Initialization

Example: Given a set of datapoints

O



Lloyd's method: Random Initialization

Select initial centers at random

O



Lloyd's method: Random Initialization

Assign each point to its nearest center

N




Lloyd's method: Random Initialization

Recompute optimal centers given a fixed clustering

7
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Lloyd's method: Random Initialization

Assign each point to its nearest center



Lloyd's method: Random Initialization

Recompute optimal centers given a fixed clustering

\
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Lloyd's method: Random Initialization

Assigh each point to its nearest center

|

\
S .

o



Lloyd's method: Random Initialization

Recompute optimal centers given a fixed clustering

- .

J

Get a good quality solution in this example.



Lloyd's method: Performance

It always converges, but it may converge at a local optimum
that is different from the global optimum, and in fact could
be arbitrarily worse in terms of its score.



Lloyd's method: Performance

Local optimum: every point is assigned to its nearest center
and every center is the mean value of its points.



Lloyd's method: Performance

It is arbitrarily worse than optimum solution.... @

0 o
O O




Lloyd's method: Performance

®
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0Q. P This bad performance, can happen
80 even with well separated Gaussian
clusters.




Lloyd's method: Performance

This bad performance, can
happen even with well
separated Gaussian clusters.

Some Gaussian are
combined




Lloyd's method: Performance

« If we do random initialization, as k increases, it becomes
more likely we won't have perfectly picked one center per

Gaussian in our initialization (so Lloyd's method will output
a bad solution).

* For k equal-sized Gaussians, Pr[each initial center is ina

k!

. . 1
different GGUSSIGH] ~ ok ~ ok

« Becomes unlikely as k gets large.



Another Initialization Idea: Furthest
Point Heuristic

Choose c; arbitrarily (or at random).
- Forj=2 ..k

» Pick ¢; among datapoints x',x?, ..., x9 that is
farthest from previously chosen ¢4, ¢;, ..., ¢j_4

Fixes the Gaussian problem. But it can be thrown
off by outliers....



Furthest point heuristic does well on
previous example

®
®QQL o
% 028
© P
oQ. °



Furthest point initialization heuristic
sensitive to outliers

Assume k=3

@ (0.1)

(-2.0) (3.0)

& (0.-1)




Furthest point initialization heuristic
sensitive to outliers

Assume k=3

@ (0.1)
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K-means++ Initialization: D* sampling (avor

Interpolate between random and furthest point initialization

Let D(x) be the distance between a point x and its nearest
center. Chose the next center proportional to D*(x).

* Choose ¢, at random.

« Forj=2, ..k

» Pick ¢; among x', x?

, ..., x4 according to the distribution

) ) 2
Pr(ci =X') minir<j “x‘ o c]-r|| DZ(Xi)

Theorem: K-means++ always attains an O(log k) approximation to
optimal k-means solution in expectation.

Running Lloyd's can only further improve the cost.



K-means++ Idea: D* sampling

« Interpolate between random and furthest point initialization

« Let D(x) be the distance between a point x and its nearest
center. Chose the next center proportional o D%(x).

* a =0, random sampling

°* a = 0O, fur"l‘heST pOinT (Side note: it actually works well for k-center)

e a =2, k-means++

Side note: a = 1, works well for k-median



K-means ++ Fix
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K-means++/ Lloyd's Running Time

« K-means ++ initialization: O(nd) and one pass over data to
select next center. So O(nkd) time in total.

 Lloyd's method

Repeat until there is no change in the cost. Each round takes

For each j: Cj <{x € S whose closest centeris ¢} time O(nkd)

For each j: ¢; «mean of C;

« Exponential # of rounds in the worst case [AVO7].

« Expected polynomial time in the smoothed analysis modell



K-means++/ Lloyd's Summary

K-means++ always attains an O(log k) approximation to optimal
k-means solution in expectation.

Running Lloyd's can only further improve the cost.

« Exponential # of rounds in the worst case [AVO7].

« Expected polynomial time in the smoothed analysis model!

« Does well in practice.



What value of k???

 Heuristic: Find large gap between k -1-means cost
and k-means cost.

 Hold-out validation/cross-validation on auxiliary
task (e.g., supervised learning task).

« Try hierarchical clustering.



Hierarchical Clustering

* A hierarchy might be more natural.

« Different users might care about different levels of
granularity or even prunings.



Hierarchical Clustering

Top-down (divisive)
 Partition data into 2-groups . 2-means)

* Recursively cluster each group.

Bottom-Up (agglomerative)
Start with every point in its own cluster.

Repeatedly merge the "closest” two clusters.

Different defs of "closest” give dlffer'en’r
algorithms.



Bottom-Up (agglomerative)

Have a distance measure on pairs of objects. >
d(x,y) - distance between x and y @ T
E.g., # keywords in common, edit distance, etc ﬁ

‘ COXC™
« Single linkage: dist(A,B) = min dist(x,x")

xeA,x'eB’

« Complete linkage:  dist(A,B) = max  dist(x,x")

xeAx'eB’

« Average linkage:  dist(A,B) = avg dist(x,x")

xeAx'eB’

« Wards' method



Single Linkage

Bottom-up (agglomerative)
« Start with every point in its own cluster.
* Repeatedly merge the "closest” two clusters.

Single linkage: dist(A,B) = min dist(x,x")

xeAx'eB

Dendogram
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Single Linkage

Bottom-up (agglomerative)
« Start with every point in its own cluster.
« Repeatedly merge the "closest” two clusters.

Single linkage: dist(A,B) = min dist(x,x")

xeAx'eB

One way to think of it: at any moment, we see connected components
of the graph where connect any two pts of distance < r.

Watch as r grows (only n-1 relevant values because we only we merge
at value of r corresponding to values of r in different clusters).

4 5
13 ,
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Complete Linkage

Bottom-up (agglomerative)
« Start with every point in its own cluster.
* Repeatedly merge the "closest” two clusters.

Complete linkage: dist(A,B) = max dist(x,x")

x€eAx'eB

One way to think of it: keep max diameter as small as possible at

any level.
5 CABCDEF




Complete Linkage

Bottom-up (agglomerative)
« Start with every point in its own cluster.
* Repeatedly merge the "closest” two clusters.

Complete linkage: dist(A,B) = max dist(x,x")

x€eAx'eB

One way to think of it: keep max diameter as small as possible.

5
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Ward's Method

Bottom-up (agglomerative)
« Start with every point in its own cluster.
* Repeatedly merge the "closest” two clusters.

cHc]

Ward's method: dist(C,C') = I

lmean(C) — mean(C")||?

Merge the two clusters such that the increase in k-means cost is
as small as possible.

Works well in practice.

5

1 3
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Running time

« Each algorithm starts with N clusters, and performs N-1 merges.

* For each algorithm, computing dist(C,C") can be done in time
O(|C| - |C']). (e.g., examining dist(x,x") for all x € C,x" € C")

« Time to compute all pairwise distances and take smallest is O(N?).
e Overall time is O(N?).

In fact, can run all these algorithms in time O(N“logN).

See: Christopher D. Manning, Prabhakar Raghavan and Hinrich Schiitze, Introduction to
Information Retrieval, Cambridge University Press. 2008. http://www-nlp.stanford.edu/IR-book/



Hierarchical Clustering Experiments
[BLG, JMLR'15]
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Ward's method does the best among classic techniques.



Hierarchical Clustering Experiments

corrupted attributes
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Gaussian attributes

[BLG, JMLR'15]
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Ward's method does the best among classic techniques.



What You Should Know

* Partitional Clustering. k-means and k-means ++

 Lloyd's method

« Initialization techniques (random, furthest
traversal, k-means++)

 Hierarchical Clustering.

« Single linkage, Complete Linkge, Ward's method



Additional Slides



Smoothed analysis model

- Imagine a worst-case input.

 But then add small Gaussian perturbation to each data point.

o)



Smoothed analysis model

- Imagine a worst-case input.

 But then add small Gaussian perturbation to each data point.

* Theorem [Arthur-Manthey-Roglin 2009]:

- E[number of rounds until Lloyd's converges] if add Gaussian
perturbation with variance o is polynomial inn, 1/0.

344,34 48
- The actual bound is: 0 (" ';6 4 )

* Might still find local opt that is far from global opt.



Overlapping Clusters: Communities

Christos
Papadimitriou

Colleagues at
Berkeley

Databases

Algorithmic Game
Theory



Overlapping Clusters: Communities

e Social networks  Professional networks

Yick, 0 ,

- W

D = 1TH N s
‘\“\\® Cwittes

 Product Purchasing Networks, Citation Networks,
Biological Networks, etc



Overlapping Clusters: Communities

Baby's Favorite
Songs

lullabies



