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Clustering.  

Unsupervised Learning 

Additional resources: 

• Center Based Clustering: A Foundational Perspective.  

     Awasthi, Balcan. Handbook of Clustering Analysis. 2015.  

Reading: 

• Chapter 14.3: Hastie, Tibshirani, Friedman. 



Logistics 

• Midway Review due today. 

• Final Report, May 8. 

• Poster Presentation, May 11. 

• Exam #2 on April 29th. 

• Project: 

• Communicate with your mentor TA! 



Clustering, Informal Goals 

Goal: Automatically partition unlabeled data into groups of 

similar datapoints. 

 Question: When and why would we want to do this? 

• Automatically organizing data. 

 Useful for: 

• Representing high-dimensional data in a low-dimensional space 
(e.g., for visualization purposes). 

• Understanding hidden structure in data. 

• Preprocessing for further analysis. 



• Cluster news articles or web pages or search results by topic. 

 

Applications (Clustering comes up everywhere…) 

 

• Cluster protein sequences by function or genes according to expression 
profile. 

 

• Cluster users of social networks by interest (community detection). 

Facebook network Twitter Network 

http://images.google.com/imgres?imgurl=http://www.ebgm.jussieu.fr/~debrevern/PBs/images/protein_04.jpg&imgrefurl=http://www.ebgm.jussieu.fr/~debrevern/PBs/coding.html&h=496&w=709&sz=50&hl=en&start=8&tbnid=RCESdcwRtVouHM:&tbnh=98&tbnw=140&prev=/images?q=protein&gbv=2&hl=en


• Cluster customers according to purchase history. 

 

Applications (Clustering comes up everywhere…) 

 

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey) 

 

• And many many more applications…. 



Clustering 

[March 4th: EM-style algorithm for clustering for mixture of Gaussians (specific 

probabilistic model).] 

Today: 

• Objective based clustering 

• Hierarchical clustering 

• Mention overlapping clusters 



Objective Based Clustering 

Goal: output a partition of the data. 

Input: A set  S of n points, also a distance/dissimilarity 
measure specifying the distance d(x,y) between pairs (x,y). 

E.g., # keywords in common, edit distance, wavelets coef., etc. 

– k-median: find center pts 𝐜𝟏, 𝐜𝟐, … , 𝐜𝐤 to  

                minimize  ∑i=1 
n minj∈ 1,…,k d(𝐱𝐢, 𝐜𝐣) 

– k-means: find center pts 𝒄𝟏, 𝒄𝟐, … , 𝒄𝒌 to  

                minimize  ∑i=1 
n minj∈ 1,…,k d2(𝐱𝐢, 𝐜𝐣) 

– K-center: find partition to minimize the maxim radius 

z   x 

y 
c1 c2 

s c3 



Input: A set of n datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝒏 in Rd 

Euclidean k-means Clustering 

target #clusters k 

Output: k representatives 𝒄𝟏, 𝐜𝟐, … , 𝒄𝒌 ∈ Rd 

Objective: choose 𝒄𝟏, 𝐜𝟐, … , 𝒄𝒌 ∈ Rd to minimize 

∑i=1 
n minj∈ 1,…,k 𝐱𝐢 − 𝐜𝐣

2
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Natural assignment: each point assigned to its 

closest center, leads to a Voronoi partition. 



Input: A set of n datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝒏 in Rd  
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Computational complexity: 

NP hard: even for k = 2 [Dagupta’08] or 

d = 2 [Mahajan-Nimbhorkar-Varadarajan09] 

There are a couple of easy cases… 



An Easy Case for k-means: k=1 

Output: 𝒄 ∈ Rd to minimize ∑i=1 
n 𝐱𝐢 − 𝐜
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Solution: 

1

n
∑i=1 

n 𝐱𝐢 − 𝐜
2

= 𝛍 − 𝐜
2

+
1

n
∑i=1 

n 𝐱𝐢 − 𝛍
2
 

So, the optimal choice for 𝐜 is 𝛍. 

The optimal choice is 𝛍 =
1

n
∑i=1 

n 𝐱𝐢 

Input: A set of n datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝒏 in Rd 

Avg k-means cost wrt c Avg k-means cost wrt μ 

Idea: bias/variance like decomposition 



Another Easy Case for k-means: d=1 

Output: 𝒄 ∈ Rd to minimize ∑i=1 
n 𝐱𝐢 − 𝐜

2
 

Extra-credit homework question 

Hint: dynamic programming in time O(n2k). 

Input: A set of n datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝒏 in Rd 



Input: A set of n datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧 in Rd 

Common Heuristic in Practice: 

The Lloyd’s method 

Repeat until there is no further change in the cost. 

• For each j:  Cj ←{𝑥 ∈ 𝑆 whose closest center is 𝐜𝐣} 

• For each j: 𝐜𝐣 ←mean of Cj 

Initialize centers 𝒄𝟏, 𝐜𝟐, … , 𝒄𝒌 ∈ Rd and 

               clusters C1, C2, … , Ck in any way. 

[Least squares quantization in PCM, Lloyd, IEEE Transactions on Information Theory, 1982] 



Input: A set of n datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧 in Rd 

Common Heuristic in Practice: 

The Lloyd’s method 

Repeat until there is no further change in the cost. 

• For each j:  Cj ←{𝑥 ∈ 𝑆 whose closest center is 𝐜𝐣} 

• For each j: 𝐜𝐣 ←mean of Cj 

Initialize centers 𝒄𝟏, 𝐜𝟐, … , 𝒄𝒌 ∈ Rd and 

               clusters C1, C2, … , Ck in any way. 

[Least squares quantization in PCM, Lloyd, IEEE Transactions on Information Theory, 1982] 

Holding 𝒄𝟏, 𝐜𝟐, … , 𝒄𝒌 fixed, 

pick optimal C1, C2, … , Ck 

Holding C1, C2, … , Ck fixed, 

pick optimal 𝒄𝟏, 𝐜𝟐, … , 𝒄𝒌  



Input: A set of n datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧 in Rd 

Common Heuristic: The Lloyd’s method 

Initialize centers 𝐜𝟏, 𝐜𝟐, … , 𝐜𝐤 ∈ Rd and 

               clusters C1, C2, … , Ck in any way. 

Repeat until there is no further change in the cost. 

• For each j:  Cj ←{𝑥 ∈ 𝑆 whose closest center is 𝐜𝐣} 

• For each j: 𝐜𝐣 ←mean of Cj 

Note: it always converges. 

• the cost always drops and  

• there is only a finite #s of Voronoi partitions 
(so a finite # of values the cost could take) 



Input: A set of n datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧 in Rd 

Initialization  for the Lloyd’s method 

Initialize centers 𝐜𝟏, 𝐜𝟐, … , 𝐜𝐤 ∈ Rd and 

               clusters C1, C2, … , Ck in any way. 

Repeat until there is no further change in the cost. 

• For each j:  Cj ←{𝑥 ∈ 𝑆 whose closest center is 𝐜𝐣} 

• For each j: 𝐜𝐣 ←mean of Cj 

• Initialization is crucial (how fast it converges, quality of solution output) 

• Discuss techniques  commonly used in practice  

• Random centers from the datapoints (repeat a few times) 

• K-means ++ (works well and has provable guarantees) 

• Furthest traversal 



Lloyd’s method: Random Initialization 



Example: Given a set of datapoints 

Lloyd’s method: Random Initialization 



Select initial centers at random 

Lloyd’s method: Random Initialization 



Assign each point to its nearest center 

Lloyd’s method: Random Initialization 



Recompute optimal centers given a fixed clustering 

Lloyd’s method: Random Initialization 



Assign each point to its nearest center 

Lloyd’s method: Random Initialization 



Recompute optimal centers given a fixed clustering 

Lloyd’s method: Random Initialization 



Assign each point to its nearest center 

Lloyd’s method: Random Initialization 



Recompute optimal centers given a fixed clustering 

Lloyd’s method: Random Initialization 

Get a good  quality solution in this example. 



Lloyd’s method: Performance 

It always converges, but it may converge at a local optimum 

that is different from the global optimum, and in fact could 

be arbitrarily worse in terms of its score. 



Lloyd’s method: Performance 

Local optimum: every point is assigned to its nearest center 

and every center is the mean value of its points. 



Lloyd’s method: Performance 

.It is arbitrarily worse than optimum solution…. 



Lloyd’s method: Performance 

This bad performance, can happen 

even with well separated Gaussian 

clusters. 



Lloyd’s method: Performance 

This bad performance, can 

happen even with well 

separated Gaussian clusters. 

Some Gaussian are 

combined….. 



Lloyd’s method: Performance 

• For k equal-sized Gaussians, Pr[each initial center is in a 

different Gaussian] ≈
𝑘!

𝑘𝑘 ≈
1

𝑒𝑘 

• Becomes unlikely as k gets large.  

• If we do random initialization, as k increases, it becomes 

more likely we won’t have perfectly picked one center per 

Gaussian in our initialization (so Lloyd’s method will output 

a bad solution). 



Another Initialization Idea: Furthest 

Point Heuristic 

Choose 𝐜𝟏 arbitrarily (or at random). 

• Pick 𝐜𝐣 among datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐝 that is 

farthest from previously chosen 𝐜𝟏, 𝐜𝟐, … , 𝐜𝒋−𝟏 

• For j = 2, … , k 

Fixes the Gaussian problem. But it can be thrown 

off by outliers…. 



Furthest point heuristic does well on 

previous example 



(0,1) 

(0,-1) 

(-2,0) (3,0) 

Furthest point initialization heuristic 

sensitive to outliers 

Assume k=3 



(0,1) 

(0,-1) 

(-2,0) (3,0) 

Furthest point initialization heuristic 

sensitive to outliers 

Assume k=3 



K-means++ Initialization: D2 sampling [AV07] 

• Choose 𝐜𝟏 at random. 

• Pick 𝐜𝐣 among 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐝 according to the distribution 

• For j = 2, … , k 

• Interpolate between random and furthest point initialization 

𝐏𝐫(𝐜𝐣 = 𝐱𝐢) ∝ 𝐦𝐢𝐧𝐣′<𝐣 𝐱𝐢 − 𝐜𝐣′

𝟐
 

• Let D(x) be the distance between a point 𝑥 and its nearest 

center. Chose the next center proportional to D2(𝐱). 

D2(𝐱𝐢) 

Theorem: K-means++ always attains an O(log k) approximation to 
optimal k-means solution in expectation. 

Running Lloyd’s can only further improve the cost. 



K-means++ Idea: D2 sampling 

• Interpolate between random and furthest point initialization 

• Let D(x) be the distance between a point 𝑥 and its nearest 

center. Chose the next center proportional to D𝛼(𝐱). 

• 𝛼 = 0, random sampling 

• 𝛼 = ∞, furthest point  (Side note: it actually works well for k-center) 

• 𝛼 = 2, k-means++  

Side note: 𝛼 = 1, works well for k-median  



(0,1) 

(0,-1) 

(-2,0) (3,0) 

K-means ++ Fix 



K-means++/ Lloyd’s Running Time 

Repeat until there is no change in the cost. 

• For each j:  Cj ←{𝑥 ∈ 𝑆 whose closest center is 𝐜𝐣} 

• For each j: 𝐜𝐣 ←mean of Cj 

Each round takes 

time O(nkd). 

• K-means ++ initialization: O(nd) and one pass over data to 

select next center. So O(nkd) time in total. 

• Lloyd’s method 

• Exponential # of rounds in the worst case [AV07]. 

• Expected polynomial time in the smoothed analysis model! 



K-means++/ Lloyd’s Summary 

• Exponential # of rounds in the worst case [AV07]. 

• Expected polynomial time in the smoothed analysis model! 

• K-means++ always attains an O(log k) approximation to optimal 
k-means solution in expectation. 

• Running Lloyd’s can only further improve the cost. 

• Does well in practice. 



What value of k??? 

• Hold-out validation/cross-validation on auxiliary 
task (e.g., supervised learning task). 

• Heuristic: Find large gap between k -1-means cost 
and k-means cost. 

• Try hierarchical clustering. 



soccer 

sports fashion 

Gucci tennis  Lacoste  

All topics 

Hierarchical Clustering 

• A hierarchy might be more natural. 

• Different users might care about different levels of 
granularity or even prunings. 



• Partition data into 2-groups (e.g., 2-means) 

Top-down (divisive) 

Hierarchical Clustering 

• Recursively cluster each group. 

Bottom-Up (agglomerative) 

soccer 

sports fashion 

Gucci tennis  Lacoste  

All topics 
• Start with every point in its own cluster. 

• Repeatedly merge the “closest” two clusters. 

• Different defs of “closest” give different 
algorithms. 



Bottom-Up (agglomerative) 

•  Single linkage: dist A, 𝐵 = min
x∈A,x′∈B′

dist(x, x′) 

dist A, B = avg
x∈A,x′∈B′

dist(x, x′) 

soccer 

sports fashion 

Gucci tennis  Lacoste  

All topics Have a distance measure on pairs of objects. 

d(x,y) – distance between x and y 

•  Average linkage: 

•  Complete linkage: 

•  Wards’ method 

E.g., # keywords in common, edit distance, etc 

dist A, B = max
x∈A,x′∈B′

dist(x, x′) 



Single Linkage 

Bottom-up (agglomerative) 
• Start with every point in its own cluster. 

• Repeatedly merge the “closest” two clusters. 

Single linkage: dist A, 𝐵 = min
x∈A,x′∈𝐵

dist(x, x′) 
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Dendogram 



Single Linkage 

Bottom-up (agglomerative) 
• Start with every point in its own cluster. 

• Repeatedly merge the “closest” two clusters. 

1 
2 3 

4 5 

One way to think of it: at any moment, we see connected components 
of the graph where connect any two pts of distance < r.  

0 6 2.1 3.2 -2 -3 
A B C D E F 

Watch as r grows (only n-1 relevant values because we only we merge 
at value of r corresponding to values of r in different clusters).  

Single linkage: dist A, 𝐵 = min
x∈A,x′∈𝐵

dist(x, x′) 



Complete Linkage 

Bottom-up (agglomerative) 
• Start with every point in its own cluster. 

• Repeatedly merge the “closest” two clusters. 

Complete linkage: dist A, B = max
x∈A,x′∈B

dist(x, x′) 

One way to think of it: keep max diameter as small as possible at 
any level. 

0 6 2.1 3.2 -2 -3 
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Complete Linkage 

Bottom-up (agglomerative) 
• Start with every point in its own cluster. 

• Repeatedly merge the “closest” two clusters. 

One way to think of it: keep max diameter as small as possible. 

0 6 2.1 3.2 -2 -3 
A B C D E F 

1 
2 3 4 

5 

Complete linkage: dist A, B = max
x∈A,x′∈B

dist(x, x′) 



Ward’s Method  

Bottom-up (agglomerative) 
• Start with every point in its own cluster. 

• Repeatedly merge the “closest” two clusters. 

Ward’s method: dist C, C′ =
C ⋅ C′

C + C′ mean C − mean C′ 2 

Merge the two clusters such that the increase in k-means cost is 
as small as possible. 

Works well in practice. 

0 6 2.1 3.2 -2 -3 
A B C D E F 

1 
2 4 
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3 



Running time 

In fact, can run all these algorithms in time 𝑂(𝑁2 log 𝑁). 

• Each algorithm starts with N clusters, and performs N-1 merges.  

• For each algorithm, computing 𝑑𝑖𝑠𝑡(𝐶, 𝐶′) can be done in time 
𝑂( 𝐶 ⋅ 𝐶′ ).  (e.g., examining 𝑑𝑖𝑠𝑡(𝑥, 𝑥′) for all 𝑥 ∈ 𝐶, 𝑥′ ∈ 𝐶′) 

• Time to compute all pairwise distances and take smallest is 𝑂(𝑁2). 

See: Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to 
Information Retrieval, Cambridge University Press. 2008. http://www-nlp.stanford.edu/IR-book/ 

• Overall time is 𝑂(𝑁3). 



Hierarchical Clustering Experiments 
[BLG, JMLR’15] 

Ward’s method does the best among classic techniques. 



Hierarchical Clustering Experiments 
[BLG, JMLR’15] 

Ward’s method does the best among classic techniques. 



What You Should Know 

• Partitional Clustering. k-means and k-means ++ 

• Hierarchical Clustering. 

• Lloyd’s method 

•  Single linkage, Complete Linkge, Ward’s method 

• Initialization techniques (random, furthest 

traversal, k-means++) 



Additional Slides 



Smoothed analysis model 

• Imagine a worst-case input. 

• But then add small Gaussian perturbation to each data point. 



Smoothed analysis model 

• Imagine a worst-case input. 

• But then add small Gaussian perturbation to each data point. 

• Theorem [Arthur-Manthey-Roglin 2009]:  

 

• Might still find local opt that is far from global opt. 

- E[number of rounds until Lloyd’s converges] if add Gaussian 
perturbation with variance 𝜎2 is polynomial in 𝑛, 1/𝜎. 

- The actual bound is : 𝑂
𝑛34𝑘34𝑑8

𝜎6  



TCS 

Christos 
Papadimitriou 

Colleagues at 
Berkeley 

Databases 
Systems 

Algorithmic Game 
Theory 

Overlapping Clusters: Communities 



Overlapping Clusters: Communities 

• Social networks • Professional networks 

• Product Purchasing Networks, Citation Networks, 
Biological Networks, etc 



Kids 

CDs 

lullabies 

Electronics 

Overlapping Clusters: Communities 

Baby's Favorite 
Songs  


