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Kernels Methods in Machine Learning 

• Perceptron. Geometric Margins. 

• Support Vector Machines (SVMs).  



Quick Recap about 
Perceptron and Margins 



Mistake bound model 

• Example arrive sequentially. 

The Online Learning Model 

• We need to make a prediction. 

Afterwards observe the outcome. 

• Analysis wise, make no distributional assumptions. 

• Goal: Minimize the number of mistakes. 

Online Algorithm 

Example 𝑥𝑖 

Prediction ℎ(𝑥𝑖) Phase i: 

Observe c∗(𝑥𝑖) 

For i=1, 2, …, : 



• Set t=1, start with the all zero vector 𝑤1. 

Perceptron Algorithm in Online Model 

• Given example 𝑥, predict + iff 𝑤𝑡 ⋅ 𝑥 ≥ 0 

• On a mistake, update as follows: 

• Mistake on positive, 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥 
• Mistake on negative, 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥 

Note 1:  wt is weighted sum of incorrectly classified examples 

𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 So, 𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥 
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Note 2:  Number of mistakes ever made depends only on the 
geometric margin of examples seen. 

WLOG  homogeneous linear separators [w0 = 0]. 

• No matter how long the sequence is or how high dimension n is! 

X = Rn 



Geometric Margin 
Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the 
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0. 
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Margin of example 𝑥1 

𝑥2 

Margin of example 𝑥2 

If 𝑤 = 1,  margin of x 
w.r.t. w is |𝑥 ⋅ 𝑤|. 
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Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum 
𝛾𝑤 over all linear separators 𝑤. 

Geometric Margin 

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear 
separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆. 

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the 
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0. 



Perceptron: Mistake Bound 
Theorem: If data linearly separable by margin 𝛾 and points inside 
a ball of radius 𝑅, then Perceptron makes ≤ 𝑅/𝛾 2 mistakes. 

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.) 
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Margin: the amount of 
wiggle-room available for 
a solution. 

• No matter how long the sequence is how high dimension n is! 



Perceptron Extensions 

• Can use it to find a consistent separator with a given set 
S linearly separable by margin 𝛾 (by cycling through the data). 

• Can convert the mistake bound guarantee into a distributional 
guarantee too (for the case where the 𝑥𝑖s come from a fixed 

distribution). 

• Can be adapted to the case where there is no perfect 
separator as long as the so called hinge loss (i.e., the total 
distance needed to move the points to classify them correctly large 

margin) is small.  

• Can be kernelized to handle non-linear decision boundaries! 



Theorem: If data linearly separable by margin 𝛾 and points inside 
a ball of radius 𝑅, then Perceptron makes ≤ 𝑅/𝛾 2 mistakes. 

Implies that large margin classifiers have 
smaller complexity! 



Complexity of Large Margin Linear Sep. 
• Know that in Rn we can shatter n+1 points with linear 

separators, but not n+2 points (VC-dim of linear sep is n+1). 

What if we require that the points be 
linearly separated by margin 𝛾?  

Can have at most 
𝑅

𝛾

2
 points inside ball of radius R 

that can be shattered at margin 𝛾 (meaning that every 

labeling is achievable by a separator of margin 𝛾). 

• So, large margin classifiers have smaller complexity! 

• Less prone to overfitting!!!! 

• Less classifiers to worry about that will look good over 
the sample, but bad over all…. 
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• Nice implications for usual distributional learning setting. 



Both sample complexity and algorithmic implications. 

Margin Important Theme in ML. 

Sample/Mistake Bound complexity: 

• If large margin, # mistakes Peceptron makes 
is small (independent on the dim of the space)! 

• If large margin 𝛾 and if alg. produces a large 
margin classifier, then amount of data needed 
depends only on R/𝛾 [Bartlett & Shawe-Taylor ’99].  

Algorithmic Implications: 

• Perceptron, Kernels, SVMs… 
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• Suggests searching for a 
large margin classifier… 



So far, talked about margins in 
the context of (nearly) linearly 
separable datasets 



What if Not Linearly Separable 

Problem: data not linearly separable in the most natural 

feature representation. 

Solutions: 

•  “Learn a more complex class of functions”  
• (e.g., decision trees, neural networks, boosting). 

•  “Use a Kernel”  

•  “Use a Deep Network” 

Example: vs 
No good linear 
separator in pixel 
representation. 

 

•  “Combine  Kernels  and Deep Networks” 

(a neat solution that attracted a lot of attention) 
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Overview of Kernel Methods 

What is a Kernel? 

A kernel K is a legal def of dot-product: i.e. there exists an 
implicit mapping Φ s.t. K(    ,     ) =Φ(    )⋅ Φ(    )  

Why Kernels matter? 

•  Many algorithms interact with data only via dot-products. 

• So, if replace x ⋅ z with K x, z  they act implicitly as if data  
was in the higher-dimensional Φ-space. 

• If data is linearly separable by large margin in the Φ-space, 
then good sample complexity.  

E.g., K(x,y) = (x ¢ y + 1)d 

: (n-dimensional space) ! nd-dimensional space 

[Or other regularity properties for controlling the capacity.] 
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Kernels 

Definition 

K(⋅,⋅) is a  kernel if it can be viewed as a legal definition of 
inner product: 

• ∃ ϕ: X → RN  s.t. K x, z = ϕ x ⋅ ϕ(z) 

• Range of ϕ is called the Φ-space. 

• N can be very large.  

• But think of ϕ as implicit, not explicit!!!! 



Example 

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to  

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥1
2, 𝑥2
2, 2𝑥1𝑥2) 
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Example 
ϕ:R2 → R3, x1, x2 → Φ x = (x1

2, x2
2, 2x1x2) 
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Φ-space Original space 

ϕ x ⋅ ϕ 𝑧 = x1
2, x2
2, 2x1x2 ⋅ (𝑧1

2, 𝑧2
2, 2𝑧1𝑧2) 

= x1𝑧1 + x2𝑧2
2 = x ⋅ 𝑧 2 = K(x, z) 



Kernels 

Definition 

K(⋅,⋅) is a  kernel if it can be viewed as a legal definition of 
inner product: 

• ∃ ϕ: X → RN  s.t. K x, z = ϕ x ⋅ ϕ(z) 

• Range of ϕ is called the Φ-space. 

• N can be very large.  

• But think of ϕ as implicit, not explicit!!!! 



Example 

Note:  feature space might not be unique. 

ϕ:R2 → R4, x1, x2 → Φ x = (x1
2, x2
2, x1x2, x2x1) 

ϕ x ⋅ ϕ 𝑧 = (x1
2, x2
2, x1x2, x2x1) ⋅ (z1

2, z2
2, z1z2, z2z1) 

= x ⋅ 𝑧 2 = K(x, z) 

ϕ:R2 → R3, x1, x2 → Φ x = (x1
2, x2
2, 2x1x2) 

ϕ x ⋅ ϕ 𝑧 = x1
2, x2
2, 2x1x2 ⋅ (𝑧1

2, 𝑧2
2, 2𝑧1𝑧2) 

= x1𝑧1 + x2𝑧2
2 = x ⋅ 𝑧 2 = K(x, z) 



Avoid explicitly expanding the features 

Feature space can grow really large and really quickly…. 

Crucial to think of ϕ as implicit, not explicit!!!! 

– 𝑥1
𝑑 ,  𝑥1𝑥2…𝑥𝑑 ,  𝑥1

2𝑥2…𝑥𝑑−1 

– Total number of such feature is 

𝑑 + 𝑛 − 1
𝑑

=
𝑑 + 𝑛 − 1 !

𝑑! 𝑛 − 1 !
 

– 𝑑 = 6, 𝑛 = 100, there are 1.6 billion terms 

• Polynomial kernel degreee 𝑑, 𝑘 𝑥, 𝑧 = 𝑥⊤𝑧 𝑑 = 𝜙 𝑥 ⋅ 𝜙 𝑧  

𝑘 𝑥, 𝑧 = 𝑥⊤𝑧 𝑑 = 𝜙 𝑥 ⋅ 𝜙 𝑧  

𝑂 𝑛   𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛! 



Kernelizing a learning algorithm 

• If  all computations involving instances are in terms of 
inner products then: 

 Conceptually, work in a very high diml space and the alg’s 
performance depends only on linear separability in that 
extended space. 

  Computationally, only need to modify the algo by replacing 
each x ⋅ z with a K x, z . 

•  Examples of kernalizable algos: 

•  classification: Perceptron, SVM. 

•  regression: linear, ridge regression. 

•  clustering: k-means. 



• Set t=1, start with the all zero vector 𝑤1. 

Kernelizing  the Perceptron Algorithm 

• Given example 𝑥, predict + iff 𝑤𝑡 ⋅ 𝑥 ≥ 0 

• On a mistake, update as follows: 

• Mistake on positive, 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥 

• Mistake on negative, 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥 

Easy to kernelize since 𝑤𝑡 is weighted sum of incorrectly 
classified examples 𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥 
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Replace 

Note: need to store all the mistakes so far. 

with 
𝑎𝑖1  𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑘𝐾(𝑥𝑖𝑘 , 𝑥) 



Kernelizing  the Perceptron Algorithm 

• Given 𝑥, predict + iff 

• On the 𝑡 th  mistake, update as follows: 

• Mistake on positive, set 𝑎𝑖𝑡 ← 1; store 𝑥𝑖𝑡 

• Mistake on negative, 𝑎𝑖𝑡 ← −1; store 𝑥𝑖𝑡 

Perceptron 𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥 
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Exact same behavior/prediction rule as if mapped data in the 
𝜙-space and ran Perceptron there! 

→ 𝑎𝑖1  𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑘𝐾(𝑥𝑖𝑘 , 𝑥) 

Φ-space 

𝑎𝑖1  𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑡−1𝐾(𝑥𝑖𝑡−1 , 𝑥) ≥ 0 

Do this implicitly, so computational savings!!!!! 

𝜙(𝑥𝑖𝑡−1) ⋅ 𝜙(𝑥) 



Generalize Well if Good Margin 
• If data is linearly separable by margin in the 𝜙-space, 

then small mistake bound. 

• If margin 𝛾 in 𝜙-space, then Perceptron makes 
𝑅

𝛾

2
  mistakes. 

+ 
w* 

+ 

+ 
+ 

+ 
+ 

+ 

- 

- 
- 

- 

- 

 
 

- 
- 

- 

- 

+ 

R 

Φ-space 



Kernels: More Examples 

• Polynomial: K x, 𝑧 = x ⋅ 𝑧 d or K x, 𝑧 = 1 + x ⋅ 𝑧 d 

• Gaussian: K x, 𝑧 = exp −
𝑥−𝑧

2

2 𝜎2
  

• Linear: K x, z = x ⋅ 𝑧 

• Laplace Kernel: K x, 𝑧 = exp −
||𝑥−𝑧||

2 𝜎2
  

• Kernel for non-vectorial data, e.g., measuring similarity 
between sequences. 



Properties of Kernels 

Theorem (Mercer) 

K is a kernel if and only if: 

• K is symmetric 

• For any set of training points 𝑥1, 𝑥2, … , 𝑥𝑚 and for 
any 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑅, we have: 

  𝑎𝑖𝑎𝑗𝐾 𝑥𝑖 , 𝑥𝑗 ≥ 0𝑖,𝑗  

𝑎𝑇𝐾𝑎 ≥ 0 

I.e., 𝐾 = (𝐾 𝑥𝑖 , 𝑥𝑗 )𝑖,𝑗=1,…,𝑛  is positive semi-definite. 



Kernel Methods 

• Offer great modularity. 

• No need to change the underlying learning 
algorithm to accommodate a particular choice 
of kernel function. 

• Also, we can substitute a different algorithm 
while maintaining the same kernel. 



Kernel, Closure Properties 

Easily create new kernels using basic ones! 

then K x, z = c1K1 x, z + c2K2 x, z  is a kernel. 

If  K1 ⋅,⋅  and  K2 ⋅,⋅  are kernels  c1 ≥ 0, 𝑐2 ≥ 0, Fact: 

Key idea: concatenate the 𝜙 spaces. 

ϕ x = ( c1 ϕ1 x , c2 ϕ2(x))  

ϕ x ⋅ ϕ(z) = c1 ϕ1 x ⋅ ϕ1 z + c2 ϕ2 x ⋅ ϕ2 z  

𝐾1(𝑥, 𝑧) 𝐾2(𝑥, 𝑧) 



Kernel, Closure Properties 

then K x, z = K1 x, z K2 x, z  is a kernel. 

If  K1 ⋅,⋅  and  K2 ⋅,⋅  are kernels, Fact: 

Key idea: ϕ x = ϕ1,i x  ϕ2,j x 𝑖∈ 1,…,𝑛 ,𝑗∈{1,…,𝑚}  

ϕ x ⋅ ϕ(z) = ϕ1,i x  ϕ2,j x ϕ1,i z  ϕ2,j z

𝑖,𝑗

 

= ϕ1,i x  ϕ1,𝑖 z  ϕ2,𝑗 x  ϕ2,j z

𝑗

 

𝑖

 

=  ϕ1,i x  ϕ1,𝑖 z K2 x, z𝑖 = K1 x, z  K2 x, z  

Easily create new kernels using basic ones! 



Kernels, Discussion 

•  Lots of Machine Learning algorithms are kernalizable: 

•  classification: Perceptron, SVM. 

•  regression: linear regression. 

•  clustering: k-means. 

• If  all computations involving instances are in terms 
of inner products then: 

 Conceptually, work in a very high diml space and the alg’s 
performance depends only on linear separability in that 
extended space. 

  Computationally, only need to modify the algo by replacing 
each x ⋅ z with a K x, z . 



Kernels, Discussion 
• If  all computations involving instances are in terms 

of inner products then: 

 Conceptually, work in a very high diml space and the alg’s 
performance depends only on linear separability in that 
extended space. 

  Computationally, only need to modify the algo by replacing 
each x ⋅ z with a K x, z . 

How to choose a kernel: 

• Use Cross-Validation to choose the parameters, e.g., 𝜎  for 
Gaussian Kernel  K x, 𝑧 = exp −

𝑥−𝑧
2

2 𝜎2
  

• Learn a good kernel; e.g.,  [Lanckriet-Cristianini-Bartlett-El Ghaoui-
Jordan’04] 

• Kernels often encode domain knowledge (e.g., string kernels) 


