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Today: Readings:

« Bishop chapter 8

. ical m I
Graphical models « Mitchell chapter 6

 Bayes Nets:
- EM

* Mixture of Gaussian
clustering

« Learning Bayes Net
structure (Chow-Liu)




Learning of Bayes Nets

Four categories of learning problems
— Graph structure may be known/unknown
— Variable values may be fully observed / partly unobserved

Easy case: learn parameters for graph structure is
known, and data is fully observed

Interesting case: graph known, data partly known

Gruesome case: graph structure unknown, data partly
unobserved



&
EM Algorithm - Informally X

EM is a general procedure for learning from partly observed dat
Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Begin with arbitrary choice for parameters 0

Iterate until convergence:

« E Step: estimate the values of unobserved Z, using 0

* M Step: use observed values plus E-step estimates to
derive a better 0

Guaranteed to find local maximum.
Each iteration increases EP(Z|X 0) log P(X, Z|6’)]



EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data
Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S}),

Define Q(6'16) = Ep(z/x,9)[log P(X, Z|6)]

W
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Iterate until convergence:
« E Step: Use X and current 6 to calculate P(Z|X,0)

* M Step: Replace current 6 by
6 — arg max Q(0'19)

Guaranteed to find local maximum.
Each iteration increases EP(Z|X 0) log P(X, Z|6’)]



E Step: Use X, 0, to Calculate P(Z|X,0)

observed X={F,A,H,N}, C : 2 Qllergy
unobserved Z={S}

« How? Bayes net inference problem.
P(Sg = 1|fraghgng, 0) =

P(S, =1, fraphing|6)

(Sk | frarhing, 0) P(Si =1, fraphini|0) + P(S = 0O, frarhgni|0)

let's use p(a,b) as shorthand for p(A=a, B=b)



EM and estimating 0 ; ER e

(Sinus?
observed X = {F,A,H,N}, unobserved Z={S}

E step: Calculate P(Z,|X,; ) for each training example, k

7 Pl=rv ) PSSk = 1, fraghpny|0) + P(Sp = O, fraphyny|0)

M step: update all relevant parameters. For example:

Y 6(fr =1,ar = j) Elsg]
Oslij K : :
D=1 6(fr, =1,a, = J)

SR L 5(fr=1t,ap =4, s, =1)
Recall MLE was: 0, = ——= : :
sli7 SR 0(fk =i, = )




EM and estimating 6 S
More generally,

Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable in
each training example

M step:
Calculate @ similar to MLE estimates, but
replacing each count by its expected count
6(Y =1) = EzxlY] 6(Y =0) — (1 — EgxylY])




Using Unlabeled Data to Help Train
Nailve Bayes Classifier

Learn P(Y|X)
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EM and estimating 6
&) &) &

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

P(y(k) =1)[[; P(zi(k)|y(k) = 1)
> ico P(y(k) = §) I1; P(zi(k)ly(k) = 5)

Epyix,..xy)[y(k)] = P(y(k) = 1z1(k), ... zn(k);0) =

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

DX — = 2k Py(k) = mizi(k) ... 2n(k)) 6(zi(k) = j)
szlm P(X;=jlY =m) = Zk Py(k) = mlz1 (k) ... zx (k)

MLE would be: P( =Y =m) = >k 0((y(k) = m) A (zi(k) = j))




Experimental Evaluation

From [Nigam et al., 2000]
* Newsgroup postings

— 20 newsgroups, 1000/group

* Web page classification
— student, faculty, course, project
— 4199 web pages

* Reuters newswire articles

— 12,902 articles
— 90 topics categories
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Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common
course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0 Iteration 1 Iteration 2
mteligence_word w ranked\by by et
artificial P(W WZCOUPSB) / lecture lecture
understandin P(le % COUI"S@) ce ce
DDw / D* DD:DD
dist DD:DD due
identical handout D*
rus due homework
arrange problem assignment
games set handout
dartmouth tay set,
natural D Dam hw
cognitive . yurttas exam
logic Using one labeled homework problem
proving example per class kfoury DDam
prolog sec postscript
knowledge postscript solution
human exam quiz
representation solution chapter
field assaf ascii
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Usupervised clustering

Just extreme case for EM with
zero labeled examples...



Clustering

« Given set of data points, group them
* Unsupervised learning

« Which patients are similar? (or which earthquakes,
customers, faces, web pages, ...)



Mixture Distributions

Model joint P(X; ... X,) as mixture of multiple distributions.

Use discrete-valued random var Z to indicate which
distribution is being use for each random draw

So P(X;.. ZP L. X0l 2)

Mixture of Gaussians:

* Assume each data point X=<X1, ... Xn> is generated by
one of several Gaussians, as follows:

1. randomly choose Gaussian i, according to P(Z=i)

2. randomly generate a data point <x1,x2 .. xn> according
to N(pi’ ZI)



Mixture of Gaussians

Mean Likelihood =-11.13452288R] 6774
n
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EM for Mixture of Gaussian Clustering

Let’'s simplify to make this easier:

1. assume X=<X, ... X,>, and the X, are conditionally independent
given Z. -

P(X|Z =j) = [ N(Xilpji, 0i)
i

2. assume only 2 clusters (values of Z), and Vi, j, 0, = o
2
P(X) =

P(Z = jlm) [ N(xilpji, o)
7 )

1

3. Assume o known, m; ... g Uy; ... ug; UNknown
Observed: X=<X, ..x,> ¥ (Z~ \7

Unobserved: Z @ @ @



EM

Given observed variables X, unobserved Z

Define Q(0/|0) = E x yllog P(X, Z|0")]

where 0 = (7, uj;) @ @ @

Iterate until convergence:

« E Step: Calculate P(Z(n)|X(n), 6) for each example X(n).
Use this to construct Q(6'|6)

* M Step: Replace current 6 by
6 — arg max Q(0'19)




EM — E Step

Calculate P(Z(n)|X(n),6) for each observed example X(n

X(n)=<x,(n), x,(n), ... x¢(n)>.
&y Xy X

P(z(n)|z(n) = k,0) P(z(n) = k|0)
Yi—gp(z(n)]z(n) = 4,0) P(z(n) = j|6)

P(z(n) = kl|z(n),0) =

[[; P(zi(n)|z(n) = k,0)] P(z(n) = k|6)
Yizo Il P(zi(n)|z(n) = j,0) P(z(n) = j|6)

P(z(n) = klz(n),0) =

[T; N(2i(n)|pg i, o)) (eF (1 —m)(1=R))
S i—olll; N(zi(n)|pjg, 0)] (w3 (1 —7)(1=0))

P(z(n) = kl|z(n),0) =




EM — M Step T (Z=)
First consider update for 7.— ‘

0 = (, 1js)
Q10) = Ezx.qlios P(X. 2l 3] Bliog P(X|7,0) ’

7t has no influence

™« argmax By x g[log P(Z|r")]

T z=1 for nth
- example @
\/—
v

Eyix.p 109 P(ZIm")| = By x 4 [log (W/Zn 2(n) (1 — ﬂ_/)zn(l—z(n))ﬂ

= EZ|X,0 [(Z z(n)) log e’ + (Z(l — z(n))) log(1 — W’)]
— (Z EZ|X,9[z(n)]> log '+ (Z EZ|X,0[(1 — z(n)])) log(1—7")

OEyz)x gllog P(Z|7’
21x0099 PCZI7) = (X Eapalel) 2+ Bzl - 20 ) 1=

T — Z,]X:lE[z(n)] —l N St
(Zé\le E[z(n)]) + (Zfz\’:l(l — E[Z(n)])) N ; [2(n)]




Now consider update for y;
Q(0'10) = Ez x gllog P(X, Z|6")] = E[log P(X|Z, 9’)+Iczg P(Z|0N]

Hji < arg m?‘x Ele’Q[log P(X|Z, 9/)] @

EM - M Step

w; has no influence

Ype1 P(z(n) = jlz(n),0) wi(n)

i <

SN P(z(n) = jlz(n),0)

Compare above to

MLE if Z were
observable:

fis Yp=10(2(n) =) wi(n)
g >N_ 1 6(2(n) = j)

0 = <7T7 :u]z>



EM — putting it together

Given observed variables X, unobserved Z
Define Q(6'10) = Ey x gllog P(X, Z|6")]

where 0 = (7, pj;)

X X)Xy

Iterate until convergence:

« E Step: For each observed example X(n), calculate P(Z(n)|X(n), 6)

[[T; N (@i (n)|pg,ir )] (wF (1 = m)(1=R))

z(n) = x(n),0) = . .
P = R0 = o LN @l o)) @@ - ma )

* M Step: Update 0 — argmaxQ(6'|0)

1,"0 N
(St N_; P(2(n) = jla(n),0) wi(n)
T Elz(n)] ;o Zn=1
v 2 P M RN PG(n) = jla(n), 0)




Mixture of Gaussians applet

Go to: http://www.socr.ucla.edu/htmis/SOCR Charts.html
then go to Go to “Line Charts™ - SOCR EM Mixture Chart
 try it with 2 Gaussian mixture components (“kernels”)

e tryitwith 4




What you should know about EM

For learning from partly unobserved data
MLE of O = arg m@ax log P(datal0)

EM estimate: 6 = arg max Ey |y gllog P(X, Z|6)]
Where X is observed part of data, Z is unobserved

Nice case is Bayes net of boolean vars:

— M step is like MLE, with with unobserved values replaced by
their expected values, given the other observed values

EM for training Bayes networks
Can also develop MAP version of EM

Can also derive your own EM algorithm for your own
problem

— write out expression for Ez|x gllog P(X, Z|6)]

— E step: for each training example Xk, calculate P(Z* | XX, 0)
— M step: chose new B to maximize



Learning Bayes Net Structure



How can we learn Bayes Net graph structure?

In general case, open problem
* can require lots of data (else high risk of overfitting)

* can use Bayesian methods to constrain search

One key result:
« Chow-Liu algorithm: finds “best” tree-structured network

« What's best?

— suppose P(X) is true distribution, T(X) is our tree-structured
network, where X = <X,, ... X >

— Chow-Liu minimizes Kullback-Leibler divergence:

P(X = k)

KL(P(X) || T(X ZPX k)logT(X )



Chow-Liu Algorithm

Key result: To minimize KL(P || T), it suffices to find the tree
network T that maximizes the sum of mutual informations
over its edges

Mutual information for an edge between variable A and B:

I(A,B) =" P(a,b)log P](J;?I’Db()b)
a b

This works because for tree networks with nodes x = (x, ... x,)

Y P(X =k)log igﬁ — :;

= — ZI(X""’ Pa.(Xi)) + Z H(Xz) o H(Xl Rl X'rz)

KL(P(X) || T(X))

(]



Chow-Liu Algorithm

. for each pair of vars A,B, use data to estimate P(A,B),
P(A), P(B)

. for each pair of vars A.B calculate mutual information

I(A,B) =" P(a,b)log P](DSJ’DI’()[))
a b

. calculate the maximum spanning tree over the set of
variables, using edge weights /(4,B)
(given N vars, this costs only O(N?) time)

. add arrows to edges to form a directed-acyclic graph

. learn the CPD’s for this graph



Chow-Liu algorithm example
Greedy Algorithm to find Max-Spanning Tree

[courtesy A. Singh, C. Guestrin]






Bayes Nets — What You Should Know

* Representation

— Bayes nets represent joint distribution as a DAG + Conditional
Distributions

— D-separation lets us decode conditional independence
assumptions
 Inference
— NP-hard in general
— For some graphs, closed form inference is feasible
— Approximate methods too, e.g., Monte Carlo methods, ...

» Learning
— Easy for known graph, fully observed data (MLE’s, MAP est.)
— EM for partly observed data, known graph
— Learning graph structure: Chow-Liu for tree-structured networks
— Hardest when graph unknown, data incompletely observed



