Machine Learning 10-601

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

February 25, 2015

Today:

- Graphical models
- Bayes Nets:
 - Inference
 - Learning
 - EM

Readings:

- Bishop chapter 8
- Mitchell chapter 6

Midterm

- In class on Monday, March 2
- Closed book
- You may bring a 8.5x11 "cheat sheet" of notes
- Covers all material through today
- Be sure to come on time. We'll start precisely at 12 noon

Bayesian Networks Definition

- A Bayes network represents the joint probability distribution over a collection of random variables
- A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)
- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines $P(X_i | Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

What You Should Know

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- BN = Graph plus parameters of CPD's
 - Defines joint distribution over variables
 - Can calculate everything else from that
 - Though inference may be intractable
- Reading conditional independence relations from the graph
 - Each node is cond indep of non-descendents, given only its parents
 - X and Y are conditionally independent given Z if Z D-separates every path connecting X to Y
 - Marginal independence : special case where Z={}

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - Belief propagation
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions

Example

- Bird flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose

Prob. of joint assignment: easy

 Suppose we are interested in joint assignment <F=f,A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

Prob. of marginals: not so easy

• How do we calculate P(N=n)?

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

Hint: random sample of F according to $P(F=1) = \theta_{F=1}$:

- draw a value of r uniformly from [0,1]
- if $r < \theta$ then output F=1, else F=0

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

Hint: random sample of F according to $P(F=1) = \theta_{F=1}$:

- draw a value of r uniformly from [0,1]
- if $r < \theta$ then output F=1, else F=0

Solution:

- draw a random value f for F, using its CPD
- then draw values for A, for S|A,F, for H|S, for N|S

Generating a sample from joint distribution: easy

Note we can estimate marginals

like P(N=n) by generating many samples

Flu Allergy Sinus Headache Nose

from joint distribution, then count the fraction of samples for which N=n

Similarly, for anything else we care about P(F=1|H=1, N=0)

→ weak but general method for estimating <u>any</u> probability term...

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - Variable elimination
 - Belief propagation
- Often use Monte Carlo methods
 - e.g., Generate many samples according to the Bayes Net distribution, then count up the results
 - Gibbs sampling
- Variational methods for tractable approximate solutions

see Graphical Models course 10-708

Learning of Bayes Nets

- Four categories of learning problems
 - Graph structure may be known/unknown
 - Variable values may be fully observed / partly unobserved
- Easy case: learn parameters for graph structure is *known*, and data is *fully observed*
- Interesting case: graph *known*, data *partly known*
- Gruesome case: graph structure *unknown*, data *partly unobserved*

Learning CPTs from Fully Observed Data

• Example: Consider learning the parameter

$$\theta_{s|ij} \equiv P(S = 1|F = i, A = j)$$

• Max Likelihood Estimate is

Remember why?

MLE estimate of $\theta_{s|ij}$ from fully observed data

- Maximum likelihood estimate $\theta \leftarrow \arg \max_{\alpha} \log P(data|\theta)$
- Our case:

$$P(data|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$
$$P(data|\theta) = \prod_{k=1}^{K} P(f_k) P(a_k) P(s_k|f_k a_k) P(h_k|s_k) P(n_k|s_k)$$

 $\log P(data|\theta) = \sum_{k=1}^{N} \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$

$$\frac{\partial \log P(data|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_k a_k)}{\partial \theta_{s|ij}}$$

$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can't calculate MLE

 $\theta \leftarrow \arg\max_{\theta} \log\prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$

- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values
- Can't calculate MLE:

 $\theta \leftarrow \arg\max_{\theta} \log P(X, Z|\theta)$

• WHAT TO DO?

Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can't calculate MLE

 $\theta \leftarrow \arg\max_{\theta} \log\prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$

- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values
- Can't calculate MLE:

 $\theta \leftarrow \arg \max_{\theta} \log P(X, Z | \theta)$

• EM seeks* to estimate:

$$\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)]$$

* EM guaranteed to find local maximum

• EM seeks estimate:

$$\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)]$$

here, observed X={F,A,H,N}, unobserved Z={S}

$$\log P(X, Z|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_k a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

$$\begin{split} E_{P(Z|X,\theta)} \log P(X,Z|\theta) \ &= \ \sum_{k=1}^{K} \sum_{i=0}^{1} P(s_k = i | f_k, a_k, h_k, n_k) \\ & [log P(f_k) + \log P(a_k) + \log P(s_k | f_k a_k) + \log P(h_k | s_k) + \log P(n_k | s_k)] \end{split}$$

EM Algorithm - Informally

EM is a general procedure for learning from partly observed data Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Begin with arbitrary choice for parameters $\boldsymbol{\theta}$

Iterate until convergence:

- E Step: estimate the values of unobserved Z, using $\boldsymbol{\theta}$
- M Step: use observed values plus E-step estimates to derive a better $\boldsymbol{\theta}$

Guaranteed to find local maximum. Each iteration increases $E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$

EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S}) \checkmark

Define
$$Q(\theta'|\theta) = E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$$

 $\uparrow_{\text{current}} \land \text{Mstep new}$

Iterate until convergence:

• E Step: Use X and current θ to calculate P(Z|X, θ)

• M Step: Replace current
$$\theta$$
 by
 $\theta \leftarrow \arg \max_{\theta'} Q(\theta' | \theta)$

Guaranteed to find local maximum. Each iteration increases $E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$ E Step: Use X, θ , to Calculate P(Z|X, θ)

observed X={F,A,H,N}, unobserved Z={S}

• How? Bayes net inference problem.

 $P(S_k = 1 | f_k a_k h_k n_k, \theta) =$

E Step: Use X, θ , to Calculate P(Z|X, θ)

observed X={F,A,H,N}, unobserved Z={S}

• How? Bayes net inference problem.

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

EM and estimating
$$\theta_{s|ij}$$

observed X = {F,A,H,N}, unobserved Z={S}

E step: Calculate P(Z_k|X_k; θ) for each training example, k $P(S_{k} = 1|f_{k}a_{k}h_{k}n_{k}, \theta) = E[s_{k}] = \frac{P(S_{k} = 1, f_{k}a_{k}h_{k}n_{k}|\theta)}{P(S_{k} = 1, f_{k}a_{k}h_{k}n_{k}|\theta) + P(S_{k} = 0, f_{k}a_{k}h_{k}n_{k}|\theta)}$ M step: update all relevant parameters. For example: $\theta_{s|ij} \leftarrow \frac{\sum_{k=1}^{K} \delta(f_{k} = i, a_{k} = j) E[s_{k}]}{\sum_{k=1}^{K} \delta(f_{k} = i, a_{k} = j)}$

Recall MLE was:
$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

EM and estimating θ

More generally, Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable

M step:

Calculate estimates similar to MLE, but replacing each count by its <u>expected count</u>

 $\delta(Y=1) \to E_{Z|X,\theta}[Y] \qquad \qquad \delta(Y=0) \to (1 - E_{Z|X,\theta}[Y])$

Using Unlabeled Data to Help Train Naïve Bayes Classifier

Υ	X1	X2	X3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

E step: Calculate for each training example, k the expected value of each unobserved variable x, x, x, x,

EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k the expected value of each unobserved variable Y $E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), ...x_N(k); \theta) = \frac{P(y(k) = 1)\prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j)\prod_i P(x_i(k)|y(k) = j)}$ M step: Calculate estimates similar to MLE, but replacing each count by its <u>expected count</u>

let's use y(k) to indicate value of Y on kth example

EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k the expected value of each unobserved variable Y $E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \dots x_N(k); \theta) = \frac{P(y(k) = 1)\prod_i P(x_i(k)|y(k) = 1)}{\sum_{i=0}^1 P(y(k) = j)\prod_i P(x_i(k)|y(k) = j)}$ M step: Calculate estimates similar to MLE, but replacing each count by its expected count $\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k) \dots x_N(k)) \ \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k) \dots x_N(k))}$

 (\mathbf{X}_2)

MLE would be:
$$\hat{P}(X_i = j | Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$$

- Inputs: Collections \mathcal{D}^l of labeled documents and \mathcal{D}^u of unlabeled documents.
- Build an initial naive Bayes classifier, $\hat{\theta}$, from the labeled documents, \mathcal{D}^l , only. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- Loop while classifier parameters improve, as measured by the change in $l_c(\theta | \mathcal{D}; \mathbf{z})$ (the complete log probability of the labeled and unlabeled data
 - **(E-step)** Use the current classifier, $\hat{\theta}$, to estimate component membership of each unlabeled document, *i.e.*, the probability that each mixture component (and class) generated each document, $P(c_j | d_i; \hat{\theta})$ (see Equation 7).
 - (M-step) Re-estimate the classifier, $\hat{\theta}$, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- **Output:** A classifier, $\hat{\theta}$, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]

Experimental Evaluation

- Newsgroup postings
 - 20 newsgroups, 1000/group
- Web page classification
 - student, faculty, course, project
 - 4199 web pages
- Reuters newswire articles
 - 12,902 articles
 - 90 topics categories

20 Newsgroups

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence DD artificial understanding	word w ranked by P(w Y=course) / P(w Y ≠ course)	DD D lecture cc	D DD lecture cc
DDw dist identical rus arrange games dartmouth natural cognitive logic proving prolog knowledge human representation field		D* DD:DD handout due problem set tay DDam	DD:DD due D* homework assignment handout set hw
	Using one labeled example per class	yurttas homework kfoury	exam problem DDam
		sec postscript exam solution assaf	postscript solution quiz chapter ascii

20 Newsgroups

Bayes Nets – What You Should Know

- Representation
 - Bayes nets represent joint distribution as a DAG + Conditional Distributions
 - D-separation lets us decode conditional independence assumptions
- Inference
 - NP-hard in general
 - For some graphs, some queries, exact inference is tractable
 - Approximate methods too, e.g., Monte Carlo methods, ...
- Learning
 - Easy for known graph, fully observed data (MLE's, MAP est.)
 - EM for partly observed data, known graph