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Today:

« Graphical models
 Bayes Nets:

Inference
Learning
EM

Readings:

« Bishop chapter 8
» Mitchell chapter 6




Midterm

* |n class on Monday, March 2

* Closed book
* You may bring a 8.5x11 “cheat sheet” of notes

Covers all material through today

Be sure to come on time. We’'ll start precisely
at 12 noon



Bayesian Networks Definition

A Bayes network represents the joint probability distribution
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of
conditional probability distributions (CPD’s)

« Each node denotes a random variable

* Edges denote dependencies

» For each node X, its CPD defines P(X; ! Pa(X.))

* The joint distribution over all variables is defined to be

P(X1...Xn) = [[ P(Xj|Pa(X)))

Pa(X) = immediate parents of X in the graph



What You Should Know

« Bayes nets are convenient representation for encoding
dependencies / conditional independence

BN = Graph plus parameters of CPD’s
— Defines joint distribution over variables
— Can calculate everything else from that
— Though inference may be intractable

« Reading conditional independence relations from the
graph
— Each node is cond indep of non-descendents, given only its
parents

— X and Y are conditionally independent given Z if Z D-separates
every path connecting Xto Y

— Marginal independence : special case where Z={}



Inference in Bayes Nets

* In general, intractable (NP-complete)

* For certain cases, tractable
— Assigning probability to fully observed set of variables
— Or if just one variable unobserved
— Or for singly connected graphs (ie., no undirected loops)
» Belief propagation
« Sometimes use Monte Carlo methods
— Generate many samples according to the Bayes Net
distribution, then count up the results
« Variational methods for tractable approximate
solutions



Example

« Bird flu and Allegies both cause Sinus problems
« Sinus problems cause Headaches and runny Nose

=L,



Prob. of joint assignment: easy @
* Suppose we are interested in joint

assignment <F=f A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

let's use p(a,b) as shorthand for p(A=a, B=b)



Prob. of marginals: not so easy @
« How do we calculate P(N=n) ?

let's use p(a,b) as shorthand for p(A=a, B=b)



Generating a sample from )
joint distribution: easy Q /.
How can we generate random samples

drawn according to P(F,A,S,H,N)?

Hint: random sample of F according to P(F=1) = 6._, :
« draw a value of r uniformly from [0,1]
« ifr<@ then output F=1, else F=0

let's use p(a,b) as shorthand for p(A=a, B=b)



Generating a sample from )
joint distribution: easy Q /.
How can we generate random samples

drawn according to P(F,A,S,H,N)?

Hint: random sample of F according to P(F=1) = 6._, :
« draw a value of r uniformly from [0,1]
« ifr<@ then output F=1, else F=0

Solution:
« draw a random value f for F, using its CPD
* then draw values for A, for S|A,F, for H|S, for N|S



Generating a sample from )

joint distribution: easy Q /.
Note we can estimate marginals
like P(N=n) by generating many samples

from joint distribution, then count the fraction of samples
for which N=n

Similarly, for anything else we care about
P(F=1|H=1, N=0)

- weak but general method for estimating any
probability term...



Inference in Bayes Nets

In general, intractable (NP-complete)

For certain cases, tractable

— Assigning probability to fully observed set of variables

— Or if just one variable unobserved

— Or for singly connected graphs (ie., no undirected loops)
* Variable elimination
» Belief propagation

Often use Monte Carlo methods

— e.g., Generate many samples according to the Bayes Net
distribution, then count up the results

— Gibbs sampling
Variational methods for tractable approximate solutions

see Graphical Models course 10-708



Learning of Bayes Nets

Four categories of learning problems
— Graph structure may be known/unknown
— Variable values may be fully observed / partly unobserved

Easy case: learn parameters for graph structure is
known, and data is fully observed

Interesting case: graph known, data partly known

Gruesome case: graph structure unknown, data partly
unobserved



Learning CPTs from Fully Observed Data

« Example: Consider learning
the parameter @

. Max Likelihood Estimate is

YK §(fr=1,ap =j, s, = 1)

0

sty — ; ]
g Sre1 0(fr =i, a0, = j)
kth training
example 5(x) = 1 if x=true,

= (0 if x=false

 Remember why?

let's use p(a,b) as shorthand for p(A=a, B=b)



MLE estimate of 0;; from fully observed data

« Maximum likelihood estimate @ llerg
0 «— arg meax log P(datald)
+ Our case: Héadache
K
P(datal0) = |[ P(fx,ag, Sk, hig> k)
k=1

K
P(data|0) = ][ P(fr)P(ag)P(sk|frar)P (hg|sg)P(nglsg)
k=1

K

log P(datalf) = > log P(f)+log P(ay)+10g P(sg|frar)+109 P(hy|sg)+10g P(n|sk)
k=1

dlog P(datal|0) _ f: dlog P(si|frar)
00 —1 00

s|ij s|ij

_YE L6(fy=rd,a5 =j,sp = 1)

0 .. —
sli7 SR 0(f =i, a =)




Estimate 6 from partly observed data

What if FAHN observed, but not S? @. Allere

Can’t calculate MLE Am

HGadache foso
0 «— arg maxlog 1] P(fg: ak, sk, by, ng|6)

k

Let X be all observed variable values (over all examples)

Let Z be all unobserved variable values

Can’t calculate MLE:
0 < arg m@ax log P(X, Z|0)

WHAT TO DO?



Estimate 6 from partly observed data

What if FAHN observed, but not S? :{ Allere

Can’t calculate MLE Am

HGadache foso
0 «— arg maxlog 1] P(fg: ak, sk, by, ng|6)

k

Let X be all observed variable values (over all examples)

Let Z be all unobserved variable values

Can’t calculate MLE:
0 «— arg m@ax log P(X, Z|0)

EM seeks” to estimate:
0 «— arg mgax EZ|X7Q[Iog P(X, Z|0)]

* EM guaranteed to find local maximum



» EM seeks estimate: :{ Allre

¢SinusY
0 — arg m@ax EZ|X,8[Iog P(X, Z|0)]

* here, observed X={F,A,H,N}, unobserved Z={S}

K
log P(X,Z|9) = Z log P(fk,)—i—log P(ak)—l—log P(sk|fkak)—|—log P(hk|sk)+log P(nk|3k)
k=1

E P(Z|X,0) logP X Z‘Q ZZP sk—z|fk,ak,hk,nk)
k=1 =0

[logP(fi)+log P(ay)+log P(sk|frar)+109 P(hg|sy)+log P(ng|sg)]



EM Algorithm - Informally

EM is a general procedure for learning from partly observed data
Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Begin with arbitrary choice for parameters 0

Iterate until convergence:

« E Step: estimate the values of unobserved Z, using 0

* M Step: use observed values plus E-step estimates to
derive a better 0

Guaranteed to find local maximum.
Each iteration increases EP(Z|X 0) log P(X, Z|9’)]



EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data
Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S}),

Define Q(6'16) = Ep(z/x,9)[log P(X, Z|6)]

W
R 6teR .

Cuive U\v\/

Iterate until convergence:
« E Step: Use X and current 6 to calculate P(Z|X,0)

* M Step: Replace current 6 by
6 — arg max Q(0'19)

Guaranteed to find local maximum.
Each iteration increases EP(Z|X 0) log P(X, Z|6’)]



E Step: Use X, 0, to Calculate P(Z|X,0)

observed X={F,A,H,N}, C : 2 Qllergy
unobserved Z={S}

« How? Bayes net inference problem.

P(Sy = 1|fraphgng, 0) =

let's use p(a,b) as shorthand for p(A=a, B=b)



E Step: Use X, 0, to Calculate P(Z|X,0)

observed X={F,A,H,N}, C : 2 Qllergy
unobserved Z={S}

« How? Bayes net inference problem.
P(Sg = 1|fraghgng, 0) =

P(S, =1, fraphing|6)

(Sk | frarhing, 0) P(Si =1, fraphini|0) + P(S = 0O, frarhgni|0)

let's use p(a,b) as shorthand for p(A=a, B=b)



EM and estimating 0 ; ER e

(Sinus?
observed X = {F,A,H,N}, unobserved Z={S}

E step: Calculate P(Z,|X,; ) for each training example, k

7 Pl=rv ) PSSk = 1, fraghpny|0) + P(Sp = O, fraphyny|0)

M step: update all relevant parameters. For example:

Y 6(fr =1,ar = j) Elsg]
Oslij K : :
D=1 6(fr, =1,a, = J)

SR L 5(fr=1t,ap =4, s, =1)
Recall MLE was: 0, = ——= : :
sli7 SR 0(fk =i, = )




EM and estimating 6 S
More generally,

Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable

M step:
Calculate estimates similar to MLE, but
replacing each count by its expected count
(Y =1) — EzxglY] (Y =0) = (1 - EzxlY]




Using Unlabeled Data to Help Train
Nailve Bayes Classifier

Learn P(Y|X)

Y |[X1 |[X2 |X3 |X4
1 O (0 |1 1
0O |0 |1 0 |0
o |0 |0 |1 0
?7 10 |1 1 0
?7 10 |1 0 |1




E step: Calculate for each training example, k

the expected value of each unobserved variable



EM and estimating 6

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

__ Pk) =11 P(zi(k)ly(k) = 1)
> jo Py(k) = ) IT; P(zi(k)ly (k) = j)

Epy|x,..xy)[y(k)] = P(y(k) = 1|z1(k), ... 2N (k); 0)

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

let's use y(k) to indicate value of Y on kth example



EM and estimating 6
&) &) &

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

P(y(k) =1)[[; P(zi(k)|y(k) = 1)
> ico P(y(k) = §) I1; P(zi(k)ly(k) = 5)

Epyix,..xy)[y(k)] = P(y(k) = 1z1(k), ... zn(k);0) =

M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

DX — = 2k Py(k) = mizi(k) ... 2n(k)) 6(zi(k) = j)
szlm P(X;=jlY =m) = Zk Py(k) = mlz1 (k) ... zx (k)

MLE would be: P( =Y =m) = >k 0((y(k) = m) A (zi(k) = j))




Inputs: Collections D' of labeled documents and D% of unlabeled documents.

Build an initial naive Bayes classifier, é, from the labeled documents, D', only. Use maximum
a posteriori parameter estimation to find # = arg maxg P(D|#)P(8) (see Equations 5 and 6).

Loop while classifier parameters improve, as measured by the change in I.(8|D;z) (the com-
plete log probability of the labeled and unlabeled data

e (E-step) Use the current classifier, 8, to estimate component membership of each unla-
beled document, i.e., the probability that each mixture component (and class) generated

each document, P(c;j|d;;0) (see Equation 7).

e (M-step) Re-estimate the classifier, #, given the estimated component membership

of each document. Use maximum a posteriori parameter estimation to find 6 =
arg maxg P(D|8)P(8) (see Equations 5 and 6).

Output: A classifier, é, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]




Experimental Evaluation

* Newsgroup postings
— 20 newsgroups, 1000/group

* Web page classification
— student, faculty, course, project
— 4199 web pages

« Reuters newswire articles

— 12,902 articles
— 90 topics categories
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Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common
course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0 Iteration 1 Iteration 2
i“te“Di%"“m word w ranked by DDD DDD
artificial P(lezcourse) / lecture lecture
understanding P(le % COUI"S@) ce ce
DDw D* DD:DD
dist DD:DD due
identical handout D*
rus due homework
arrange problem assignment,
games set handout
dartmouth tay set,
natural D Dam hw
cognitive . yurttas exam
logic Using one labeled homework problem
proving example per class kfoury DDam
prolog sec postscript
knowledge postscript solution
human exam quiz
representation solution chapter
field assaf ascii



Accuracy
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Bayes Nets — What You Should Know

* Representation
— Bayes nets represent joint distribution as a DAG + Conditional
Distributions
— D-separation lets us decode conditional independence
assumptions

 |nference

— NP-hard in general
— For some graphs, some queries, exact inference is tractable

— Approximate methods too, e.g., Monte Carlo methods, ...

» Learning
— Easy for known graph, fully observed data (MLE’s, MAP est.)

— EM for partly observed data, known graph



