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Sample complex. 
Â 

Sample Complexity for Function 
Approximation. Model Selection. 

Structural risk minimization 



Two Core Aspects of Machine Learning 

Algorithm Design. How to optimize? 

Automatically generate rules that do well on observed data. 

Confidence Bounds, Generalization 

Confidence for rule effectiveness on future data. 

Computation 

(Labeled) Data 

• E.g.: logistic regression, SVM, Adaboost, etc. 



   Labeled Examples   

PAC/SLT models for Supervised Classification 

Learning 
Algorithm 

Expert / Oracle 

Data 
Source 

Alg.outputs 

Distribution D on X 

c* : X ! Y 

(x1,c*(x1)),…, (xm,c*(xm)) 

h : X ! Y 
x1 > 5 

x6 > 2 
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•  Algo does optimization over S, find hypothesis ℎ. 

•  Goal:  h has small error over D. 

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D 

– labeled examples - drawn i.i.d. from D and labeled by target c* 
–  labels 2 {-1,1}  - binary classification 

h c* 

Instance space X 
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• Realizable: 𝑐∗ ∈ 𝐻.  

 𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥)) 

PAC/SLT models for Supervised Learning 

• X – feature/instance space; distribution D over X 

           e.g., X = Rd or X = {0,1}d 

• Fix hypothesis space H [whose complexity is not too large] 

• Agnostic: 𝑐∗ “close to” H.  



 Sample Complexity for Supervised Learning 

Consistent Learner 

•  Output: Find h in H consistent with S (if one exits).  

• Input: S: (x1,c*(x1)),…, (xm,c*(xm)) 

Prob. over different 
samples of m 
training examples 

Linear in 1/𝜖 

Realizable Case 
 

 
 



Sample Complexity: Infinite Hypothesis Spaces  

Realizable Case 
 
 

 

 
 

 
 
 
  
 E.g., H= linear separators in Rd 

Sample complexity linear in d 

So, if double the number of features, then I only need 
roughly twice the number of samples to do well. 
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VCdim(H)= d+1 



What if c∗ ∉ H? 



Sample Complexity:  Uniform Convergence 

Agnostic Case 
 
 
 
 

 

 
 

 
 
 
  
 

Empirical Risk Minimization (ERM) 

•  Output: Find h in H with smallest errS(h) 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm)) 

1/𝜖2 dependence [as opposed 
to1/𝜖 for realizable] 



Hoeffding bounds 

Tail inequality: bound probability mass in tail of distribution (how 
concentrated is a random variable around its expectation). 

Exponentially decreasing tails 

 Consider coin of bias p flipped m times.   

Let N be the observed # heads.  Clearly E
N

m
= p. 

𝑃  
𝑁

𝑚
−  𝑝 ≥ 𝛾 ≤ 𝑒−2𝑚𝛾2 

Hoeffding Inequality 

 Let 𝛾 ∈ [0,1]. 

[N = X1 + X2 + …+ Xm, Xi = 1 with prob. p, 0 with prob 1-p.] 

𝑝 𝑝 + 𝛾 𝑝 − 𝛾 



Proof: 

Sample Complexity:  Finite Hypothesis Spaces 
Agnostic Case 

 
 
 
 

 

 
 

 
 
 
  
 

• Fix h; by Hoeffding, prob. that errS h − errD h ≥ ϵ is at most 2e−2mϵ2 

Hoeffding & union bound. 

• By union bound over all ℎ ∈ 𝐻, the prob. that ∃h s.t. errS h − errD h ≥ ϵ is 

at most 2|H|e−2mϵ2. Set to . Solve. 

Fact:  

W.h.p. ≥ 1 − 𝛿,errD ℎ ≤ errD h∗ + 2ϵ, 
h  is ERM output, h∗ is hyp. of smallest 
true error rate.  

errD h∗  

≤ 𝝐 

errS h∗  

errS ℎ  errD ℎ  

≤ 𝝐 



Sample Complexity:  Finite Hypothesis Spaces 

Agnostic Case 
 
 

 

 
 

 
 
 
  
 

1) How many examples suffice to get UC whp (so success for ERM).  

2) Statistical Learning Theory style: 

errD h ≤ errS h +
1

2m
ln (2 H ) + ln

1

𝛿
. 

With prob. at least 1 − 𝛿, for all h ∈ H: 

1/𝜖2 dependence [as opposed to 1/𝜖 

for realizable], but get for 
something stronger. 

1

𝑚
  as opposed to 

1

𝑚
  for 

realizable 



Sample Complexity:  Infinite Hypothesis Spaces 
Agnostic Case 

 
 

 

 
 

 
 
 
  
 

1) How many examples suffice to get UC whp (so success for ERM).  

2) Statistical Learning Theory style: 

errD h ≤ errS h + O
1

2m
VCdim H ln

em

VCdim H
+ ln

1

δ
. 

With prob. at least 1 − 𝛿, for all h ∈ H: 



VCdimension Generalization Bounds 

errD h ≤ errS h + O
1

2m
VCdim H ln

em

VCdim H
+ ln

1

δ
. E.g., 

VC bounds: distribution independent bounds  

• Generic: hold for any concept class and any distribution. 

• Might be very loose specific distr. that are more 
benign than the worst case…. 

• Hold only for binary classification;  we want bounds for 
fns approximation  in general (e.g., multiclass classification and 

regression). 

[nearly tight in the WC over choice of D] 



Rademacher Complexity Bounds 

• Distribution/data dependent. Tighter for nice distributions. 

• Apply to general classes of real valued functions & can be used to 
recover the VCbounds for supervised classification. 

[Koltchinskii&Panchenko 2002] 

See “Introduction to Statistical Learning Theory” 
 O. Bousquet, S. Boucheron, and G. Lugosi. 

• Prominent technique for generalization bounds in last decade. 



Rademacher Complexity 
Problem Setup 

•  F be a class of functions from Z to [0,1] 

•  S =  {z1, … , zm} be i.i.d. from  D|Z 

• A space Z and a distr. D|Z 

 Want a high prob. uniform convergence bound, all f ∈ F satisfy: 

ED f z ≤ ES f z + term(complexity of F, niceness of D/S) 

E.g.,  Z = X × Y, Y = {−1,1},  H = {h:  X → Y} hyp. space (e.g., lin. sep) 

 Then E𝑧~𝐷 lh z = errD(h) and ES lh z = errS(h).  

F = L(H) = {lh:  X → Y}, where lh 𝑧 = x, y = 1 h x ≠𝑦   

What measure of complexity? 

[Loss fnc induced by h 
and 0/1 loss] 

  

errD h ≤ errS h + term(complexity of H, niceness of D/S) 

General discrete Y 

  



Rademacher Complexity 

So,  taking the expectation over 𝜎 this measures the ability of 
class F to fit random noise. 

 sup measures for any given set S and Rademacher vector 𝜎, 
the max correlation between f zi  and 𝜎𝑖 for all f ∈ F 

The empirical Rademacher complexity of F is:  

R m(F)  =  Eσ1,…,σm sup
f∈F

 
1

m
 σif zi
i

   

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}.  

Rm F = ES[R m(F)] The Rademacher complexity of F is:  

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1] 

Let S =  {z1, … , zm} be i.i.d from  D|Z.  



Rademacher Complexity 

The empirical Rademacher complexity of F is:  

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}.  

Rm F = ES[R m(F)] The Rademacher complexity of F is:  

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1] 

Let S =  {z1, … , zm} be i.i.d from  D|Z.  

 Whp all f ∈ F satisfy: 

ED f z ≤ ES f z + 2Rm F +
ln 2/δ

2m
 

ED f z ≤ ES f z + 2 R m F + 3
ln 1/δ

m
 

 Theorem: Useful if it decays with m. 

R m(F)  =  Eσ1,…,σm sup
f∈F

 
1

m
 σif zi
i

   



Rademacher Complexity 

The empirical Rademacher complexity of F is:  

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}.  

Rm F = ES[R m(F)] The Rademacher complexity of F is:  

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1] 

Let S =  {z1, … , zm} be i.i.d from  D|Z.  

E.g.,: 

2) F={all 0/1 fnc}, then   R m(F)  = 1/2 

1) F={f}, then  R m(F)  = 0 

[To maximize set f(zi) = 1 when σi = 1 and f(zi) = 0 when σi = −1. Then quantity 
inside expectation is #1′𝑠 ∈ 𝜎, which is m/2 by linearity of expectation.] 

[Linearity of expectation: each σif(zi) individually has expectation 0.] 

R m(F)  =  Eσ1,…,σm sup
f∈F

 
1

m
 σif zi
i

   



Rademacher Complexity 

The empirical Rademacher complexity of F is:  

R m(F)  =  Eσ1,…,σm sup
f∈F

 
1

m
 σif zi
o

   

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}.  

Rm F = ES[R m(F)] The Rademacher complexity of F is:  

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1] 

Let S =  {z1, … , zm} be i.i.d from  D|Z.  

E.g.,: 

2) F={all 0/1 fnc}, then   R m(F)  = 1/2 

1) F={f}, then  R m(F)  = 0 

3) F=L(H), H=binary classifiers then: RS F ≤
ln 2|H[S]|

m
 

RS F ≤
ln 2|H|

m
 H finite: 



Rademacher Complexity Bounds 

The empirical Rademacher complexity of F is:  

R m(F)  =  Eσ1,…,σm sup
f∈F

 
1

m
 σif zi
o

   

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}.  

Rm F = ES[R m(F)] The Rademacher complexity of F is:  

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1] 

Let S =  {z1, … , zm} be i.i.d from  D|Z.  

Data dependent bound! 

Bound expectation of each f in 
terms of its empirical average 
& the RC of F 

Proof uses Symmetrization and Ghost Sample Tricks! (same as for VC bound) 

 Whp all f ∈ F satisfy: 

ED f z ≤ ES f z + 2Rm F +
ln 2/δ

2m
 

 Theorem: 

ED f z ≤ ES f z + 2 R m F + 3
ln 1/δ

m
 



Rademacher Complex: Binary classification 

Theorem: For any H, any distr. D, w.h.p. ≥ 1 − 𝛿 all h ∈ H satisfy: 

Fact: 

So, by Sauer’s lemma, RS F ≤
2dln

em

d

m
 RS F ≤

ln 2|H[S]|

m
 

errD h ≤ errS h +
2dln

em
d

m
+  3

ln 2/δ

2m
 

Many more uses!!! Margin bounds for SVM, boosting, 
regression bounds, etc. 

errD h ≤ errS h + Rm H + 3
ln 2/δ

2m
. 

generalization bound 

 H = {h:  X → Y} hyp. space (e.g., lin. sep) F= L(H), d=VCdim(H): 



Can we use our bounds for 
model selection? 



True Error, Training Error, Overfitting 

error 

complexity 

train error 

generalization 
error 

errD h ≤ errS h + Rm H +… 

Model selection: trade-off between decreasing training error and 
keeping H simple. 



Structural Risk Minimization (SRM) 

error 
rate 

Hypothesis complexity 

empirical error 

overfitting 

𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆…  



What happens if we increase m? 

Black curve will stay close to the red curve for 
longer, everything shifts to the right… 



Structural Risk Minimization (SRM) 

error 
rate 

Hypothesis complexity 

empirical error 

overfitting 

𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆…  



Structural Risk Minimization (SRM) 

As k increases, errS h k  goes down but complex. term goes up. 

• 𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆…  

•  h k = argminh∈Hk
{errS h } 

•  𝑘 = argmink≥1{errS h k + complexity(Hk)} 

Output ℎ = ℎ 𝑘  

Claim: W.h.p., errD h ≤ mink∗minh∗∈Hk∗
errD h∗ + 2complexity Hk∗  

Proof: 
• We chose h  s.t. errs h + complexity Hk ≤ errS h∗ + complexity(Hk∗). 

• Whp, errD h ≤ errs h + complexity Hk . 

• Whp, errS h∗ ≤ errD h∗ + complexity Hk∗ . 



Techniques to Handle Overfitting 

• Cross Validation:  

• Structural Risk Minimization (SRM). 

• Regularization: 

Minimize gener. bound: 

• minimizes expressions of the form: errS h + λ h
2
 

• E.g., SVM, regularized logistic regression, etc. 

• Hold out part of the training data and use it as a proxy for the 
generalization error 

 ℎ = argmink≥1{errS h k + complexity(Hk)} 

𝐻1 ⊆ 𝐻2 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆…  

Some norm when H 
is a vector space; 
e.g., L2 norm 

Picked through cross validation 

general family closely related to SRM 

• Often computationally hard…. 

• Nice case where it is possible: M. Kearns, Y. Mansour, ICML’98, “A Fast, Bottom-Up 
Decision Tree Pruning Algorithm with Near-Optimal Generalization”  



What you should know 

• Shattering, VC dimension as measure of complexity, 
Sauer’s lemma, form of the VC bounds (upper and lower 

bounds). 

• Notion of sample complexity. 

• Understand reasoning behind the simple sample 
complexity bound for finite H [exam question!]. 

• Model Selection, Structural Risk Minimization. 

• Rademacher Complexity. 



L2 vs. L1 Regularization 

constant P(W) 

constant 
P(Data|W) 

Gaussian P(W) 
 L2 regularization 

Laplace P(W) 
 L1 regularization 

w1 w1 

w2 
w2 


