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Two Core Aspects of Machine Learning

[ Algorithm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

E.g.: logistic regression, SVM, Adaboost, etc.

[Confidence Bounds, Generalization J (Labeled) Data

Confidence for rule effectiveness on future data.



Today's focus: Sample Complexity for Supervised
Classification (Function Approximation)

- Statistical Learning Theory (Vapnik)
+ PAC (Valiant)

Recommended reading: Mitchell: Ch. 7
« Suggested exercises: 7.1,7.2,7.7

« Additional resources: my learning theory coursel



Supervised Learning

 E.g., which emails are spam and which are important.
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PAC/SLT models for Supervised Learning
Data
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PAC/SLT models for Supervised Learning

X - feature/instance space; distribution D over X
eg.,X=R4orX=1{0,1}4
« Algo sees training sample S: (x1,c*(x1)),..., (X,,,c*(x,,)), X; i.i.d. from D
- labeled examples - drawn i.i.d. from D and labeled by target ¢
- labels € {-1,1} - binary classification

» Algo does optimization over S, find hypothesis h. <

* Goal: h has small error over D. _ -
I X
errp(h) = Pr (h(x) # c*(x)) nstance space
xN

S Bias: fix hypOThZSiS space H [whose complexity is not too large]
A A )
& « Readlizable: ¢* € H.

e Agnostic: c* "close to" H.



PAC/SLT models for Supervised Learning

« Algo sees training sample S: (x;,c*(xy)),..., (X,,,c*(x,,)), X; i.i.d. from D

Does optimization over S, find hypothesis h € H.

Goal: h has small error over D.
True error: errp(h) = PrD(h(x) * c* (X))
.

How often h(x) # c*(x) over future
instances drawn at random from D

But, can only measure:
Training error: errs(h) = izi [(h(x)) # c*(x;))

How often h(x) # c*(x) over training
instances

Sample complexity: bound err,(h) in terms of errg(h)



Sample Complexity for Supervised Learning

Consistent Learner
* Input: Si(x1,c*(x)),..., (X,€* (X))
- Output: Find h in H consistent with the sample (if one exits).

Bound only logarithmic in |H|, linear in 1/¢
1

T heorem

m > % [In(|H|) + In

labeled examples are sufficient so that (with prob. 1 —4§,)all h € H with
errp(h) 2 e have errg(h) > 0. Probability over different samples of m

training examples

So, if ¢* € Hand can find consistent fns, then only need this many
examples to get generalization error < € with prob. > 1 -6



Sample Complexity for Supervised Learning

Consistent Learner
Input: St (xq,c*(Xy)),..., (X,,* (X))
- Output: Find h in H consistent with the sample (if one exits).

T heorem

oy +in(2)

labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > e have errg(h) > 0.

Example: H is the class of conjunctions over X = {0,1}". |H| = 3"
E.g., h =x; X3x5 or h = X X5X4Xg

Then m > ﬂn In3 +In (%)] suffice



Sample Complexity: Finite Hypothesis Spaces
Realizable Case

1) PAC: How many examples suffice to guarantee small error whp.

Theorem

oo i3]

labeled examples are sufficient so that with prob. 1 — 4, all h € H with
errp(h) > & have errg(h) > 0.

2) Statistical Learning Way:

With probability at least 1 — §, for all h € H s.t. errg(h) = 0 we have

errp(h) < i(ln |H| + In (%))



Supervised Learning: PAC model (Valiant)

- X - instance space, e.g., X ={0,1}" or X = R"
* S5={(x;, Y;)} - labeled examples drawn i.i.d. from some
distr. D over X and labeled by some target concept ¢’
- labels € {-1,1} - binary classification

* Algorithm A PAC-learns concept class H if for any
target c* in H, any distrib. D over X, any ¢, 6 > O:
- A uses at most poly(n,1/¢,1/5,size(c*)) examples and running

time.
- With prob. > 1 — §, A produces h in H of error at <.



E.g., thresholds on the real line |

E.g., infervals on the real line



Sample Complexity: Infinite Hypothesis Spaces

H[m] - maximum number of ways to split m points using concepts

inH; i.e. Him] = |g|13x |H[S]|

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

m > g [|092(2H[2m]) +logz (%)]

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

Sauer's Lemma: H[m] = O(mV¢dim()

Theorem
m =0 G [VCdim(H) log G) + log (%)D

labeled examples are sufficient so that with probab. 1 —-§, all h € H
with errp(h) > ¢ have errg(h) > 0.



Effective number of hypotheses

* H[S] - the set of splittings of dataset S using concepts from H.

+ H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S]]

|S|=m



Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S] H[m] < 2™
|S|=m
E.g.. H= Thresholds on the real line - } +
w

] } j | | "
© © O—T—T° [H[S]| =5
_ _ N n
- + + +
+ + + +

In general, if |S|=m (ll distinct), [H[S]| = m + 1 « 2™



Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H

H[m] = max |H|S]| H[m] < 2™

+
E.g., H= Intervals on the real line i i

- - _l_ -

In general, |S|=m (all distinct), H[m] = m(rr;+1) +1=0(m?) « 2™

There are m+1 possible options for the first part, m left for the second
part, the order does not matter, so (m choose 2) + 1 (for empty interval).



Effective number of hypotheses

* H[S] - the set of splittings of dataset S using concepts from H.
* H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S]| H[m] < 2™

Definition: H shatters S if |H[S]| = 2/5.



Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

m > % l092(2H[2m]) + 1092 @]

then with probab. 1 — 4, all h € H with errp(h) > & have errg(h) > 0.

S={X{,Xy, e, Xy} i.i.d. from D

Very Very
Rough Ideq: Bi3h€Hwitherrs(h)=0buterrp(h)2e.

S' ={x1, ..., x;} another i.i.d. "ghost samp/e" from D
B 3 h € H with errg(h) = 0 but errg,(h) > €.
Claim: To bound P(B), sufficient to bound P(B')

Over SU S’ only H[2m] effective hypotheses left... but, ho randomness left.

Need randomness to bound the probability of a bad event, another
symmetrization trick....



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

1

m > § l092(2H[2m]) + 1092 (E)]

then with probab. 1 -6, all h € H with errp(h) > ¢ have errg(h) > 0.

* Not too easy to interpret sometimes hard to calculate
exactly, but can get a good bound using "VC-dimension

If Hlm] = 2™, thenm > =(...) ®

« VC-dimension is roughly the point at which H stops looking
like it contains all functions, so hope for solving for m.



Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

4
then with probab. 1 — 4, all h € H with errp(h) > & have errg(h) > 0.

m > é ['OQQ(QH[Qm]) T 1092 (1)]

Sauer's Lemma: H[m] = O(mVCdim(H))

Theorem
m =0 G [VC’dim(H) log (é) + log (%)D

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.



Shattering, VC-dimension

Definition: H shatters S if |H[S]| = 2/5I.

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2!5! possible ways, all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o



Shattering, VC-dimension

Definition: VC-dimension (Vapnhik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then VCdim(H) < log(|H]).



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g.. H= Thresholds on the real line R
w

E.g., H= Intervals on the real line i

VCdim(H) = 2 O -O

: 5

O+
)




Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k
_ H" - o - | |
| | | |

: A sample of size 2k shatters
>
VCdim(H) = 2k (treat each pair of points as a
separate case of intervals)

VCdim(H) < 2k + 1

|
R
|

+
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—
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Shattering, VC-dimension

E.g., H= linear separators in R? \ /
VCdim(H) = 3 >(




Shattering, VC-dimension

E.g., H= linear separators in R?
VCdim(H) < 4

Case 1: one point inside the triangle formed by
the others. Cannot label inside point as positive
and outside points as hegative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other ®
two as negative.

Fact: VCdim of linear separators in R is d+1



Sauer’'s Lemma

Sauer's Lemma:
Let d = VCdim(H)
* m <d, then Him] = 2™

» m>d, then H[m] = O(m%)

Proof: induction on m and d. Cool combinatorial argument!
Hint: try proving it for intervals...



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

T heorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

m > g [|092(2H[2m]) T logz (%)]

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

Sauer's Lemma: H[m] = O(mV¢dim()

T heorem
1 _ 1 1
m =0 (— [VC’dzm(H) 09 (—) + log (—)D
£ € )
labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

T heorem

o (2 vcannyes () +on (1))

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.

E.g., H= linear separators in R4 m= O Gg @) + log (%)D

Sample complexity linear in d

So, if double the number of features, then I only need
roughly twice the number of samples to do well.



Nearly Matching Bounds

T heorem
1 _ 1 1
m=0 (— [VOdzm(H) 109 (—) + log (-)D
£ £ )
labeled examples are sufficient so that with probab. 1 —-§, all h € H
with errp(h) > ¢ have errg(h) > 0.

Theorem (lower bound):
For any H, any algo A, any 0 < € < 1/8, any § < .01, 3 distr. D and
target c¢* € H s.t. if A sees fewer than max Elog (1),VCdlm(H)_1]

5 326
examples, then with prob. > §, A produces h with erry(h) > e.




Lower Bound (simpler form)

Theorem: For any H there exists D such that any algorithm
needs (VCdlm(H)) examples to reach error e with prob > z.

Proof: consider d = VCdim(H) shattered points:

7W

Prob 1 — 4¢ Prob ﬁ each

Consider target ¢* that labels these points randomly.
Unless I see roughly 3 of the rare points, have error > ¢

Each example has only prob 4¢ of being one of the rare points,
and need to see % rare points, so need to see Q (%) total.



-

What if c¢* & H?.?O
@
N,



Uniform Convergence

Theorem
oz [ -+in(3)

labeled examples are sufficient so that with prob. 1 — 4, all h € H with
errp(h) > & have errg(h) > 0.

This basic result only bounds the chance that a bad hypothesis looks
perfect on the data. What if there is no perfect heH (agnhostic case)?

What can we say if c* ¢ H?
Can we say that whp all heH satisfy |erry(h) - errg(h)| < ¢?

- Called "uniform convergence”.

- Motivates optimizing over S, even if we can't find a
perfect function.



Sample Complexity: Finite Hypothesis Spaces

Realizable Case
Theorem

oo i3]

labeled examples are sufficient so that with prob. 1 — 4, all h € H with
errp(h) > & have errg(h) > 0.

Agnostic Case
What if there is no perfect h?

Theorem After m examples, with probab. > 1 — 4, all h € H have
lerrp(h) —errg(h)| < e, for

s a0 )

To prove bounds like this, need some good tail inequalities.



Hoeffding bounds

Consider coin of bias p flipped m times.
Let N be the observed # heads. Let c€ [0,1].
Hoeffdmg bounds:

+ Pr[N/m > p + €] < e, and
* Pr[N/m < -a]SeZmS.

Exponentially decreasing tails

» Tail inequality: bound probability mass in tail of
distribution (how concentrated is a random variable
around its expectation).




Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

Theorem After m examples, with probab. > 1 — 4, all h € H have
lerrp(h) —errg(h)| < &, for

s a0 )

Proof: Just apply Hoeffding.
- Chance of failure at most 2|H|e-2!SIs*.

- Set to 8. Solve.
So, whp, best on sample is e-best over D.

- Note: this is worse than previous bound (1/¢ has become 1/¢?),
because we are asking for something stronger.

- Can also get bounds "between” these two.



What you should know

« Notion of sample complexity.

« Understand reasoning behind the simple sample
complexity bound for finite H.

« Shattering, VC dimension as measure of complexity,
Sauer's lemma, form of the VC bounds (upper and
lower bounds).



