Machine Learning Theory II

Maria-Florina (Nina) Balcan February 11th, 2015

Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

• E.g.: logistic regression, SVM, Adaboost, etc.

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

Today's focus: Sample Complexity for Supervised Classification (Function Approximation)

- Statistical Learning Theory (Vapnik)
- PAC (Valiant)

- Recommended reading: Mitchell: Ch. 7
 - Suggested exercises: 7.1, 7.2, 7.7
- Additional resources: my learning theory course!

Supervised Learning

• E.g., which emails are spam and which are important.

Not spam

spam

• E.g., classify images as man versus women.

Man

PAC/SLT models for Supervised Learning

PAC/SLT models for Supervised Learning

- X feature/instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1, c^*(x_1)), \dots, (x_m, c^*(x_m)), x_i$ i.i.d. from D
 - labeled examples drawn i.i.d. from D and labeled by target c*
 - labels \in {-1,1} binary classification
- Algo does optimization over S, find hypothesis h.
- Goal: h has small error over D.

 $err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$

Bias: fix hypothesis space H [whose complexity is not too large]

- Realizable: $c^* \in H$.
- Agnostic: c^* "close to" H.

PAC/SLT models for Supervised Learning

- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)), x_i$ i.i.d. from D
- Does optimization over S, find hypothesis $h \in H$.
- Goal: h has small error over D.

True error: $\operatorname{err}_{D}(h) = \Pr_{x \sim D}(h(x) \neq c^{*}(x))$ How often $h(x) \neq c^{*}(x)$ over future instances drawn at random from D

• But, can only measure:

Training error: $\operatorname{err}_{S}(h) = \frac{1}{m} \sum_{i} I(h(x_{i}) \neq c^{*}(x_{i}))$

How often $h(x) \neq c^*(x)$ over training instances

Sample complexity: bound $err_D(h)$ in terms of $err_S(h)$

Sample Complexity for Supervised Learning

Consistent Learner

- Input: S: (x₁,c*(x₁)),..., (x_m,c*(x_m))
- Output: Find h in H consistent with the sample (if one exits).

Theorem

lab

err

Bound only logarithmic in [H], linear in 1/ ϵ

/1 \ 7

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

eled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $D(h) \geq \varepsilon$ have $err_S(h) > 0$.
Probability over different samples of m training examples

1 r

So, if $c^* \in H$ and can find consistent fns, then only need this many examples to get generalization error $\leq \epsilon$ with prob. $\geq 1 - \delta$

Sample Complexity for Supervised Learning

Consistent Learner

- Input: S: (x₁,c*(x₁)),..., (x_m,c*(x_m))
- Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Example: H is the class of conjunctions over $X = \{0,1\}^n$. $|H| = 3^n$ E.g., $h = x_1 \overline{x_3} x_5$ or $h = x_1 \overline{x_2} x_4 x_9$ Then $m \ge \frac{1}{\epsilon} \left[n \ln 3 + \ln \left(\frac{1}{\delta} \right) \right]$ suffice

Sample Complexity: Finite Hypothesis Spaces Realizable Case

1) PAC: How many examples suffice to guarantee small error whp.

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

2) Statistical Learning Way:

With probability at least $1 - \delta$, for all $h \in H$ s.t. $err_{s}(h) = 0$ we have

$$\operatorname{err}_{\mathrm{D}}(\mathrm{h}) \leq \frac{1}{\mathrm{m}} \left(\ln |\mathrm{H}| + \ln \left(\frac{1}{\delta} \right) \right).$$

Supervised Learning: PAC model (Valiant)

- X instance space, e.g., $X = \{0,1\}^n$ or $X = R^n$
- S_I={(x_i, y_i)} labeled examples drawn i.i.d. from some distr. D over X and labeled by some target concept c^{*}
 - labels $\in \{-1,1\}$ binary classification
- Algorithm A PAC-learns concept class H if for any target c^* in H, any distrib. D over X, any ε , $\delta > 0$:
 - A uses at most $poly(n,1/\epsilon,1/\delta,size(c^*))$ examples and running time.
 - With prob. $\geq 1 \delta$, A produces h in H of error at $\leq \varepsilon$.

What if H is infinite?

E.g., linear separators in $\ensuremath{\mathsf{R}}^d$

E.g., thresholds on the real line

E.g., intervals on the real line

Sample Complexity: Infinite Hypothesis Spaces

• H[m] - maximum number of ways to split m points using concepts in H; i.e. $H[m] = \max_{|S|=m} |H[S]|$

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = \mathcal{O}\left(\frac{1}{\varepsilon}\left[VCdim(H)\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

 $H[m] = \max_{|S|=m} |H[S]|$

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

 $H[m] = \max_{|S|=m} |H[S]| \qquad H[m] \le 2^m$

In general, if |S|=m (all distinct), $|H[S]| = m + 1 \ll 2^m$

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

In general, |S|=m (all distinct), $H[m] = \frac{m(m+1)}{2} + 1 = O(m^2) \ll 2^m$

There are m+1 possible options for the first part, m left for the second part, the order does not matter, so (m choose 2) + 1 (for empty interval).

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

 $H[m] = \max_{|S|=m} |H[S]| \qquad H[m] \le 2^m$

Definition: H shatters S if $|H[S]| = 2^{|S|}$.

Sample Complexity: Infinite Hypothesis Spaces

• H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Very Very
Rough Idea: $S = \{x_1, x_2, ..., x_m\}$ i.i.d. from D
 $B : \exists h \in H$ with $err_S(h) = 0$ but $err_D(h) \ge \epsilon$. $S' = \{x'_1, ..., x'_m\}$ another i.i.d. "ghost sample" from D
 $B': \exists h \in H$ with $err_S(h) = 0$ but $err_{S'}(h) \ge \epsilon$.Claim: To bound P(B), sufficient to bound P(B')

Over $S \cup S'$ only H[2m] effective hypotheses left... but, no randomness left. Need randomness to bound the probability of a bad event, another symmetrization trick....

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

• Not too easy to interpret sometimes hard to calculate exactly, but can get a good bound using "VC-dimension"

If $H[m] = 2^m$, then $m \ge \frac{m}{\epsilon}(....)$ \bigotimes

• VC-dimension is roughly the point at which H stops looking like it contains all functions, so hope for solving for m.

Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Definition: H shatters S if $|H[S]| = 2^{|S|}$.

A set of points S is shattered by H is there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways, all possible ways of classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

To show that VC-dimension is d:

- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then $VCdim(H) \le log(|H|)$.

If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of d+1 points that can be shattered.

If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of d+1 points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k

E.g., H= linear separators in \mathbb{R}^2

VCdim(H) < 4

Case 1: one point inside the triangle formed by the others. Cannot label inside point as positive and outside points as negative.

Case 2: all points on the boundary (convex hull). Cannot label two diagonally as positive and other two as negative.

Fact: VCdim of linear separators in R^d is d+1

Sauer's Lemma

Sauer's Lemma:

Let d = VCdim(H)

- $m \leq d$, then $H[m] = 2^m$
- m>d, then $H[m] = O(m^d)$

Proof: induction on m and d. Cool combinatorial argument! Hint: try proving it for intervals...

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

E.g., H= linear separators in
$$\mathbb{R}^d$$
 $m = O\left(\frac{1}{\varepsilon}\left[d\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$

Sample complexity linear in d

So, if double the number of features, then I only need roughly twice the number of samples to do well.

Nearly Matching Bounds

Theorem

$$m = \mathcal{O}\left(\frac{1}{\varepsilon}\left[VCdim(H)\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Theorem (lower bound):

For any *H*, any algo *A*, any $0 < \epsilon < 1/8$, any $\delta < .01$, \exists distr. *D* and target $c^* \in H$ s.t. if *A* sees fewer than $\max\left[\frac{1}{\epsilon}\log\left(\frac{1}{\delta}\right), \frac{VCdim(H)-1}{32\epsilon}\right]$ examples, then with prob. $\geq \delta$, *A* produces *h* with $err_D(h) > \epsilon$.

Lower Bound (simpler form)

- Theorem: For any *H* there exists *D* such that any algorithm needs $\Omega\left(\frac{VCdim(H)}{\epsilon}\right)$ examples to reach error ϵ with prob $\geq \frac{3}{4}$.
- Proof: consider d = VCdim(H) shattered points:

- Consider target c^* that labels these points randomly.
- Unless I see roughly $\frac{1}{2}$ of the rare points, have error $\geq \epsilon$
- Each example has only prob 4ϵ of being one of the rare points, and need to see $\frac{d-1}{2}$ rare points, so need to see $\Omega\left(\frac{d}{\epsilon}\right)$ total.

Uniform Convergence

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

- This basic result only bounds the chance that a bad hypothesis looks perfect on the data. What if there is no perfect $h \in H$ (agnostic case)?
- What can we say if $c^* \notin H$?
- Can we say that whp all $h \in H$ satisfy $|err_D(h) err_S(h)| \le \epsilon$?
 - Called "uniform convergence".
 - Motivates optimizing over S, even if we can't find a perfect function.

Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Agnostic Case

What if there is no perfect h?

Theorem After *m* examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

To prove bounds like this, need some good tail inequalities.

Hoeffding bounds

Consider coin of bias p flipped m times. Let N be the observed # heads. Let $\epsilon \in [0,1]$. Hoeffding bounds:

- $\Pr[N/m > p + \varepsilon] \le e^{-2m\varepsilon^2}$, and $\Pr[N/m < \rho \varepsilon] \le e^{-2m\varepsilon^2}$.

Exponentially decreasing tails

Tail inequality: bound probability mass in tail of distribution (how concentrated is a random variable around its expectation).

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

Theorem After *m* examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

- **Proof**: Just apply Hoeffding.
 - Chance of failure at most $2|H|e^{-2|S|\epsilon^2}$.
 - Set to δ . Solve.
 - So, whp, best on sample is ϵ -best over D.
 - Note: this is worse than previous bound (1/ ϵ has become 1/ ϵ^2), because we are asking for something stronger.
 - Can also get bounds "between" these two.

What you should know

- Notion of sample complexity.
- Understand reasoning behind the simple sample complexity bound for finite H.
- Shattering, VC dimension as measure of complexity, Sauer's lemma, form of the VC bounds (upper and lower bounds).