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Sample complex. 
Â 

Machine Learning Theory II 



Two Core Aspects of Machine Learning 

Algorithm Design. How to optimize? 

Automatically generate rules that do well on observed data. 

Confidence Bounds, Generalization 

Confidence for rule effectiveness on future data. 

Computation 

(Labeled) Data 

• E.g.: logistic regression, SVM, Adaboost, etc. 



Today’s focus: Sample Complexity for Supervised 
Classification (Function Approximation) 

 
•  PAC (Valiant) 

•  Statistical Learning Theory (Vapnik) 

• Recommended reading: Mitchell: Ch. 7  
• Suggested exercises: 7.1, 7.2, 7.7 

• Additional resources: my learning theory course!  



Supervised Learning 
• E.g., which emails are spam and which are important. 

Not spam spam 

• E.g., classify images as man versus women. 

Man Women 
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   Labeled Examples   

PAC/SLT models for Supervised Learning 

Learning 
Algorithm 

Expert / Oracle 

Data 
Source 

Alg.outputs 

Distribution D on X 

c* : X ! Y 

(x1,c*(x1)),…, (xm,c*(xm)) 

h : X ! Y 
x1 > 5 

x6 > 2 
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•  Algo does optimization over S, find hypothesis ℎ. 

•  Goal:  h has small error over D. 

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D 

– labeled examples - drawn i.i.d. from D and labeled by target c* 
–  labels 2 {-1,1}  - binary classification 

h c* 

Instance space X 
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• Realizable: 𝑐∗ ∈ 𝐻.  

 𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥)) 

PAC/SLT models for Supervised Learning 

• X – feature/instance space; distribution D over X 

           e.g., X = Rd or X = {0,1}d 

Bias: fix hypothesis space H [whose complexity is not too large] 

• Agnostic: 𝑐∗ “close to” H.  



• Goal:  h has small error over D. 

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D 

Training error: errS h =
1

m
 I h xi ≠ c

∗ xii  

True error: errD h = Pr
x~ D

(h x ≠ c∗(x)) 

•   Does optimization over S, find hypothesis ℎ ∈ 𝐻. 

PAC/SLT models for Supervised Learning 

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over future 
instances drawn at random from D  

• But, can only measure: 

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over training 
instances 

Sample complexity: bound 𝑒𝑟𝑟𝐷 ℎ  in terms of 𝑒𝑟𝑟𝑆 ℎ  



 Sample Complexity for Supervised Learning 

Consistent Learner 

•  Output: Find h in H consistent with the sample (if one exits).  

• Input: S: (x1,c*(x1)),…, (xm,c*(xm)) 

So, if c∗ ∈ H and can find consistent fns, then only need this many 
examples to get generalization error ≤ 𝜖 with prob. ≥ 1 − 𝛿 

Probability over different samples of m 
training examples 

Bound only logarithmic in |H|, linear in 1/𝜖 



 Sample Complexity for Supervised Learning 

Consistent Learner 

Example: H is the class of conjunctions over X = 0,1 n. 

E.g., h = x1 x3x5 or h = x1 x2x4𝑥9 
|H| = 3n 

Then 𝑚 ≥
1

𝜖
𝑛 ln 3 + ln

1

𝛿
 suffice 

•  Output: Find h in H consistent with the sample (if one exits).  

• Input: S: (x1,c*(x1)),…, (xm,c*(xm)) 



Sample Complexity:  Finite Hypothesis Spaces 

Realizable Case 
 
 
 

 

 
 

 
 
 
  
 

1) PAC: How many examples suffice to guarantee small error whp.  

2) Statistical Learning Way: 

errD(h) ≤
1

m
ln H + ln

1

𝛿
. 

With probability at least 1 − 𝛿, for all h ∈ H s.t. errS h = 0 we have 



 Supervised Learning: PAC model (Valiant) 

• X - instance space, e.g., X = 0,1 n or X = Rn 

• Sl={(xi, yi)} - labeled examples drawn i.i.d. from some 
distr. D over X and labeled by some target concept c* 
–  labels 2 {-1,1}  - binary classification 

•  Algorithm A PAC-learns concept class H if for any  
target c* in H, any distrib. D over X, any ,  > 0: 

 - A uses at most poly(n,1/,1/,size(c*)) examples and running 
time. 
 - With prob. ≥ 1 − 𝛿, A produces h in H of error at · . 



What if H is infinite? 

E.g., linear separators in Rd 
+ 

- 

+ 
+ 
+ 

- 
- 

- 

- 
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E.g., intervals on the real line 

a b 

+ - - 

E.g., thresholds on the real line 
w 

+ - 



Sample Complexity: Infinite Hypothesis Spaces  

• H[m] - maximum number of ways to split m points using concepts 

in H; i.e.  
 

Sauer’s Lemma: H m = O mVCdim H  



Effective number of hypotheses 

• H[S] – the set of splittings of dataset S using concepts from H. 

• H[m] - max number of ways to split m points using concepts in H 

H m = max
S =m

|H[S]| 



Effective number of hypotheses 

• H[S] – the set of splittings of dataset S using concepts from H. 

• H[m] - max number of ways to split m points using concepts in H 

H m = max
S =m

|H[S]| 

E.g., H= Thresholds on the real line 

- - - + 

In general, if |S|=m (all distinct), |H S | = m + 1 ≪ 2m 

|H S | = 5 

- - - - 

w 

+ - 

- - + + 

- + + + 

+ + + + 

H[m] ≤ 2m 



Effective number of hypotheses 

• H[S] – the set of splittings of dataset S using concepts from H. 

• H[m] - max number of ways to split m points using concepts in H 

E.g., H= Intervals on the real line 

- - + - 

In general, |S|=m (all distinct), H m =
m m+1 

2
+ 1 = O(m2) ≪ 2m 

- - - - 

+ - - 

There are m+1 possible options for the first part, m left for the second 
part, the order does not matter, so (m choose 2) + 1 (for empty interval). 

• H[m] - max number of ways to split m points using concepts in H 

H m = max
S =m

|H[S]| H[m] ≤ 2m 



Effective number of hypotheses 

• H[S] – the set of splittings of dataset S using concepts from H. 

• H[m] - max number of ways to split m points using concepts in H 

Definition: H shatters S if |H S | = 2|𝑆|. 

H m = max
S =m

|H[S]| H[m] ≤ 2m 



Sample Complexity: Infinite Hypothesis Spaces  

B: ∃ h ∈ H with errS h = 0 but errD h ≥ ϵ. 
Very Very 
Rough Idea: 

B’: ∃ h ∈ H with errS h = 0 but errS′ h ≥ ϵ. 

S= {x1, x2, … , xm} i.i.d. from D 

S’ ={x1
′ , … , x𝑚

′ } another i.i.d. “ghost sample” from D 

Claim: To bound P(B), sufficient to bound P(B’) 
. 
Over S ∪ S′ only H[2m] effective hypotheses left… but, no randomness left. 

• H[m] - max number of ways to split m points using concepts in H 

Need randomness to bound the probability of a bad event, another 
symmetrization trick….  



Sample Complexity: Infinite Hypothesis Spaces  

Realizable Case 
 
 
 

 

 
 

 
 
 
  
 

• Not too easy to interpret sometimes hard to calculate 
exactly, but can get a good bound using “VC-dimension 

• VC-dimension is roughly the point at which H stops looking 
like it contains all functions, so hope for solving for m. 

If H m = 2m, then m ≥
m

ϵ
(… . )   

H[m] - max number of ways to split m points using concepts in H 



Sample Complexity: Infinite Hypothesis Spaces  

Sauer’s Lemma: H m = O mVCdim H  

H[m] - max number of ways to split m points using concepts in H 



Shattering, VC-dimension 

A set of points S is shattered by H is there are hypotheses in H 
that split S in all of the 2|𝑆| possible ways, all possible ways of 
classifying points in S are achievable using concepts in H. 

Definition: 

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H. 

Definition: 

If arbitrarily large finite sets can be shattered by H, then 
VCdim(H) = ∞ 

VC-dimension (Vapnik-Chervonenkis dimension) 

H shatters S if |H S | = 2|𝑆|. 



Shattering, VC-dimension 

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H. 

Definition: 

If arbitrarily large finite sets can be shattered by H, then 
VCdim(H) = ∞ 

VC-dimension (Vapnik-Chervonenkis dimension) 

To show that VC-dimension is d: 

– there is no set of d+1 points that can be shattered. 

– there exists a set of d points that can be shattered 

Fact: If H is finite, then VCdim (H) ≤ log (|H|). 



Shattering, VC-dimension 

E.g., H= Thresholds on the real line 

VCdim H = 1 
w 

+ - 

If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered. 

E.g., H= Intervals on the real line + - - 

+ - 

VCdim H = 2 

+ - + 



Shattering, VC-dimension 
If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered. 

E.g., H= Union of k intervals on the real line 

+ - - 

VCdim H = 2k 

+ - + 

+ - + - 
… 

VCdim H < 2k + 1 

VCdim H ≥ 2k             A sample of size 2k shatters 
(treat each pair of points as a 
separate case of intervals)  

+ 



E.g., H= linear separators in R2 

Shattering, VC-dimension 

VCdim H ≥ 3 



Shattering, VC-dimension 

VCdim H < 4 

Case 1: one point inside the triangle formed by 
the others. Cannot label inside point as positive 
and outside points as negative. 

Case 2: all points on the boundary (convex hull).  
Cannot label two diagonally as positive and other 
two as negative. 

Fact: VCdim of linear separators in Rd is d+1 

E.g., H= linear separators in R2 



Sauer’s Lemma  
Sauer’s Lemma: 

• m ≤ d, then H m = 2m 

Proof: induction on m and d. Cool combinatorial argument! 

Hint: try proving it for intervals… 

• m>d, then H m = O m𝑑  

Let d = VCdim(H) 



Sample Complexity: Infinite Hypothesis Spaces  

Realizable Case 
 
 
 

 

 
 

 
 
 
  
 Sauer’s Lemma: H m = O mVCdim H  



Sample Complexity: Infinite Hypothesis Spaces  

Realizable Case 
 
 
 

 

 
 

 
 
 
  
 

E.g., H= linear separators in Rd 

Sample complexity linear in d 

So, if double the number of features, then I only need 
roughly twice the number of samples to do well. 



Nearly Matching Bounds 

Theorem (lower bound):  

For any 𝐻, any algo 𝐴, any 0 < 𝜖 < 1/8, any 𝛿 < .01, ∃  distr.  𝐷 and 

target 𝑐∗ ∈ 𝐻 s.t. if 𝐴 sees fewer than max
1

𝜖
log

1

𝛿
,
𝑉𝐶𝑑𝑖𝑚 𝐻 −1

32𝜖
 

examples, then with prob. ≥ 𝛿, 𝐴 produces ℎ with 𝑒𝑟𝑟𝐷 ℎ > 𝜖. 



Lower Bound (simpler form) 

• Theorem: For any 𝐻 there exists 𝐷 such that any algorithm 

needs Ω
𝑉𝐶𝑑𝑖𝑚 𝐻

𝜖
 examples to reach error 𝜖 with prob ≥

3

4
. 

• Proof: consider 𝑑 = 𝑉𝐶𝑑𝑖𝑚(𝐻) shattered points: 

Prob 1 − 4𝜖 Prob 
4𝜖

𝑑−1
 each 

• Consider target 𝑐∗ that labels these points randomly. 

• Unless I see roughly ½ of the rare points, have error  ≥ 𝜖 

• Each example has only prob 4𝜖 of being one of the rare points, 

and need to see 
𝑑−1

2
 rare points, so need to see Ω

𝑑

𝜖
 total. 



What if c∗ ∉ H? 



Uniform Convergence 

•  This basic result only bounds the chance that a bad hypothesis looks 
perfect on the data. What if there is no perfect h∈H (agnostic case)? 

• What can we say if c∗ ∉ H? 

•  Can we say that whp all h∈H satisfy |errD(h) – errS(h)| ≤ ? 

– Called “uniform convergence”. 

– Motivates optimizing over S, even if we can’t find a 
perfect function. 



Sample Complexity:  Finite Hypothesis Spaces 

Realizable Case 
 
 
 
 

 

 
 

 
 
 
  
 

What if there is no perfect h?  

Agnostic Case 
 
 
 
 

 

 
 

 
 
 
  
 

To prove bounds like this, need some good tail inequalities. 
 



Hoeffding bounds 
Consider coin of bias p flipped m times.   
 Let N be the observed # heads.  Let ∈ [0,1]. 
Hoeffding bounds: 
• Pr[N/m > p + ] ≤ e-2m2, and 
• Pr[N/m < p - ] ≤ e-2m2. 

• Tail inequality: bound probability mass in tail of 
distribution (how concentrated is a random variable 
around its expectation). 

Exponentially decreasing tails 



• Proof: Just apply Hoeffding. 

– Chance of failure at most 2|H|e-2|S|2. 

– Set to . Solve. 
• So, whp, best on sample is -best over D. 

– Note: this is worse than previous bound (1/ has become 1/2), 
because we are asking for something stronger. 

– Can also get bounds “between” these two. 

Sample Complexity:  Finite Hypothesis Spaces 

Agnostic Case 
 
 
 
 

 

 
 

 
 
 
  
 



What you should know 

• Shattering, VC dimension as measure of complexity, 
Sauer’s lemma, form of the VC bounds (upper and 
lower bounds). 

• Notion of sample complexity. 

• Understand reasoning behind the simple sample 
complexity bound for finite H. 


