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Today: 
•  Logistic regression 
•  Generative/Discriminative 

classifiers 

Readings: (see class website) 
 
Required: 
•  Mitchell: “Naïve Bayes and 

Logistic Regression”  
 
Optional 
•  Ng & Jordan 



Announcements 
 

•  HW3 due Wednesday Feb 4 
•  HW4 will be handed out next Monday Feb 9 

•  new reading available:    
–  Estimating Probabilities: MLE and MAP (Mitchell) 
–  see Lecture tab of class website 

•  required reading for today: 
–  Naïve Bayes and Logistic Regression (Mitchell) 



Gaussian Naïve Bayes – Big Picture 
Example:  Y= PlayBasketball (boolean), X1=Height,  X2=MLgrade 

assume P(Y=1) = 0.5 



Logistic Regression 
Idea: 
•  Naïve Bayes allows computing P(Y|X) by 

learning P(Y) and P(X|Y) 
 

•  Why not learn P(Y|X) directly? 



•  Consider learning f: X à Y, where 
•  X is a vector of real-valued features, < X1 … Xn > 
•  Y is boolean 
•  assume all Xi are conditionally independent given Y 
•  model P(Xi | Y = yk) as Gaussian N(µik,σi) 
•  model P(Y) as Bernoulli (π) 

•  What does that imply about the form of P(Y|X)? 



Derive form for P(Y|X) for Gaussian P(Xi|Y=yk) assuming σik = σi 



Very convenient! 

implies 

implies 

implies 



Very convenient! 

implies 

implies 

implies 

linear 
classification 

rule! 



Logistic function 



Logistic regression more generally
•  Logistic regression when Y not boolean (but 

still discrete-valued).  
•  Now y ∈ {y1 ... yR} : learn R-1 sets of weights 

 for k<R 
 
 

 for k=R 



Training Logistic Regression: MCLE 
•  we have L training examples: 

•  maximum likelihood estimate for parameters W 

•  maximum conditional likelihood estimate 

 



Training Logistic Regression: MCLE 
•  Choose parameters W=<w0, ... wn> to 

maximize conditional likelihood of training data 

•  Training data D =  
•  Data likelihood =  
•  Data conditional likelihood =  

where 



Expressing Conditional Log Likelihood 



Maximizing Conditional Log Likelihood 

Good news: l(W) is concave function of W
Bad news: no closed-form solution to maximize l(W)





 Gradient Descent:  
Batch gradient: use error           over entire training set D 
Do until satisfied: 

    1. Compute the gradient  

    2. Update the vector of parameters:  

 
Stochastic gradient: use error          over single examples 
Do until satisfied: 
    1. Choose (with replacement) a random training example  

    2. Compute the gradient just for    : 

    3. Update the vector of parameters:  
 
Stochastic approximates Batch arbitrarily closely as 
Stochastic can be much faster when D is very large 
Intermediate approach: use error over subsets of D  



Maximize Conditional Log Likelihood:          
Gradient Ascent 



Maximize Conditional Log Likelihood:          
Gradient Ascent 

Gradient ascent algorithm: iterate until change < ε
   For all i, repeat 
 
    



That’s all for M(C)LE.  How about MAP? 

•  One common approach is to define priors on W 
–  Normal distribution, zero mean, identity covariance 

•  Helps avoid very large weights and overfitting 
•  MAP estimate 

•  let’s assume Gaussian prior: W ~ N(0, σ) 



MLE vs MAP  
•  Maximum conditional likelihood estimate 

•  Maximum a posteriori estimate with prior W~N(0,σI) 



MAP estimates and Regularization 
•  Maximum a posteriori estimate with prior W~N(0,σI) 

called a “regularization” term 
•  helps reduce overfitting 
•  keep weights nearer to zero (if P(W) is zero mean    
       Gaussian prior), or whatever the prior suggests 
•  used very frequently in Logistic Regression 



•  Consider learning f: X à Y, where 
•  X is a vector of real-valued features, < X1 … Xn > 
•  Y is boolean 
•  assume all Xi are conditionally independent given Y 
•  model P(Xi | Y = yk) as Gaussian N(µik,σi) 
•  model P(Y) as Bernoulli (π) 

•  Then P(Y|X) is of this form, and we can directly estimate W 

•  Furthermore, same holds if the Xi are boolean 
•  trying proving that to yourself 

The Bottom Line 



Generative vs. Discriminative Classifiers 

Training classifiers involves estimating f: X à Y, or P(Y|X) 
 
Generative classifiers (e.g., Naïve Bayes) 
•  Assume some functional form for P(X|Y), P(X) 
•  Estimate parameters of P(X|Y), P(X) directly from training data 
•  Use Bayes rule to calculate P(Y|X= xi) 

Discriminative classifiers (e.g., Logistic regression) 
 
•  Assume some functional form for P(Y|X) 
•  Estimate parameters of P(Y|X) directly from training data 



Use Naïve Bayes or Logisitic Regression? 

Consider 
•  Restrictiveness of modeling assumptions 
 
•  Rate of convergence (in amount of 

training data) toward asymptotic 
hypothesis 



Naïve Bayes vs Logistic Regression 
Consider Y boolean, Xi continuous, X=<X1 ... Xn> 
 
Number of parameters to estimate: 
•  NB:   

•  LR:   

 



Naïve Bayes vs Logistic Regression 
Consider Y boolean, Xi continuous, X=<X1 ... Xn> 
 
Number of parameters: 
•  NB: 4n +1 
•  LR: n+1 

Estimation method: 
•  NB parameter estimates are uncoupled 
•  LR parameter estimates are coupled 
 



G.Naïve Bayes vs. Logistic Regression 

Recall two assumptions deriving form of LR from GNBayes: 
1.   Xi conditionally independent of Xk given Y 
2.   P(Xi | Y = yk)  =  N(µik,σi),   ß not N(µik,σik) 

Consider three learning methods: 
•  GNB (assumption 1 only) 
•  GNB2 (assumption 1 and 2) 
•  LR  
 
Which method works better if we have infinite training data, and… 
•  Both (1) and (2) are satisfied 
•  Neither (1) nor (2) is satisfied 
•  (1) is satisfied, but not (2)  



G.Naïve Bayes vs. Logistic Regression 

Recall two assumptions deriving form of LR from GNBayes: 
1.   Xi conditionally independent of Xk given Y 
2.   P(Xi | Y = yk)  =  N(µik,σi),   ß not N(µik,σik) 

Consider three learning methods: 
• GNB (assumption 1 only) 
• GNB2 (assumption 1 and 2) 
• LR  
 
Which method works better if we have infinite training data, and... 
 
• Both (1) and (2) are satisfied 

• Neither (1) nor (2) is satisfied 

• (1) is satisfied, but not (2)  

[Ng & Jordan, 2002] 



G.Naïve Bayes vs. Logistic Regression 

Recall two assumptions deriving form of LR from GNBayes: 
1.   Xi conditionally independent of Xk given Y 
2.   P(Xi | Y = yk)  =  N(µik,σi),   ß not N(µik,σik) 

Consider three learning methods: 
• GNB (assumption 1 only)     -- decision surface can be non-linear 
• GNB2 (assumption 1 and 2) – decision surface linear 
• LR                                         -- decision surface linear, trained without  

              assumption 1. 
 
Which method works better if we have infinite training data, and... 
 
• Both (1) and (2) are satisfied: LR = GNB2 = GNB 

• (1) is satisfied, but not (2) :     GNB > GNB2, GNB > LR,  LR > GNB2  

• Neither (1) nor (2) is satisfied:   GNB>GNB2,  LR > GNB2, LR><GNB 

[Ng & Jordan, 2002] 



G.Naïve Bayes vs. Logistic Regression 

What if we have only finite training data? 
 
They converge at different rates to their asymptotic (∞ data) error 
 
Let          refer to expected error of learning algorithm A after n training 
examples 
 
Let d be the number of features: <X1 … Xd> 
 
 
 
 
 
 
 
 
 
So, GNB requires n = O(log d) to converge, but LR requires n = O(d) 

[Ng & Jordan, 2002] 



Some experiments 
from UCI data sets 

[Ng & Jordan, 2002]  



Naïve Bayes vs. Logistic Regression 
The bottom line: 
 
GNB2 and LR both use linear decision surfaces, GNB need not 
 
Given infinite data, LR is better or equal to GNB2 because 
training procedure does not make assumptions 1 or 2 (though our 
derivation of the form of P(Y|X) did). 
 
But GNB2 converges more quickly to its perhaps-less-accurate 
asymptotic error 
 
And GNB is both more biased (assumption1) and less (no 
assumption 2) than LR, so either might outperform the other 



What you should know: 

•  Logistic regression 
–  Functional form follows from Naïve Bayes assumptions 

•  For Gaussian Naïve Bayes assuming variance σi,k = σi 
•  For discrete-valued Naïve Bayes too 

–  But training procedure picks parameters without making 
conditional independence assumption 

–  MLE training: pick W to maximize P(Y | X, W) 
–  MAP training: pick W to maximize P(W | X,Y) 

•  ‘regularization’  
•  helps reduce overfitting  

•  Gradient ascent/descent 
–  General approach when closed-form solutions unavailable 

•  Generative vs. Discriminative classifiers 
–  Bias vs. variance tradeoff 



extra slides 



What is the minimum possible error? 
Best case: 
•  conditional independence assumption is satistied 
•  we know P(Y), P(X|Y) perfectly (e.g., infinite training data) 



Questions to think about: 
•  Can you use Naïve Bayes for a combination of 

discrete and real-valued Xi?  

•  How can we easily model the assumption that 
just 2 of the n attributes as dependent? 

•  What does the decision surface of a Naïve Bayes 
classifier look like? 

•  How would you select a subset of Xi’s? 

 


