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Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

February 2, 2015

Today: Readings: (see class website)
* Logistic regression |
» Generative/Discriminative Required: )

classifiers « Mitchell: “Naive Bayes and

Logistic Regression”

Optional
« Ng & Jordan




Announcements

HW3 due Wednesday Feb 4
HW4 will be handed out next Monday Feb 9

new reading available:

— Estimating Probabilities: MLE and MAP (Mitchell)
— see Lecture tab of class website

* required reading for today:
— Nailve Bayes and Logistic Regression (Mitchell)



Gaussian Naive Bayes — Big Picture
Example: Y= PlayBasketball (boolean), X1=Height, X2=MLgrade

Y™ «— arg max P(Y = P(XlY = assume P(Y=1)=0.5
g max y H Y =y) (Y=1)



Logistic Regression

|dea:
* Nalve Bayes allows computing P(Y|X) by
learning P(Y) and P(X]Y)

« Why not learn P(Y|X) directly?



* Consider learning f: X = Y, where
« X is a vector of real-valued features, < X, ... X >
* Y Is boolean
e assume all X, are conditionally independent given Y
* model P(X. | Y =vy,) as Gaussian N(w;,0))
» model P(Y) as Bernoulli (i)

» What does that imply about the form of P(Y|X)?

1

P(Y = 11X =< Xq,..Xp>) =
| " 14+ exp(wg + >, w; X;)



Derive form for P(Y|X) for Gaussian P(X|Y=y,) assuming 0, = o

PV =11X) = P(Y =1)P(X]Y =1)+ P(Y = 0)P(X]Y = 0)
|
B 1
= P(Y=0)P(X|Y=0)
1+ P(Y=1)P(X}Y=1)
1
— P(Y=0)P(X|Y=0
1 + exp(In pgy=1%PgXIY=1§)
B 1
1+ exp( (IN1=T) 45 1n llzgz ?2%)
e 4 2~ 1)
P( ) = 293k Hi0 — Hil Fia — Hy
T |y Uik\/ﬂe ;( JZ-Q\ X; + 12030)
1

1 4+ exp(wg + Z%ﬂ‘:l\wiXQ



Very convenient!

1
P(lY =1|1X =< Xq,..Xp, >) =

1 + exp(wg + > wi X;)
implies

P(Y =0|X =< Xq,..Xp >) =

implies
P(Y =0|X)
P(Y =1|X)
implies
P(Y =0[X) _

" P(Y =1|X)



Very convenient!

1
1 + exp(wo + >0; wi X;)

P(lY =1|1X =< Xq,..Xp, >) =

implies
exp(wo + 32 wiX;)

PY:OX:<X1,...X >):
( | " 14+ exp(wg + X, w; X;)

implies

P(Y = 0/X)

= exp(wo + ) w;X;)
P =11X) ; o linear
/ classification
implies P(Y = 01) rulel
_ — X
"y =1px) ot



Logistic function
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P(Y =11X) =1 + exp(wo + X7 wiX;)




Logistic regression more generally

 Logistic regression when Y not boolean (but
still discrete-valued).

* Now y E{y, ... yp} : learn R-1 sets of weights

exp(wgo + 27 g Wi X;)
1+ Zfz_ll exp(w;o + >r_q w;j; X;)

for k<R P(Y = yi|X) =

1
1+ Y exp(wjo + X g wiiX;)

for k=R P =yg|X)=



Training Logistic Regression: MCLE

« we have L training examples:{(Xl, Yl), . <XL, YL)}

 maximum likelihood estimate for parameters W
WyLe = argmﬂe}xP(< XLyls> < XEYE s (W)

_ I v/
—argmm%xHP(< XY ' > |W)

« maximum conditional likelihood estimate




Training Logistic Regression: MCLE

Choose parameters W=<w,, ... w> to

maximize conditional likelihood of training data
1
1 4 exp(wo + X2; wiX;)

exp(wg + >; w; X;)
1 + exp(wo + > w; X;)

where P(Y =0|X,W) =

P(Y =1|X,W) =

Training data D = {(x*, v1),... (X", v}
Data likelihood = [[ P(x!, Yiw)
[
Data conditional likelihood = [] P(Y!|x!, W)
[

_ z z
WyerLe = argmmé}xlj[P(Y W, X")



Expressing Conditional Log Likelihood

(W) =InJ[PYIXLw) =S InPYxt,w)
[ [

1
1 + exp(wo + > w; X;)

P(Y =0|X,W) =

exp(wo + >; w; X;)

P =1|X,W) = 1+ exp(wg + X; w; X;)

(w) = Y vhnrPyl=1x,w)+ @ -vHinP!=o0/x,w)
[
P(Y!=1|x!L, W)

Yiin InP(Y!'=o0|X!, W
Zl: P(Y!=0|XL, W) + ( | )

ZYZ(’LUO + Z'winl) —In(1 4 exp(wg + ZwZle))
[ 1 1



Maximizing Conditional Log Likelihood

1

P =0lX, W) = 1+ exp(wo + >; w; X;)

exp(wo + >°; wi X;)
1+ exp(wo + >; w; X;)

P(Y =1|X,W) =

(W) n[[PYYxt,w)

[
ZYl(wo + Zwin) — In(1 4 exp(wg + ZwZXf))
[ 1 1

Good news: [(W) is concave function of W
Bad news: no closed-form solution to maximize (W)



Gradient Descent

Gradient

OF OF oF

. .

owy’ Ow;’  Ow,

vV B[]

Training rule:
AW = —nV E|[]

1.€., 9
E
Aw; = —1n7—
v nawi



Gradient Descent:

Batch gradient. use error Ep(w) over entire training set D
Do until satisfied:

1. Compute the gradient VEp(w) = S B
0 n

2. Update the vector of parameters: w <— w — nV Ep(w)

Stochastic gradient. use error E;(w) over single examples d € D
Do until satisfied:

1. Choose (with replacement) a random training example d € D

2. Compute the gradient just for d: VEy(w) = OEq(w) — OE4(w)

owy  Ow,
3. Update the vector of parameters: w < w — nV Ey(w)

Stochastic approximates Batch arbitrarily closely as 1) — 0
Stochastic can be much faster when D is very large
Intermediate approach: use error over subsets of D




Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = In[[PYxt,w)
z
= ZYl(wo + Z’win) — In(1 4 exp(wg + ZwZXf))
z i i
oMW) _ SN XY - P(Y = 11X, W)
8’(1)7; I



Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = In[[PYxt,w)
[
= S V!(wo+ Y wiX})) — In(1 + exp(wo + 3 w; X))
[ 1 1
oUW) _ S XUy - Py = 11X, W)
ow; l

Gradient ascent algorithm: iterate until change < ¢
For all i, repeat

wi —w; +n Y X[ (Y = P(Y = 1|x", W)
[




That's all for M(C)LE. How about MAP?

« One common approach is to define priors on W
— Normal distribution, zero mean, identity covariance

* Helps avoid very large weights and overfitting
 MAP estimate

W «— arg max in P(W) [ P(YY X!, W)
l

* let's assume Gaussian prior: W ~ N(0O, o)



MLE vs MAP

« Maximum conditional likelihood estimate
W «— arg max In HP(YZ|XZ, W)
[

wi —w; + 0y X[ (Y =PV =1]x", W)
[

« Maximum a posteriori estimate with prior W~N(0,ol)
W «— arg max In[P(W) HP(YZ\XZ, W)]
z

w; — w; —ndw;+n > X[V = P(Y! = 1]x5, W)
[




MAP estimates and Regularization

« Maximum a posteriori estimate with prior W~N(0,ol)

W «— arg max In[P(W) HP(YZ\XZ, W)]
l

w; — w; —ndw;+n > X[ (V= P(Y! = 1]x5, W)
A l

called a “reqularization” term

* helps reduce overfitting

» keep weights nearer to zero (if P(W) is zero mean
Gaussian prior), or whatever the prior suggests

 used very frequently in Logistic Regression




The Bottom Line

* Consider learning f: X = Y, where
» X is a vector of real-valued features, < X, ... X >
* Y Is boolean
e assume all X, are conditionally independent given Y
* model P(X. | Y =vy,) as Gaussian N(w;,0))
* model P(Y) as Bernoulli (i)

* Then P(Y|X) is of this form, and we can directly estimate W

1
P(Y = 11X =< Xq,..Xp>) =
| " 14+ exp(wg + >, w; X;)

 Furthermore, same holds if the X, are boolean
* trying proving that to yourself



Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X =2 Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)

« Assume some functional form for P(X|Y), P(X)

« Estimate parameters of P(X|Y), P(X) directly from training data
* Use Bayes rule to calculate P(Y|X= x)

Discriminative classifiers (e.g., Logistic regression)

« Assume some functional form for P(Y|X)
« Estimate parameters of P(Y|X) directly from training data



Use Nalve Bayes or Logisitic Regression?

Consider
* Restrictiveness of modeling assumptions

» Rate of convergence (in amount of
training data) toward asymptotic
hypothesis



Naive Bayes vs Logistic Regression
Consider Y boolean, X, continuous, X=<X, ... X >
Number of parameters to estimate:

e NB:

1
P(Y =0|X,W) =

1 + exp(wo + > w; X;)

P(Y = 11X, W) = exp(wo + > w; X;)

1 + exp(wo + >; w; X;)



Naive Bayes vs Logistic Regression

Consider Y boolean, X, continuous, X=<X, ... X >

Number of parameters:
* NB: 4n +1
e LR: n+1

Estimation method:
 NB parameter estimates are uncoupled
LR parameter estimates are coupled



G.Naive Bayes vs. Logistic Regression

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y
2. POX 1Y =y = N(wy,0), < not N(w,0y)

Consider three learning methods:
* GNB (assumption 1 only)

* GNB2 (assumption 1 and 2)

* LR

Which method works better if we have infinite training data, and...
* Both (1) and (2) are satisfied
 Neither (1) nor (2) is satisfied
* (1) is satisfied, but not (2)



G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X conditionally independent of X, given Y
2. PX Y=y = N(uy0), < not N(uy,oy)

Consider three learning methods:
*GNB (assumption 1 only)
*GNB2 (assumption 1 and 2)
LR

Which method works better if we have infinite training data, and...

*Both (1) and (2) are satisfied
*Neither (1) nor (2) is satisfied

(1) is satisfied, but not (2)



G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y
2. POXi Y=y = N(uy0), € not N(u,0o)

Consider three learning methods:

*GNB (assumption 1 only) -- decision surface can be non-linear
*GNB2 (assumption 1 and 2) — decision surface linear
LR -- decision surface linear, trained without

assumption 1.

Which method works better if we have infinite training data, and...
*Both (1) and (2) are satisfied: LR = GNB2 = GNB
(1) is satisfied, but not (2) : GNB > GNB2, GNB > LR, LR > GNB2

*Neither (1) nor (2) is satisfied: GNB>GNB2, LR > GNB2, LR><GNB



G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

What if we have only finite training data?
They converge at different rates to their asymptotic (= data) error

Let €4.n refer to expected error of learning algorithm A after n training
examples

Let d be the number of features: <X, ... X;>

d
€ELRn < €LRoc + O ( ﬁ)

log d
€EGNBn < €GNB,co + O ( 5 )

n

So, GNB requires n = O(log d) to converge, but LR requires n = O(d)
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learnin
repository. Plots are of generalization error vs. m (averaged over 1000 randor
train/test splits). Dashed line is logistic regression: solid line is naive Bayes,




Nalve Bayes vs. Logistic Regression

The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR 1s better or equal to GNB2 because

training procedure does not make assumptions 1 or 2 (though our
derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate
asymptotic error

And GNB 1s both more biased (assumptionl) and less (no
assumption 2) than LR, so either might outperform the other



What you should know:

* Logistic regression
— Functional form follows from Naive Bayes assumptions

* For Gaussian Naive Bayes assuming variance o;, = o;
« For discrete-valued Naive Bayes too

— But training procedure picks parameters without making
conditional independence assumption

— MLE training: pick W to maximize P(Y | X, W)
— MAP training: pick W to maximize P(W | X,Y)
* ‘regularization’
* helps reduce overfitting

« Gradient ascent/descent
— General approach when closed-form solutions unavailable

» (Generative vs. Discriminative classifiers
— Bias vs. variance tradeoff



extra slides



What is the minimum possible error?

Best case:
« conditional independence assumption is satistied
« we know P(Y), P(X|Y) perfectly (e.g., infinite training data)



Questions to think about:

« Can you use Naive Bayes for a combination of
discrete and real-valued X,?

 How can we easily model the assumption that
just 2 of the n attributes as dependent?

« What does the decision surface of a Nalve Bayes
classifier look like?

* How would you select a subset of X.'s?



