
10-601 Machine Learning: Homework 6
Due 5 p.m. Friday, April 3, 2015

Instructions

• Late homework policy: Homework is worth full credit if submitted before the due date, half credit
during the next 48 hours, and zero credit after that. You must turn in at least n−1 of the n homeworks
to pass the class, even if for zero credit.

• Collaboration policy: Homeworks must be done individually, except where otherwise noted in the
assignments. “Individually” means each student must hand in their own answers, and each student
must write and use their own code in the programming parts of the assignment. It is acceptable for
students to collaborate in figuring out answers and to help each other solve the problems, though you
must in the end write up your own solutions individually, and you must list the names of students you
discussed this with. We will be assuming that, as participants in a graduate course, you will be taking
the responsibility to make sure you personally understand the solution to any work arising from such
collaboration.

• Online submission: You must submit your solutions online on autolab. We recommend that you
use LATEX to type your solutions to the written questions, but we will accept scanned solutions as well.
On the Homework 6 autolab page, you can download the template, which is a tar archive containing
a blank placeholder pdf for the written questions. Replace each pdf file with one that contains your
solutions to the written questions. When you are ready to submit, create a new tar archive of the
top-level directory and submit your archived solutions online by clicking the “Submit File” button.
You should submit a single tar archive identical to the template, except with the blank pdfs replaced
by your solutions for the written questions. You are free to submit as many times as you like. DO
NOT change the name of any of the files or folders in the submission template. In other words,
your submitted files should have exactly the same names as those in the submission template. Do not
modify the directory structure.

Problem 1: Expectation Maximization

Mixture models are helpful for modeling unknown subpopulations in data. If we have a collection of data
points X = {X1, ..., Xn}, where each Xi is drawn from one of K possible distributions, we can introduce
a discrete-valued random variable Zi ∈ {1, ...,K} that indicates which distribution Xi is drawn from. In
lecture, we discussed Gaussian mixture models, where each sample Xi is drawn from a Gaussian distribution
according to the value of its mixture component. This question deals with the categorical mixture model,
where each observation Xi is a discrete value drawn from a categorical distribution, rather than a continuous
value drawn from a Gaussian distribution. The parameter for a categorical distribution is a K-dimensional
vector π that lists the probability of each of K possible values (therefore,

∑
k πk = 1). For example, suppose

our categorical mixture model has 3 underlying distributions. Then, each Zi could take on one of three
values, {1, 2, 3}, with respective probabilities {π1, π2, π3}; equivalently, Zi ∼ Categorical(π), where π =
[π1, π2, π3]T ∈ R3. The observation Xi is then generated from another categorical distribution, depending
on the value of Zi. Equation (1) summarizes the generative process for a categorical mixture model.

Zi ∼ Categorical(π)

Xi ∼ Categorical(θZi)
(1)
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For this model, where we observe X but not Z, we want to learn the parameters of the K categorical
components Θ = {π, θ1, ..., θK}, where each θk ∈ RM is the parameter for the categorical distribution
associated with the k-th mixture component (this means that each Xi can take on one of M possible values).
We can use the EM algorithm to accomplish this.

A note on notation and a hint: it is helpful to use indicator variables when working with categorical
distributions. The indicator function 1 {x = j} has value 1 when x = j and 0 otherwise. With this notation,
we can express the probability that a random variable drawn from a categorical distribution (e.g., Y ∼
Categorical(φ), where φ ∈ RN ) takes on a particular value as

P (Y ) =

N∏
i=1

φ
1{Y=i}
i .

(a) [6 points] What is the joint distribution P (X,Z; Θ)?

(b) [6 points] What is the posterior distribution of the latent variables, P (Z|X; Θ)?

(c) [8 points] What is the expectation of the log-likelihood, Q(Θ′|Θ) := EZ|X;Θ logP (X,Z; Θ′)?

(d) [Extra Credit, 5 points] What is the update step for Θ? That is, what Θ maximizes Q(Θ′|Θ)?
(Remember that Θ includes the categorical parameter π for Z and the categorical parameters θ1, ..., θK
for X, from the generative process described in (1). Make sure your solution enforces the constraint that
parameters to categorical distributions must sum to 1—Lagrange multipliers are a great way to solve
constrained optimization problems.)

Problem 2: AdaBoost

Consider the following dataset, plotted in Figure 1:

X1 = (−1, 0,+), X2 = (−0.5, 0.5,+), X3 = (0, 1,−), X4 = (0.5, 1,−),

X5 = (1, 0,+), X6 = (1,−1,+), X7 = (0,−1,−), X8 = (0, 0,−).

In this problem, you’ll run through T = 3 iterations of AdaBoost with decision stumps (axis-aligned half-
planes) as weak learners.

(a) [20 points] For each iteration t = 1, 2, 3, compute εt, αt, Zt, Dt(i)∀i (in Table 1) and draw the decision
stump (on Figure 1). Recall that Zt is the normalization factor to ensure that the weights Dt sum to
one.

(b) [5 points] What is the training error of AdaBoost? Give a one-sentence reason for why AdaBoost
outperforms a single decision stump.

Table 1: Values of AdaBoost parameters at each timestep.

t εt αt Zt Dt(1) Dt(2) Dt(3) Dt(4) Dt(5) Dt(6) Dt(7) Dt(8)
1
2
3

Problem 3: Perceptron

Consider running the Perceptron algorithm on some sequence of examples S (an example is a data point
and its label). Let S′ be the same set of examples as S, but presented in a different order.
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Figure 1: A small dataset, for binary classification with AdaBoost.

(a) [4 points] Does the Perceptron algorithm necessarily make the same number of mistakes on S as it does
on S′?

(b) [8 points] If so, why? If not, show such an S and S′ where the Perceptron algorithm makes a different
number of mistakes on S′ than it does on S.

(c) [8 points] We know that in Rd we can shatter d+ 1 points with linear separators, but not d+ 2 points
(because the VC-dimension of linear separators is d + 1). But what if we require that the points be
separated by margin γ? Show that you can have at most (R/γ)2 points inside the ball of radius R that
can be “shattered at margin γ,” meaning that every labeling is achievable by a separator of margin γ.
Hint: Suppose for contradiction you had M = (R/γ)2 + 1 such points. What would happen if you
gave them in some order to the Perceptron algorithm, with labels exactly opposite of what Perceptron
predicts?

Problem 4: Kernels

4.1: A proposed kernel

Consider the following kernel function:

K(x, x′) =

{
1, if x = x′

0, otherwise

(a) [8 points] Prove this is a legal kernel. That is, describe an implicit mapping Φ : X → Rm such that
K(x, x′) = Φ(x) · Φ(x′). (You may assume the instance space X is finite.)

(b) [6 points] In this kernel space, any labeling of points in X will be linearly separable. Justify this claim.
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(c) [6 points] Since all labelings are linearly separable, this kernel seems perfect for learning any target
function. Why is this actually a bad idea?

4.2: Composition of kernels

It is possible to use previously-defined kernels to construct new ones. For this problem, you will prove why
the following proposed functions are or are not valid kernels The notation < x, z > indicates the dot product
xT z).

(a) [3 points] K(x, z) = 5 < x, z >

(b) [4 points] K(x, z) =< x, z >3 +(< x, z > +1)2

(c) [8 points] K(x, z) =< x, z >2 + exp(−||x||2) exp(−||z||2)

Problem 5: Extra Credit

Support Vector Machines

Suppose we have a set S = {(x1, y1), ..., (xm, ym)} of labeled examples in Rn, and assume ||xi|| = 1,∀i. It is
NP-hard to find a linear separator that minimizes the number of points misclassified, so learning algorithms
optimize other related quantities that are easier to solve. SVM solves the optimization problem

min
w

||w||22 + C

m∑
i=1

ξi

subject to yi(w
Txi) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i

(2)

(a) [5 points] Suppose that S has the property that the total distance one would need to move the points
in order to make them separable by margin γ is dγ . (By “total distance” we mean

∑
i di where di is

the distance that point xi is moved. By “separable by margin γ” we mean that, for some hyperplane
through the origin, all points are on the correct side and at distance at least γ from it.) Show that, for
an appropriate value of C, the number of misclassifications made on S by the separator produced by
SVM is at most 1

2 + dγ/γ.
Hint: We can find the value of dγ with the following optimization problem:

min
w,γ̃i,γ̃

m∑
i=1

γ̃i

subject to ||w|| = 1

yi(w
Txi) ≥ γ̃ − γ̃i ∀i

(3)

where γi indicates the distance between point xi and the appropriate margin.

Boosting

Suppose that, instead of computing αt = 1
2 ln

(
1−εt
εt

)
, we instead fixed α > 0 ahead of time and set αt = α

for each iteration t in this Boost(α) algorithm. Assume that on every round t of boosting, we know that εt

will be at most 1/2− γ, for some γ > 0. We choose to set α = 1
2 ln

(
1+2γ
1−2γ

)
.

(a) [5 points] Show how to modify the training error analysis of AdaBoost to derive an upper bound on
the training error of the final hypothesis H produced by Boost(α) after T rounds. Your bound should
be in terms of γ and T only (it should not depend on α,εt, etc.).
Hint: Begin by proving, as we did in class, the bound on the error errS(Hfinal) in terms of the normal-
ization factors Zt.
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(b) [5 points] Use the previous result to show that the final hypothesis H will be consistent with m training
examples (i.e., have zero training error) after T rounds if T > lnm

2γ2 .

(c) [5 points] Assume that the weak learning algorithm generates hypotheses ht which belong to a finite
class H. Use error bounds from the class to show that if we choose T as in part (b), then with probability

1− δ, the generalization error of H is at most T ln |H|+ln(1/δ)
m .
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