
10-601 Machine Learning: Homework 4
Due 5 p.m. Monday, February 16, 2015

Instructions

• Late homework policy: Homework is worth full credit if submitted before the due date, half credit
during the next 48 hours, and zero credit after that. You must turn in at least n−1 of the n homeworks
to pass the class, even if for zero credit.

• Collaboration policy: Homeworks must be done individually, except where otherwise noted in the
assignments. “Individually” means each student must hand in their own answers, and each student
must write and use their own code in the programming parts of the assignment. It is acceptable for
students to collaborate in figuring out answers and to help each other solve the problems, though you
must in the end write up your own solutions individually, and you must list the names of students you
discussed this with. We will be assuming that, as participants in a graduate course, you will be taking
the responsibility to make sure you personally understand the solution to any work arising from such
collaboration.

• Online submission: You must submit your solutions online on autolab. We recommend that you
use LATEX to type your solutions to the written questions, but we will accept scanned solutions as well.
On the Homework 4 autolab page, you can download the template, which is a tar archive containing a
blank placeholder pdf for the written questions and one Octave source file for each of the programming
questions. Replace each pdf file with one that contains your solutions to the written questions and fill
in each of the Octave source files with your code. When you are ready to submit, create a new tar
archive of the top-level directory and submit your archived solutions online by clicking the “Submit
File” button. You should submit a single tar archive identical to the template, except with each of the
Octave source files filled in and with the blank pdf replaced by your solutions for the written questions.
You are free to submit as many times as you like (which is useful since you can see the autograder
feedback immediately).

DO NOT change the name of any of the files or folders in the submission template. In other words,
your submitted files should have exactly the same names as those in the submission template. Do not
modify the directory structure.

Problem 1: Gradient Descent

In class we derived a gradient descent learning algorithm for simple linear regression where we assumed

y = w0 + w1x1 + ε where ε ∼ N (0, σ2)

In this question, you will do the same for the following model

y = w0 + w1x1 + w2x2 + w3x
2
1 + ε where ε ∼ N (0, σ2)

where your learning algorithm will estimate the parameters w0, w1, w2, and w3.

(a) [8 Points] Write down an expression for P (y|x1, x2).

(b) [8 Points] Assume you are given a set of training observations (x
(i)
1 , x

(i)
2 , y(i)) for i = 1, . . . , n. Write

down the conditional log likelihood of this training data. Drop any constants that do not depend on the
parameters w0, . . . , w3.

1

https://autolab.cs.cmu.edu/courses/27/assessments/292
https://autolab.cs.cmu.edu/courses/27/assessments/292/attachments/20


(c) [8 Points] Based on your answer above, write down a function f(w0, w1, w2, w3) that can be minimized
to find the desired parameter estimates.

(d) [8 Points] Calculate the gradient of f(w) with respect to the parameter vector w = [w0, w1, w2, w3]T .
Hint: The gradient can be written as

∇wf(w) =

[
∂f(w)

∂w0

∂f(w)

∂w1

∂f(w)

∂w2

∂f(w)

∂w3

]T
(e) [8 Points] Write down a gradient descent update rule for w in terms of ∇wf(w).

Problem 2: Logistic Regression

In this question, you will implement a logistic regression classifier and apply it to a two-class classification
problem. As in the last assignment, your code will be autograded by a series of test scripts that run on
Autolab. To get started, download the template for Homework 4 from the Autolab website, and extract the
contents of the compressed directory. In the archive, you will find one .m file for each of the functions that
you are asked to implement, along with a file called HW4Data.mat that contains the data for this problem.
You can load the data into Octave by executing load("HW4Data.mat") in the Octave interpreter. Make sure
not to modify any of the function headers that are provided.

(a) [5 Points] In logistic regression, our goal is to learn a set of parameters by maximizing the conditional
log likelihood of the data. Assuming you are given a dataset with n training examples and p features,
write down a formula for the conditional log likelihood of the training data in terms of the the class labels

y(i), the features x
(i)
1 , . . . , x

(i)
p , and the parameters w0, w1, . . . , wp, where the superscript (i) denotes the

sample index. This will be your objective function for gradient ascent.

(b) [5 Points] Compute the partial derivative of the objective function with respect to w0 and with respect
to an arbitrary wj , i.e. derive ∂f/∂w0 and ∂f/∂wj , where f is the objective that you provided above.

(c) [30 Points] Implement a logistic regression classifier using gradient ascent by filling in the missing code
for the following functions:

• Calculate the value of the objective function: obj = LR CalcObj(XTrain,yTrain,wHat)

• Calculate the gradient: grad = LR CalcGrad(XTrain,yTrain,wHat)

• Update the parameter value: wHat = LR UpdateParams(wHat,grad,eta)

• Check whether gradient ascent has converged: hasConverged = LR CheckConvg(oldObj,newObj,tol)

• Complete the implementation of gradient ascent: [wHat,objVals] = LR GradientAscent(XTrain,yTrain)

• Predict the labels for a set of test examples: [yHat,numErrors] = LR PredictLabels(XTest,yTest,wHat)

where the arguments and return values of each function are defined as follows:

• XTrain is an n× p dimensional matrix that contains one training instance per row

• yTrain is an n× 1 dimensional vector containing the class labels for each training instance

• wHat is a p+ 1× 1 dimensional vector containing the regression parameter estimates ŵ0, ŵ1, . . . , ŵp

• grad is a p+ 1× 1 dimensional vector containing the value of the gradient of the objective function
with respect to each parameter in wHat

• eta is the gradient ascent step size that you should set to eta = 0.01

• obj, oldObj and newObj are values of the objective function

• tol is the convergence tolerance, which you should set to tol = 0.001

• objVals is a vector containing the objective value at each iteration of gradient ascent

• XTest is an m× p dimensional matrix that contains one test instance per row

2



• yTest is an m× 1 dimensional vector containing the true class labels for each test instance

• yHat is an m× 1 dimensional vector containing your predicted class labels for each test instance

• numErrors is the number of misclassified examples, i.e. the differences between yHat and yTest

To complete the LR GradientAscent function, you should use the helper functions LR CalcObj, LR CalcGrad,
LR UpdateParams, and LR CheckConvg.

(d) [0 Points] Train your logistic regression classifier on the data provided in XTrain and yTrain with
LR GradientAscent, and then use your estimated parameters wHat to calculate predicted labels for the
data in XTest with LR PredictLabels.

(e) [5 Points] Report the number of misclassified examples in the test set.

(f) [5 Points] Plot the value of the objective function on each iteration of gradient ascent, with the iteration
number on the horizontal axis and the objective value on the vertical axis. Make sure to include axis
labels and a title for your plot. Report the number of iterations that are required for the algorithm to
converge.

(g) [10 Points] Next, you will evaluate how the training and test error change as the training set size
increases. For each value of k in the set {10, 20, 30, . . . , 480, 490, 500}, first choose a random subset of
the training data of size k using the following code:

subsetInds = randperm(n, k)

XTrainSubset = XTrain(subsetInds, :)

yTrainSubset = yTrain(subsetInds)

Then re-train your classifier using XTrainSubset and yTrainSubset, and use the estimated param-
eters to calculate the number of misclassified examples on both the training set XTrainSubset and
yTrainSubset and on the original test set XTest and yTest. Finally, generate a plot with two lines: in
blue, plot the value of the training error against k, and in red, pot the value of the test error against
k, where the error should be on the vertical axis and training set size should be on the horizontal axis.
Make sure to include a legend in your plot to label the two lines. Describe what happens to the training
and test error as the training set size increases, and provide an explanation for why this behavior occurs.

Extra Credit:

(h) [5 Points] Based on the logistic regression formula you learned in class, derive the analytical expression
for the decision boundary of the classifier in terms of w0, w1, . . . , wp and x1, . . . , xp. What can you say
about the shape of the decision boundary?

(i) [5 Points] In this part, you will plot the decision boundary produced by your classifier. First, create a
two-dimensional scatter plot of your test data by choosing the two features that have highest absolute
weight in your estimated parameters wHat (let’s call them features j and k), and plotting the j-th
dimension stored in XTest(:,j) on the horizontal axis and the k-th dimension stored in XTest(:,k) on
the vertical axis. Color each point on the plot so that examples with true label y = 1 are shown in blue
and label y = 0 are shown in red. Next, using the formula that you derived in part (h), plot the decision
boundary of your classifier in black on the same figure, again considering only dimensions j and k.

3


