Exploiting Ontological Knowledge in Crowdsourcing

Grant Strimel Ivan Stelmakh
Computer Science Department Computer Science Department
Carnegie Mellon University Carnegie Mellon University
gstrimel@andrew.cmu.edu stiv@cs.cmu.edu

Abstract

We present and analyze techniques for leveraging ontology structure when per-
forming crowdsourced data aggregation in an approval voting setting. We present
both theoretic and experimental results as well as giving efficient practical algo-
rithms with strong guarantees. We demonstrate that there are several independent
approaches for utilizing the ontology and that all of these approaches can be used
in conjunction with one another.

1 Introduction

Platforms such as Amazon Mechanical Turk are widely used for various crowdsourcing applications.
Researchers and engineers use data gathered from human workers and use it in an aggregated form to
build machine learning models. One of the most popular applications is that of multi-class image
classification. This is especially useful in Computer Vision where researchers often require large
amounts of precisely labeled data to train classification models (e.g. Neural Networks). For example,
if we wish to build a system that identifies which traffic signs are pictured in an image, we would
likely require hundreds or thousands of examples of correctly labeled image-signs pairs where each
image is tagged with a set of road signs appearing in the image.

For applications, data in this form is typically gathered in a multi-class/multiple-choice paradigm
where each worker is presented a series of tasks. For each task (e.g. labeling a specific image), a set of
possible choices that can be "approved" are presented. There is an extensive corpus of literature that
studies the problem of multi-class classification in crowdsourcing settings. For example, []
study the problem of eliciting the right labels from noisy answers of workers in the setting when
the worker is asked to approve only one alternative. Another direction in the literature studies the
way the question should be asked. For example, [] proposes to decompose the problem of
multi-class classification into series of simple binary class problems.

In what follows, we consider another way to tackle the problem of multi-class classification where
there is a known structure relating the alternatives we can utilize. Let us briefly describe the key
observations that motivate of our approach. First of all, as pointed out in [], itis very restrictive
to ask a person to select only one class. Indeed, as studied in [], people tend to firstly cross
out the alternatives that they believe are wrong and then guess from what remains. This implies that if
one is forced to select only one answer and is unsure which is correct, it increases the chance he/she
will select the wrong alternative. In contrast, if one is asked to approve all the alternatives that he/she
believes might be the right answer, then it is more likely that at least one of the approved alternatives
will be correct.

Secondly, there is an interesting line of research in psychology that studies categorization and gener-
alization. As summarized in [], the ability of a person to correctly categorize objects in coarse
categories often significantly exceeds the ability to identify the finer classes of the objects. As a result,
one might infer that people in their mind first do a coarse categorization before deciding between

Final project report for course CMU 10709 "Fundamentals of Learning from the Crowd", Fall 2017. Instructor:
Nihar B. Shah, TA: Ritesh Noothigattu. The formatting style file is borrowed from the NIPS conference.

https://www.surveygizmo.com/

finer labels that belong to that category. For example, we can consider multi-class classification
in crowdsourcing settings. If a worker is given the object and asked to determine to which class
the object belongs, he/she may first categorize all the possible alternatives by similarity, eliminate
categories which do not apply, then do finer selection. Using this heuristic might be easier than
directly selecting the true class out of a large group of alternatives.

Finally, we note the following observation about human behavior when performing object recognition,
“visual processing for object recognition typically proceeds in a coarse-to-fine way, with initial coarse
or general processing being followed by fine or detailed processing” []. Since this way of
perception is biologically innate, one may assume that workers follow this way of processing when
trying to label the image.

Motivated by these considerations, in this work we investigate using a known categorization of
the alternatives, which we call an ontology, to help in the in the process of labeling images via
crowdsourcing.

2 Problem Formulation

2.1 Setting

In our setting, we have a set of n questions of similar nature which have the same set of d proposed
alternatives. We have k crowdsourcing workers. In each question, a worker is given an image
object and is instructed to select every alternative he/she believes the object may belong to. Let
z;j € {0, 1} denote worker 4’s response to question j where xj; is 1 if the u-th alternative is selected
and 0 otherwise. To make things concrete, our experimental setting will consider the task of language
determination. Similar to the example in [], we ask workers to identify which language
appears in an image for a set of seven languages: Dutch, French, German, Romanian, Romansh,

Russian, and Ukrainian. An example of this type of question is presented in Figure 1.

What language is this? (If you are conflicted between multiple answers, select each of them).

(O Dutch
O Russian
o . (3 French
vuilnis O Ramar
(O Ukrainian
O German

O Romanian

Figure 1: Example question.

We assume that there exists some ontology between the alternatives, i.e alternatives are related to
one another in some fashion. Furthermore, we assume this ontology is known to us. For our setting
we will consider simple graph ontologies. Namely, we restrict our attention to a binary notion of
similarity: alternatives/concepts are vertices and if two alternatives are “similar”, an edge exists
between their corresponding vertices. We denote the ontology graph as G = (V, E). See that |V | = d.
We have selected a working example such that the notion of ontology (similarity) is unambiguous:
we treat two languages as similar if and only if they come from the same language group.

e East Slavic: Russian, Ukrainian
e Romance: French, Romanian, Romansh.

o West Germanic: Dutch, German

Romanian
Romansh

Russian

French

Ukrainian
Dutch

German

Figure 2: Ontology Graph for Languages.

For our approach, it will also be convenient to consider the complement ontology graph G’ = (V, E’)
where an edge exists in E’ if and only if it does not appear in E.

2.2 Proposed Idea

We now give our general approach on how to exploit the ontology in an approval voting setting. We
suggest three lines of attack where the prior knowledge of the ontology structure can be exploited.

First, the ontology gives us a natural notion of an unlabeled error rate. Since the true labels for each
question are not known ahead of time (that would defeat the purpose of crowdsourcing), it might be
difficult to evaluate the strength of each worker. However, the ontology gives us a natural proxy for
evaluating a workers strength. Those workers that commonly violate the ontology we can designate
as weak while those who answer more consistent with the ontology are more likely to be strong. We
note a similar observation is used in [] to relate an unlabeled error rate to a machine learning
model’s labeled error rate. For us however, we define the unlabeled error rate of a worker 7 to be

1 n
- u v
eIty (1) = -~ E E Ty Ty

j=1 (u,w)eE’

In effect, our unlabeled error rate of a worker is a normalized count of the number of edges of G’ that
are covered by the vertices of the worker’s answers. Our goal is to use high unlabeled error rates as a
method for identifying spammers. We show how to do this in a simple hammer-spammer setting in
Section 3.

Secondly, we can also use our unlabeled error rate to “weight” workers. It is a standard crowdsourcing
aggregation technique to take a majority vote over worker answers for each question and declare the
true answer of the question to be the vote winner. In paradigms where there strength of the workers
are known, it common to use a weighted majority vote where more accurate workers have more
“voting power” than the less accurate workers. In these scenarios, the weighted majority vote can far
surpass the performance of traditional majority vote. We explore this possibility experimentally in
Section 5.2 by considering a voting scheme that employs the unlabeled error rate.

Last, we can use our ontology to direct our data collection by informing the workers in advance of the
ontology structure/coarse categorization of alternatives. Along with the general intuition described in
Section 1, we note that it is easy to imagine a scenario when a worker has no knowledge about one
or more of the proposed alternatives. For example, say there are three alternatives, A, B and C and
a worker is familiar with alternatives A and B but completely unfamiliar with alternative C. If the
worker is told that C'is similar to A, then he/she can use that information to help reduce the number
of mistakes on questions for which he/she is not sure of the answer. On a question where the true
answer is C' and the worker recognizes the object as similar to that of an A object but is not 100%
sure, the worker will be more inclined to choose both A and C. On a question where the true answer
is B and the worker recognizes the object as a B type object but is not 100% sure, the worker will be
more inclined to choose just B and ignore C.

A convenient aspect of these three approaches is that none are mutually exclusive. All of the
approaches can be used in conjunction simultaneously. In the remainder of this work, we analyze the
proposed ontology exploitation from both theoretical and experimental contexts.

3 Hammers and Spammers

In this section, we consider an analysis of a hammer-spammer setting for general ontology graphs
under a restricted idealized class of hammer and spammer workers. We define the class of ¢g-spammers
as workers who select each alternative with equal probability g. Namely,

u _ {1 with prob ¢

Lspammer,j = 0 withprob1l—gqg

for all alternatives u and questions j. We suggest that this is a reasonable model for a spammer’s
behavior due to its simplicity of implementation.

We define a p-hammer worker as follows. For any question j with believed correct answer u, the
number of alternatives v approved such that (u,v) € E’ is distributed in a geometric fashion with
parameter p. Namely, ¢ > 0 alternatives v are approved where (u,v) € E’ with probability upper-
bounded by p*; the event where no alternatives v € E’ are approved occurs with probability at least

A
1-EB ;fp where A’ is the maximum degree of G'. We grant this an idealized model but we contend

its adequacy by the behavioral properties of the probability dropping exponentially in the number of
“ontology mistakes”.

With these classes of spammers and hammers, and a lower bound ¢y, on all parameters g, we present
a simple algorithm for doing classifying spammers and hammers. Note A is the maximum degree of

G.

HAMMER-SPAMMER CLASSIFICATION ALGORITHM

e From the observed data, compute err,,,,; (¢) for all workers .

o Iferry, (i) < 2(A+1)+ %, label the worker a hammer, else label the worker a
spammer.

Theorem 3.1. If all p-hammers have a parameter p < 0.5 and all q-spammers have q > qin With

Qmin > Cy/ %, ¢ > 2v/2, then the Hammer-Spammer Classification Algorithm will classify each

individual worker correctly with probability at least 1 — exp (— (l — é) nq;‘;”-n).

2 c2

From the above theorem, the following corollary comes as a consequence.

Corollary 3.1.1. If the conditions of Theorem 3.1 are satisfied, then the Hammer-Spammer Classifi-
cation Algorithm will correctly classify at least a (1 — €) fraction of workers with probability (1 — §)
ifn> o n ().

(3=F)am <
Note that the sample complexity given in the above corollary is that it is independent of the number
of workers & . The proofs of these statements are given in Appendix A.

4 Experiment

4.1 Design

To test the effects of the ontological approach, we conducted an experiment with real human responses.
We designed the experiment to mainly explore the three uses of the ontology: finding spammers,
proxy-weighting workers, and directing workers by teaching them the ontology. As mentioned in
Section 2.1, our experimental example will be that of language identification. We present the worker

with a task to identify which of seven languages is shown in an image and ask the worker to select all
the languages he/she believes the word may belong to. We selected the language alternatives in a
specific way that they form three distinct groups. Languages inside one group are similar to each
other. In this case, by similarity we mean the similarity of alphabets, character patterns and lexical
similarity - two languages share words in common. The proposed languages, groups and justification
are the following:

e Russian, Ukrainian (East Slavic). This group should be easily identified by the vast
majority of workers. We believe that when the worker encounters a word from one of these
languages he or she will select either one of these languages or both.

e French, Romanian, Romansh (Romance). We expect that people generally are not familiar
with the Romansh language and the connection between Romanian and French. So being
presented the ontology in advance may aid in the classification involving these languages.

e Dutch, German (West Germanic). Here we again expect that workers are not as familiar
with the Dutch language compared to German and that the connection between the two
might be non-obvious.

The data was collected in a survey format. Each worker was presented a series of n = 45 questions.
Each question contains an image of a word and a list of seven checkboxes, one for each language.
See Figure 1.

The experiment was conducted on Amazon Mechanical Turk in conjunction with SurveyGizmo. We
use Mechanical Turk as the platform for assigning surveys and compensating workers. Mechanical
Turk directs, via a hyperlink, the worker to the list of questions presented by SurveyGizmo. Upon
completion of the questions, a survey code is presented to the worker to enter back into Mechan-
ical Turk. The use of SurveyGizmo was chosen because there are many useful built-in features
which reduced development effort. These include survey design formatting, recording, reporting,
randomization, and A/B testing.

In order to ensure statistical validity, we implemented the following features into the experiment
design. The order of the questions is randomized for every worker to avoid biases. Additionally, the
order of the options is randomized for every worker to avoid biases. Now we describe below how our
experiment addresses each of the ontology uses.

1. To test our ability to catch spammers, after real human data was collected, we augment
our data with generated spammer data. We try to limit our true responses from the survey
to known humans by taking advantage of Mechanical Turk Features. Namely, we put the
following filters on our Turk HIT. Each worker must have at least a 98% HIT approval rating
with over 500 HITs completed. Also, we require workers to be Masters - a classification
which Mechanical Turk tracks and assigns internally using their own statistical modeling.
Last, we have a condition applied through SurveyGizmo that every question must have at
least one alternative selected. Afterwards we add our generated spammer data according to
the g-spammer class. We describe this in more detail in Section 5. We then use the algorithm
presented in the previous section to identify spammers.

2. With the results gathered from the experiment, we use our ontology to evaluate each workers
unlabeled error. We are then able to use the unlabeled error rate to weight each of our
workers to perform a weighted majority vote and compare this against the unweighted
version. Note we do not include our generated spammer data.

3. To determine whether or not informing the workers of the ontology before answering the
questions alters worker performance, each participant is randomly assigned to one of two
groups where the instructions are modified in the second group to inform them of the
language classes. We denote the control group as Group A and the test group with the
modified instructions as Group B. See the Appendix B for figures displaying different
instructions. To measure the effect of this, we define special metric which we refer to as the
v-score. Letting u; be the correct alternative for option j, then we define the ~y-score for
worker 7 as

n

; 1 U Uj,v Ui v
~y-score (i) = - Z 1{z;] =1} H (1 —) (g 0) €} () 1H{(us) EB}

J=1 v:x;’j:l,v;éu]'

https://www.surveygizmo.com/
https://www.surveygizmo.com/

Intuitively, the y-score captures a combination of labeled and unlabeled error. For a particular
question, if the worker does not select the correct answer they receive a score of zero. On
those questions which the correct answer was selected, a small multiplicative penalty is
applied for every alternative selected agreeing ontologicaly with the correct answer and a
large multiplicative penalty is paid for alternatives selected disagreeing ontologicaly with
the correct answer. We will test how the y-score changes in each of the groups.

4.2 Data Collection

Data was collected on Amazon Mechanical Turk over a 48 hour period from November 20 - November
22,2017. The response count breakdown is given Table 4.2. The average response times were within
the 10 - 14 minute range over the 45 questions. We present our full data analysis on the gathered data
in Section 5.

Group A | Group B | Total
Response Count 89 73 162

Table 1: Response Counts.

5 Results and Analysis

We advance the results collected from the experiment and analyze the data according to each
perspective of the ontological uses.

5.1 Finding Spammers

For the task of diagnosing spammer behavior, we augment our data sets by adding a supplemental
synthetic data set of 100 g-workers. Each spammer is added with g parameter generated uniformly at
random in the range [1/2, 1]. For each group, Group A, Group B, and Spammers, we now plot the
the sample size n against the fraction of correctly classified workers. To simulate smaller sample
sizes n < 45 for Group’s A and B we randomized the permutation of questions and consider just the
first n questions.

Group A Hammer-Spammer Algorithm Performance - . .
P P e Group B Hammer-Spammer Algorithm Performance

1 1 €88080800000000000000000000000000000000008089

0.95 0.95
;, 09 §» 09
g g
< 085 < 0.85
08 0.8
0.75 0.75
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

Sample Size n (i.e. number of quetions) Sample Size n (i.e. number of questions)

Spammer Group Hammer-Spammer Algorithm Performance

1

0.95

Accuracy

0 5 10 15 20 25 30 35 40 45

Sample Size n (i.e. number of quetions)

Figure 3: HAMMER-SPAMMER CLASSIFICATION Alg Performance.

It is apparent from Figure 3 that the HAMMER-SPAMMER CLASSIFICATION Algorithm does
extremely well in identifying the hammers with small sample size but in our simulation, the algorithm
requires a higher sample size to catch the spammers.

5.2 Weighting Workers

As alluded to in Section 2.2, we can use the unlabeled error as a proxy for determining the strength of
each worker. If we knew the accuracy of each worker, we could perform a weighted majority vote
in an attempt to outperform unweighted majority vote. A classic weighting scheme given worker
accuracies w; for majority vote is the log-odds voting scheme []:

k

answer reported for question j = argmax Z In
u€ld 2 L —w;

w; w

Since we do not know the true w; of each worker 7, we adapt our weighted voting scheme by setting

w; = 0.95 — 0,45 STunt (¢) = miny eMlun (7)

max;s eIty (') — ming erryy,; (')

as a heuristic. Basically this sets the weight for those workers who are the most consistent with the
ontology as w; = 0.95 and those who are the least consistent with w; = 0.5, and all else have a linear
interpolation between the extremes. For both Group A and Group B, we took the majority vote over
the 45 questions and compared it to the accuracy of the heuristic weighted majority vote. The results
are given in Table 5.2 below.

We see that there is an improvement with the proxy weighted majority vote over the traditional
majority vote but the improvement is only marginal.

Majority Vote | Weighted Majority Vote
Group A 25 26
Group B 22 24

Table 2: Comparison of Number of Correct Answers Given by Different Voting Schemes

5.3 Informing Workers

Now we present our analysis on the effect of informing the workers of the ontology/categorization
before answering the questions. Our main method for this analysis is to evaluate the differences in
behavior of the y-score across our two groups with v = 0.05. Figure 4 shows the discretized density
of the y-scores in each treatment group.

Group A y-score Distribution Group B y-score Distribution

04 04

03 03
025 025

0.2

Density
Density

0.15

0.1 0.1

0 01 0.2 03 04 05 0.6 0.7 08 0.9 1 0 0.1 02 03 04 05 0.6 07 08 09 1

Y-score (y =0.05) Y-score (y =0.05)

Figure 4: -score Distributions Across Treatment Groups.

From observation, it appears there is difference in the nature of the ~y-scores between Group A and
Group B. To confirm this observation we perform a statistical chi-squared test. We discretize the
score by into 5 bins. This breakdown is presented in Table 5.3. Our test is set up using the following
hypothesis statements: null hypothesis - the distribution of y-scores is independent from treatment
group, alternative hypothesis - the distribution of y-scores is dependent on the treatment group.

[0.0,0.2) | [0.2,0.4) | [0.4,0.6) | [0.6,0.8) | [0.8,1.0] | Totals
Group A 5 34 38 12 0 89
Group B 2 36 18 15 3 74
Totals 7 70 56 27 3 163

Table 3: y-score Contingency Table.

From the contingency table, we compute a chi-square value of x? = 10.53. The critical value of x?
with 4 degrees of freedom is 9.49 at the 5% level of significance. Since 10.53 > 9.49, therefore we
reject the null hypothesis and conclude that the y-score (with v = 0.05) is affected by presenting the
workers with the ontology structure. Note that our analysis does not state whether or not the y-score
has improved in Group B as compared to Group A. Though the mean is marginally higher in Group
B compared to Group A (0.454 vs 0.4316), we do not draw inference on these types of measures
of increase. We intentionally avoid such an analysis as it is unclear whether a strict improvement
in say mean y-score is a desired property. This is because we do not pretend to know how the data
across workers will be aggregated (majority vote, EM, etc.). For example, it may be more desirable
to have variance and separation amongst scores for the aggregation process. We conclude that there
is a significant different in y-score when teaching the ontology to workers and there is likely some
form of improvement in performance of the group as a whole.

Our last form of data exploration centers on understanding the affect of the y-scores when adjusting
the v parameter. Namely, we look at the difference in mean ~y-score between Groups A and B for
different levels of v over the range v = 1 (no punishment for agreement with the ontology, full
punishment for a disagreement) to v = 0.5 (equal punishment for agreement and disagreement with
the ontology). Our findings are displayed in Figure 5.

Difference in Average Score for Varying y Parameter

0.6

Averagey-score Group B — Average y-score Group A

-0.03

Y parameter value

Figure 5: Difference in «-score for Varying v Parameter.

Notice that the difference is most magnified at the extreme values with Group B performing best
for the largest ontology violation penalty and Group A performing the best when there is equal
punishment for selecting wrong alternatives regardless of their ontological position. We find it note
worthy that the graph is nearly a perfect straight line and that it crosses the x-axis at 0.25 almost
exactly, the center of the two extremes where it so happens both Groups A and B have equal y-scores.
It is not currently well understood why the line crosses exactly at 0.25 but we do not find this a
coincidence and a deeper theoretic analysis is needed to explain this phenomenon. We would like to
pursue this line of study in subsequent research.

6 Discussion

This work focused on the use of a known ontology structure to aid in crowdsourcing approval voting
tasks. We demonstrated the ability for the ontology to find spammers from both a theoretic and
experimental perspective. We used the ontology to compute a proxy score for worker skill level and
exploited this score to perform weighted majority voting with some success. Last, we found that
presenting the workers the ontology before answering the questions impacts worker performance and
yields a different distribution of the y-score. It would be interesting to see if the model assumptions
could be relaxed. In particular, extending the results to more general ontologies and perhaps different
spammer behaviors. We would like to see in future work a stronger theoretic foundation for weighted
majority voting using the ontology. Also, it would be interesting to know if there is natural theoretic
description of the behavior of the «-score for Group A and Group B for varying « values.

References

[BBM13] Nina Balcan, Avrim Blum, and Yishay Mansour. Exploiting ontology structures and
unlabeled data for learning. pages 1112-1120, 2013.

[BK14] Daniel Berend and Aryeh Kontorovich. Consistency of weighted majority votes. pages
3446-3454, 2014.

[CMW56] Clyde H Coombs, John Edgar Milholland, and Frank Burton Womer. The assessment of
partial knowledge. Educational and Psychological Measurement, 16(1):13-37, 1956.

[EK15] Michael W. Eysenck and Mark T. Keane. Cognitive Psychology: A Student’s Handbook.
Psychology Press, 7 edition, 2015.

[FGMO9] N. H. Feldman, T. L. Griffiths, and J. L. Morgan. The influence of categories on perception:

Explaining the perceptual magnet effect as optimal statistical inference. Psychological
Review, 116(4):752-782, 209.

[KOS13] David R. Karger, Sewoong Oh, and Devavrat Shah. Efficient crowdsourcing for multi-
class labeling. Proceedings of the ACM SIGMETRICS, 41(1):81-92, 2013.

[SZP15] Nihar B. Shah, Dengyong Zhou, and Yuval Peres. Approval voting and incentives in
crowdsourcing. arXiv:1502.05696, 2015.

[VVV14] Aditya Vempaty, Lav R. Varshney, and Pramod K. Varshney. Reliable crowdsourcing

for multi-class labeling using coding theory. IEEE Journal of Selected Topics in Signal
Processing, 8(4):81-92, 2014.

10

A Proofs

Proof of Theorem 3.1. We begin by analyzing the expected value of unlabeled error of hammers with
p < 0.5. Recall by assumption the p-hammer operates so that for answer u believed to be correct by

the worker, Pr [Z =/ <p‘fort>1and Pr |}

vFEU zj vFEU 1]
1]
E [erry,,; (hammer)] = E | — E R
n
j=1 (u,v)€E’]
n
1
— g E E T Ty
n
=1 (u,v)EE’]

Let

=
nn
I
7N
T\
NN
SN—
+
B>
SN———
’Bm
|
/N
TN\
N L
N———
+
[\
>
SN—
3
w
+
7 N
FOURR
NI
SN—
+
98}
g
SN——
hS!
™
+

Subtracting we get

(1-p)S=01+A)p+2+A)p* +B+A)p° +---

== (1-p)S= % + T 1 by known sum formulas.
= E [erry,; (hammer)] < - p) + (1p_A)
= E[erryy; (hammer)] < 4(A +1)

So we can express the probability we misclassify a hammer as

11

_A/
R

by p < 0.5

Pr [classified spammer|hammer]

= Pr |erry,,; (hammer) > 2(A 4+ 1) +

|E' g
2

= Pr |erryy,; (hammer) — E [erry,,; (hammer)] > 2(A + 1) +

El 2
H% — E [erryn; (hammer)]]

E’ 2.
< Pr |erryy; (hammer) — E [erry,,; (hammer)] > 2(A + 1) + H% —4(A + 1)}

E 2
= Pr |erryy; (hammer) — E [err,,,; (hammer)] > H% —2(A+ 1)}

2 (i —aa+ 1))2

= B/ ?
Zi—l (T)
— P 1 4(A +1)| g2y, — 847

|E|?
<e nqmln A + l)qr%ﬂn
B ||

A+1

<e < (-) qff]m> SiNCe Gin > ¢ |;|

Now we analyze the expected value of unlabeled error of the spammers. Recall by assumption that a
g-hammer operates by selecting each alternative independently with probability q. So we have

E [erry,,; (spammer)] = E —Z Z x x}’]
J=1 (u,v)eE’
=E Z Tij - T
(u v)EE'
= Z E[z i U
(u,v)EE’
=|E'|¢*.
Z ‘El|q§1in

So we can express the probability we misclassify a spammer as

12

Pr [classified hammer|spammer]

[|E/|q12nin
= Pr |erry,; (spammer) < 2(A + 1) + —
: |E' | g3
= Pr |erryy, (spammer) — E [erry,,; (spammer)] < 2(A + 1) + —— — E [erry, (spammer)]}
[|E/‘qmln /2
< Pr |erry,,; (spammer) — E [err,,,; (spammer)] < 2(A + 1) + 5 — |E'|q5n
[1|95
= Pr |erry,,; (spammer) — E [err,,,; (spammer)] < 2(A + 1) — 5 -
L / ,
-9 <|E |2<I3.in —2(A+ 1))
< exp 3
i (%)
— e 4 (A + 1)| B2, — 8(A + 1)
2
nqmln A + l)qr%in
|EY]
- — = 4 since ¢min > € A+l
Nmin Gmin |E/|

Since, the probablity of error for both cases is at most exp (— (3 — ;%) ngmy) this completes the
proof.

O

Proof of Corollary 3.1.1. Let Z; be a random variable such that Z; = 1 if the ¢th worker is
misclassified and Z; = 0 otherwise. By assumption we have:

13

<9 by Theorem 3.1.

E {Zf:l Zl}

<4
ek -

Pr

k
Z Zi > ek]) by Markov’s Inequality.

i=1

Thus the with at least probability of 1 — ¢ less that an € fraction of workers will be misclassified.

B Survey Figures

Language Survey

There are 45 words listed below. Decide which language is shown. If you are conflicted between multiple
answers, select each of them.

What language is this? (If you are conflicted between multiple answers, select each of them).

O German
O French
O Romansh
O Dutch

O Russian
O Romanian

O Ukrainian

Figure 6: Group A instructions and example question.

14

Language Survey

There are 45 words listed below. Decide which language is shown. There are three language groups: {Russian,
Ukrainian}, {French, Romanian, Romansh} and {Dutch, German}. If you only know the group, select exactly the
members of that group.

What language is this? (If you are conflicted between multiple answers, select each of them).

obuwecTtso

Language groups: {Russian, Ukrainian}, {French, Romanian, Romansh}, {Dutch, German} *
O German
O French
O Romansh
O putch
O Russian
O Romanian

O Ukrainian

Figure 7: Group B instructions and example question.

15

	Introduction
	Problem Formulation
	Setting
	Proposed Idea

	Hammers and Spammers
	Experiment
	Design
	Data Collection

	Results and Analysis
	Finding Spammers
	Weighting Workers
	Informing Workers

	Discussion
	Proofs
	Survey Figures

