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Abstract

Strictly Proper Scoring Rules (SPSRs) are typically designed to work with single
questions. When applied to sequences of questions, one is restricted to deterministic
question lists or strong assumptions of independence. We analyze the behavior of
SPSRs when future questions are selected based on answers to present questions
and show that in some cases they incentivize dishonesty. We propose a class
of SPSRs called Joint-SPSRs which maximize the expected reward when all
questions are answered honestly, even when future question selection depends on
past answers. We propose one such rule, the Multiplicative Quadratic Scoring Rule
and prove its correctness.

1 Introduction

Strictly Proper Scoring Rules (SPSRs) are scoring rules that are maximized in expectation when the
reported belief is equal to the true belief. These incentives can be easily extended to a sequence of
multiple independent questions; in particular, when the sequence of posed questions is independent
of answers chosen.

We wish to establish similar results in the case where the questions posed depend on the answers to
past questions. There are several scenarios in which this is necessary — for example, the question-
setter can be more efficient by dynamically narrowing the scope of questions, or if a question requires
follow-up questions.

1.1 Motivation

The following example shows why naively combining SPSR rewards does not work. Suppose we
have 3 questions:

() : the initial question, answered as a distribution over two options. The expert’s response will
be a vector of class probabilities ¢ = (g1, g2), which we use to select between follow-up
questions.

Example: With what probability will NASDAQ do better than NYSE over the next week?

(1 : apossible follow-up question, with any answer suitable for an SPSR. This question is asked
with probability q; .
Example: With what probability will AMZN do better than GOOGL over the next week?

Q2 : apossible follow-up question, with any answer suitable for an SPSR. This question is asked
with probability g-.
Example: With what probability will TWTR do better than BABA over the next week?

We pose the initial question () to an expert, eliciting a response of q. We use this answer to determine
a distribution over the possible follow-up questions. We can use any rule to construct this. For
this example, we use the same distribution as g. We sample the follow-up question ); from this
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distribution and pose it to the expert, who responds with q(*). After we have both responses, we
observe the event outcomes a, a(*), and pay the expert accordingly.

Without loss of generality, we use the Quadratic SPSR to score the initial and follow-up question.
Consider an arbitrary respondent Bob, who is confident in his answer to ;1 (where he expects to
receive 0 reward), but not Q2 (wWhere he expects to receive -0.5 reward).

When answering the first question, Bob has an incentive to report a distribution skewed in favor of
(21, since this will net him a greater future reward. This is an incentive to lie in the initial question,
which cannot be accounted for in the traditional SPSR framework. Our project aim is to design a
scoring rule that can elicit the truth even when each question posed may depend on previous answers.

2 Problem Formulation

We study simple questionnaires consisting of an initial question, which is always asked, and one
follow-up question, which is selected based on the response to the initial question.

Questions Let the first and second questions be ) and @); respectively, where 7 is the index of
the second question. @Q; is sampled from a finite question bank Q = {Q1,...Q,}. The expert’s

response to Q, Q) is denoted by g, g(*) respectively. All answers are probability distributions.

Transitions The distribution of the index for the second question is given by Pr{i|q}. This is an
arbitrary function of the respondent’s previous answer g. The respondent has full knowledge of this
transition function. A possible transition function is the affine transition, elaborated in Appendix [A]

Beliefs We denote the respondent’s belief over the answers to @, Q) as p, p() respectively. We
wish to design a scoring rule that elicits p and p(*), where i is the index of the second question asked.

Outcomes Respondents are paid after the outcome associated with @ and Q(*) are measured. These
are denoted by @ and a(?) respectively.

Our goal is to design a Jointly Strictly Proper Scoring Rule (J-SPSR) S, such that the respondent
is encouraged to report his true beliefs p, p(*). Note that from the point of view of the respondent,
the a(?) depends on the index of the second question 4, which in turn depends on his response to the
first question, g. As in the example above, there may be an incentive to lie in g in order to obtain an
advantage in the second question.

Definition 1. Joint Strictly Proper Scoring Rules (J-SPSR)
A J-SPSR is a multi-stage scoring rule S(q, ¢, a,a?, i) such that for all beliefs p, p*), the expert
is incentivised to answer the first question honestly:

argmax Z (PI‘(’L|q) ' m(a‘)X Earwp,a(i)wp(i) |:S(q7 q(l)a a, a(i)v ’L):|> =D,
qli

q 1€[n]
And such that the second question is also answered honestly when the first is honestly answered:
zwmwﬁwwwmﬁ@d%mwﬂﬂ=ﬁ) Vi € [n] if Pr(ilg =p) >0
q® ’

Before continuing, we will assume the reader is familiar with the material in [[1], in particular, the
material in Section 2.1 and 3.1. Theorem 2 by Savage and McCarthy [1? ] will be continually
referenced throughout this report, and we refer to it as the workhorse theorem.

3 Additive Scoring Rules

The simplest proposal for a J-SPSR is the additive J-SPSR — one where S may be decomposed
into the sum of 2 independent scoring rules, S (©) for the initial question, and S (@) for the follow-up
question:

S(q.9",a,a",i) = S (g,a) + SV (g, a?). (1)



We want to determine if it is possible for a SPSR to be additive. For simplicity, we assume that the
distribution of follow-up questions ¢ ~ q — that is, the probability of selecting follow-up question Q;
is the reported probability g; (the i element of g).

Theorem 1

If S is an additive J-SPSR then for all i, S must be SPSR.

The proof is deferred to Appendix [B.T]

Hence, we may assume that the reward from the second question is the score GO (p(i)), where G
is the strictly convex function inducing S [1]. However, the reward from answering the second
question honestly may provide an incentive against answering the first question truthfully. For a
fixed answer q to the initial question, different beliefs p(*) for follow-up questions lead to different
expected payoffs, assuming honest follow-up answers. The expected future reward from the follow-up
question, as a function of q is

Eivq [Eau),vpm[s(i) (P(i),a(i))]} =Eivq {G(i) (p(i))}

The maximum and minimum values of S depends on the SPSR i.e., G (@), For convenience, let x
be a vector where ; = G'*) (p(i)), i.e. x contains the expected payoffs for each follow-up question.
Then, the above expression simplifies to 27 q.

Theorem 2

S©) being an SPSR is not a sufficient condition to guarantee that an expert will answer honestly.

Proof. We provide an example in which S(©) is an SPSR but an expert will answer dishonestly.
Consider the case from Section where p is the expert’s true belief and all of S(*) are quadratic
scoring rules. The reported value is:

argmaxE, ;) [S(q,q(i),ma(i),i)} = argmax E, [S(O) (q,a)] +alq
q q

We know from [1]] that the expectation term will be may be rewritten as a constant involving p (i.e.
G(p)) minus the Bregman divergence between ¢ and p. For the quadratic, the divergence term is
simply ||q — p||3. Hence,

arg max E, {S(O)(q, a)} +xTq = argmax — Z (pi — @)’ + (& —&)Tq

a g 1€[n]
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where Z is the mean of x, 1 x ==, lie., we perform normalization on . This normalization is
equivalent to solving the constrained optimization problem q constrained to lie in the probability
simplex. Differentiating and setting to 0 yields: q; = p; + (x; — &)/2. Therefore, the error incurred
is |&; — @|/2, which is non-zero unless x is equal in all entries — i.e. the expert is indifferent to all
follow-up questions. O

3.1 Bounded slack

From our analysis of Theorem[2] we can suggest a mitigation strategy, assuming we are allowed to
relax the strictness of our additive SPSR. This approach was inspired by work in [2]].

We call an additive SPSR ¢&-slack if it permits the expert to report g such that max(|q — p|) < &,
where 0 < € < % is a “slackness” bound. We observe that the incentive to lie in the first round can be
reduced by offering a much larger reward for the first question than the second. In order to formalize
this, we add a scaling term « to the first:

S(a,4",a,a",i) = a5 (q,a) + 5V (q"",a). 2

It is straightforward to apply Theorem to show that the additive SPSR is i—slack when all scoring
rules are quadratic. The key is noting that since the entries of x are bounded in the range [— ”T’l, 0]

(Appendix[C.T)), the maximum error is also bounded. Full derivation is in Appendix

The particular slackness bound is a result of the choice of SPSR. It is possible (though inconvenient)
to derive the bound for any arbitrary SPSR that has a finite range.



4 The Multiplicative Quadratic Scoring Rule

In this section, we introduce the Multiplicative Quadratic Scoring Rule (MQSR), which satisfies the
J-SPSR requirement precisely. (i.e. It yields the greatest expected score when the expert honestly
answers both the first and second questions.)

4.1 Asymmetric Quadratic Scoring Rules

Our proposed method hinges upon the Asymmetric Quadratic Scoring Rule [3]], a generalization of
the Quadratic Scoring Rule originally invented to reward predictions based on their difficulty. We
review some properties of this scoring rule in this section.

Let G(p) = p” Mp, where M is a positive definite matrix. Then, G(p) is convex in p. Hence, we
know it induces a SPSR. We do so explicitly using its Savage decomposition [1]].

S(p,i) = G(p)— < G'(p),p > +G}(p)
=2(Mp); — p" Mp, 3)

and S is a SPSR. In our case, we are interested in S(p, i) when M is a diagonal matrix with positive
entries along the diagonal (implying M is positive definite).

Remark: We recover the commonly seen symmetric quadratic scoring rule (up to constants) by
setting M = I.
Example 1

Let M = 10000 ﬂ Suppose the true beliefs are p, and the worker reports q. From the worker’s

perspective, his expected payoff is:
Z(q) = Eivp(2(Mq);) — " Mg
=2p"Mq—q"Mgq €
This is a quadratic in q and has a single maximum. Differentiating and setting to 0,
Z'(q)=2Mp—2Mq=2M(p—q)=0
p—q=0,
where the inverse for M exists by virtue of it being a positive definite. Since p = q, S is strictly

proper. The key lesson here is that the specific values along the diagonal do not matter as long as they
are positive.

4.2 Eliciting Truthful Responses

In the above, we note that the asymmetric quadratic scoring rule possesses degrees of freedom in
the matrix M (entries along the diagonal) while still retaining our desired properties. These degrees
of freedom may be used to encode future expected payoffs — as long as these are positive, then the
worker is incentivised to respond truthfully, even if those entries are not known to the question-setter!
This remarkable property forms the basis of our proposed MQSR.

Let S (g, a™) be strictly proper scoring rules whose ranges are non-negative, i.e.
Vi, S (q®,a) > 0. Denote the expected payoff when the worker answers truthfully (i.e. the
score) as GV (p()). Note that S(*) only depends on the second question i, its response q(*) and its
observation a(¥). The MQSR is defined as:
ﬂlz[+&@%ﬁmmmﬂm0
S(qa q(2)7 a, a(i)? 7’) = ]]'(7’ = a) X (2MZZ) - (qTM)i7

_[2-a)(1+89(q,a")),  a=i

=\ (1+ S0, a) ati

Eliciting Truthful Responses for the First Question
Looking carefully, our proposed scoring rule is merely the asymmetric quadratic scoring rule in

(&)



disguise. To see why, fix the worker’s policy for the second question and assume he always answers
truthfully (this assumption will be lifted later, albeit with some effort). Because of this, M is a
constant from the worker’s perspective. We examine the expected payoff as a function of g (and
implicitly p(®, a(*)) from their perspective.

EivgEanp [ (t=a) x (2M;;) — (qTM)z'] = Z Zpaqi X (]l(z =a)x (2M;;) — (qTM)i)
= ZpiQi x 2M; ; — Zpa Z a:(g" M),
=>_pi x2(Maq)i —q" Mg

=2p"Mq - q" Mq,

which is exactly of the expected reward (when reporting g with true beliefs p) for an Asymmetric
Quadratic Scoring rule (equations (3). (@)). Thus, the expected payoff is maximized when g = p.

To elaborate, when the worker honestly answers the first question, he is paid exactly p” Mp. Since
S is non-negative, M is diagonal and strictly positive definite, by the Savage formulation, the
worker is incentivised to report ¢ = p. His expected reward is p” M p. The beauty here is that the
worker has an incentive to honestly answer the initial question because M is positive definite, which
does not depend on their belief of the second question.

One possible misconception is that the asker needs to know M, which would require them to know all
p0551b1e future answers. Examining equation [5]shows that the asker only needs the value for question
" to reward the worker — M is merely a tool for analysis from the worker’s perspective.

Removing the truthfulness assumption for the future

Now, we relax the assumption that the player’s policy of answering the second question truthfully.
In the previous paragraph, the assumption was the M was independent on the reported answer for
the first question, i.e. g. However, given i fixed, the best response to the second question, g(*) will
depend on g. Consider the when the worker is faced with the second question, for arbitrary (possibly
dishonest) g and 7. To maximize expected payoff, the worker’s response to the second question is

arg maxz Zpapam { =a) x 2 (1 + S(i)(q(i)7 a(i))> —-q; (1 + 9@ (q(i)7 a(i)))} (6)

q®

= argmax (2p; — gq; Zpau (1 +5@(q" a(z))) ?

q® o))

{arg man( i) Za( )pai( ) (1 + S() (q() a(’b))) = p(l)’ 2pL > q;

) 3
argminga Y, >pfl()) (1+ S® (g™ a(z))) 2p; < gq;

where in the first case, the maximum is unique due to S() being SPSR, and in the second, ties are
broken arbitrarily.

The expression above is particularly interesting — this means that if the player was so dishonest in his
first answer such that 2p; — g; is negative, and in turn causing the next question to be 4, then he is
better off answering the second question to minimize the expectation E ), [1 + SO (g™, aM],
which is a term which we normally would maximize. That is, a respondent who has lied is incentivised
to lie further. Applying the result to determine the worker’s response to the first question, we obtain
the following objective:

arg maXZq(Qp _ q) x max q(®) Za(z) pa()7 (1 + S(Z) (q(7) a(l))) , 2p7, > q; (9)
— ST ‘ min Y oali >pa()) (1 4 sa )(q( i) a(l))) . 2pi < qi

Theorem 3
The expression in Q) achieves a unique global maximum at q¢ = p.

Proof. Given p, the set of vectors for g in the probability simplex may be partitioned into no
more than 2" (potentially empty) sets. Each of these sets is associated with a quadratic, based on
which inequalities are satisfied in Equation (9). Each of these quadratics is maximized at ¢ = p.



Furthermore, their values are equal where the cases in Equation (@) hold with equality (i.e. where
2p; = q; for some 7), Hence the expression in Equation (9) is continuous.

Consider a ray being cast from p in any arbitrary direction d, while remaining on the probability
simplex, ¢ = p+ td. As the ray extends, it decreases strictly (due to strict concavity of Expression[J).
At some point, for some ¢, 2p; = gq;. This causes the ray to transition to a new quadratic regime,
with different shapes. However, the value of the function evaluated at g continues to decrease in this
new regime, since the global maximum for the new quadratic remains p. Moreover, this transition
happens a finite number of times before exiting the probability simplex. Thus, Expression (@) is
monotonically decreasing in every direction starting from p, implying that it is maximized at p. [

We numerically simulated this process to elicit expected payoff as a function of q. The results are in
Appendix [D]

Eliciting Truthful Responses for the Second Question
This follows directly from earlier results. Substituting p; = g; into Equation (8] gives us

arg (n)laxpi ZPS&) <1 + S(i)(q(i)a a(i))) = arg (r?aXprj()i) (1 + S(i)(q(i)7 a(t’))) (10)
a a® a5

which from the workhorse theorem is maximized at g(9 = p(®.

5 A General Framework

At this stage, three natural questions arise: First, can we construct a J-SPSR which holds with
arbitrary, nonlinear transitions? Second, can our method be generalized for other scoring rules other
than the Quadratic? Third, can we extend our scheme to allow “nesting” follow-up questions?

We begin by tackling the first two questions:

5.1 General Scoring Rules with General Transitions

In this section, we will allow for arbitrary transition functions; the probability of going to question
i after answering ¢ is given by Pr(i|q), which we will assume is non-zero. (One such class of
transition functions is the affine, which we discuss in Appendix [A) More importantly, we show that it
is possible to construct new J-SPSRs by modulating SPSR’s with the quadratic scoring rule. (For
ease of understanding, we present the same derivation with extra explanation on intermediate steps in

Appendix [E])

Let G(q) = g Mq for some positive definite diagonal M. Let H(q) be any non-negative, non-
decreasing, convex function defined over the probability simplex, such that G(q)H(q) remains
convex and induces a SPSR. For simplicity, we assume that H is at least once-differentiable. Denote

this product by G(q), and similarly, S(q, a) as the scoring rule induced by it. We have:
C'(q) = G'(q)H(q) + H'(q)G(q) = 2MqH (q) + H'(q)g" Mq
S(q.i) = —q" MqH(q) — ¢" Mq(H'(q))" q + 2q:M;iH (q) + H{(q)q" Mq
Setting H = 1, yields the quadratic scoring rule. Applying the workhorse theorem,
argmax »_p;S(q,i) =p
a i
with uniqueness. As before, let {S(”} be a collection of positive SPSR’s we wish to apply to the

second question. Re-defining M = diag, (S (¢, a(?)), our proposed joint scoring rule is

q;
Pr(ilq)

S(g.9",a,ai) = (1(i = a)2M;H(q) + q:M;;H,,(q) — q:M;;H(q) — q: M (H'(q))" q)

(1)



Suppose the worker reported ¢ and is asked question 4. His expected payoff as a function of q(*) is:

Pr?ii|q) Z ;Paq(gi(),-) [1(i = a)(2M;;H (q)) + q: M H,(q) — q:M;:H(q) — q:M;:(H'(q))" q|

_ Pr?;'q) <Z a5 (g, a“”)) <2piH(q) +a Y pH(q) —aiH(q) - Qi(H/(Q))TQ> :
a(®) a

The worker seeks to maximize this quantity. If the factor on the right is positive, then the left factor
(the usual SPSR) will be maximized. If it is negative, then it will be minimized. For brevity:

R(q,i) = <2piH(q) +aiy paH(q) —aifl(q) - Qi(H/(Q))TQ> (12)

argmaxt!” (X, @'y S0 (@,a)), R(g,) >0
arg min'?) (Za<,;) qiﬁl)s(i)(q(i),a(i))) , R(q,i) <0

As a sanity check, observe that if we set H = 1, we obtain exactly the case described in Equation @,
where the ‘cutoffs’ are given by 2p; = g;. Furthermore, if we assume p = g, R(p, 7) simplifies to
piH (p), which we have assumed to be positive during the construction of H; this result assures us
that if the first question is answered truthfully, the second will be answered truthfully as well (the
positive case in Equation (13)). For brevity, define the diagonal matrix

and omit q for clarity. Now, we take argmax over ¢ of expected payoff over all possible answers the
worker gives for the first question, weighted by the probability of future transition to question <.

argmax Y Pr(ilq) 5o K (¢.i)R(q,1) = argmax y_ i (¢, ) R(q,1)
q i q i

K(q,i) = 13)

Pr(ilg)
= arg max (2pTJqH(q) +¢"Jg < H'(q),p > —q" JgH(q) — qTJq(H’(q))Tq)
q

This is precisely the optimization equation from the scoring rule induced by G(q)H (q) (see Equa-
tion @), and if J is fixed and positive definite, is minimized at ¢ = p. Remember, however, that J
derived from K, which is a function of q. Assuming that for all ¢, the number of times R flips signs
as we vary q along any direction is bounded by some constant c. Then the probability simplex may
be partitioned by a finite number of regions, where within each region, .J is constant, its value only
depending on the sign of R(q, ). For each region, we the function we want to minimize is given by a
different SPSR, but each (when extended to the full probability simplex), achieves a maximum at
q = p). The full piecewise function is also continuous.

As before, we argue that starting at ¢ = p and moving in an arbitrary direction along the probability
simplex, the function will be strictly decreasing. Regardless of which partition we are in, consider the
difference between the current value (with J chosen to be that which is associated with that partition)
and the value at ¢ = p. This is given by the Bregman divergence induced by G(q)H (q) This value
is always increasing as we move g away from p, since this is a divergence (the rate of decrease may
depend on the region). If we move from one region to another, there is no discontinuity, and the
function remains strictly decreasing. Thus, the true value of ¢ = p is reported.

5.2 Generalization to Sequences of Questions

We can apply this technique recursively to obtain a J-SPSR for sequences of questions with length
greater than 2. This may be done by replacing the diagonal matrix M on the first stage by a
diagonal matrix containing expected payoffs from future questions assuming the second question is ¢
(Equation (3))). For example, when the depth of the questionnaire is 3,

o . S 2—q) (C + S(qD, gl oD q07) j)) a=1
S(a. a® o0 g a® gl oy {2 a 5(q', ¢'7),al, at), )
(Q7q » 4 , @, @7, a4 7%.]) —q (C+S(q(2)7q(z’j),a(l),a(27])7j))7 GJ%’L
where C'is a constant sufficiently large to ensure that the function is positive, and hence M being
positive definite. The derivation is straightforward and is hence omitted. The derivation proceeds as

before, except that we minimizing or maximizing over the future reward for question 2, given by the
nested J-SPSR of depth 2 (Equation (8)).



6 Discussion

As far as we know, MQSR works because of a specific property of the quadratic score which we have
yet to identify. We have yet to generalize this to any other scoring rules, only to those constructed to
be modulated by the quadratic.

MQSR is most easily compared to the bounded £-slackness (BS) approach, which is only an approxi-
mate solution to the J-SPSR problem. It has some advantages over the MQSR in practice:

1. Simplicity — MQSR is difficult to explain to a layman. This means that despite having nice
theoretical properties, workers may not respond as we expect — especially when the depth, d
is large.

2. It is ‘subgame perfect’. At every point in the questionnaire, the worker has incentive to
respond honestly. Under some circumstances, MQSR lacks this property — our proof that
the worker is truthful in the second round relies on the premise that q is close enough to
p, i.e. the worker is already truthful in the first. MSQR incentivises honesty as long as
2p; — q; > 0 (Equation (8))),which is an ample margin that this is unlikely to be an issue in
practice.

However, MQSR has many strengths and desirable properties that BS lacks:

1. The bounds in BS are, in practice, extremely loose. In the earlier example a bound of 5%
requires setting o =~ 100. This means that the reward for the first question is a hundred
times as much as the second.

2. BS suffers from exponentially vanishing rewards as the questionnaire depth d becomes large.
If the smallest value we could pay was $0.01, a blowup of 100 at each stage means that even
a shallow questionnaire of depth 4 would cost us $10,000 to administer once. This blowup
renders BS unsuitable for any depth greater than 2.

On the other hand, we hypothesize that the multi-stage version of MQSR has payoffs that
scale linearly with depth, which makes it an attractive option!

3. The obvious advantage of MQSR is that it is exact. This makes it appealing from an academic
perspective, as well as possible high-volume applications (such as in advertisement networks)
where even small error margins can yield huge changes in revenue over time.

6.1 Future Work

Perhaps the greatest open question is the existence of other J-SPSRs. We have yet to identify the
exact property of the quadratic scoring rule that allows us to construct the MSQR, and identifying
this would be of considerable theoretical interest.

While constructing the MQSR, we discovered a technique of parameterizing SPSRs to yield this
additional property. Our investigation was stymied by an inability to complete the final part of the
proof. We present our construction, understanding, and the gap in our understanding in Appendix

An important question about the MQSR is how it scales with depth. Based on our construction in
Section [5.2] we hypothesize that its growth can be linear, but we have yet to prove that. This is
an important result that, if proved, would make this tremendously efficient for questionnaires with
deeply nested questions.

7 Conclusion

There are many fields in which having questionnaires change in response to answers is advantageous.
Areas like crowdsourcing, imitation learning, adaptive quizzes or testing, and many more can apply
the J-SPSR criterion formalized in this paper to construct reward schemes that incentivise honesty
and improve the quality of their data.

To tackle this novel problem, we proposed an approximation based on £-slackness, an exact framework
based on MQSRs (with several extensions), and provided comparative analysis between these options.
There are clear areas for future investigation and promising open problems in the field.
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A Appendix: Modeling transitions

One simple transition model which can yield rich behavior while guaranteeing strictly positive

transition property Pr(i|q) is the affine transform, which expresses the probability of selecting

question gz: Pr(Q? = qx|q) = 11’%‘7‘0‘(’;]‘.

This may be interpreted as the weighted sum of the g, regularized by a. The a;,’s may used to model
the prior of the examiner, or the collective expected response from other respondents. Note that it is
not necessary for a to sum to 1: this allows us flexibility in weighing the distribution of question 2 as
a Linear function of q.

B Appendix: Proofs for Additive J-SPSR

B.1 Proof of Theorem [I|- Necessity of follow-up question being a SPSR

Proof. For clarity, we make the very mild technical condition that it is possible to transition to any
i € [n] with positive probability — it may be easily verified that this assumption may be dropped.

Suppose S is an additive SPSR and the worker has answered the first question truthfully with p and
transitioned to question 4. At this stage, the reward from S(*) is beyond the worker’s control, his
response q(*) may only affect the second component. It is easy to see that since S() only depends on
q, a9, the worker will be incentivised to answer the second question truthfully. O

C Appendix: ¢-Slackness of the Quadratic Scoring Rule

C.1 Deriving the Range

The possible range of expected payoffs (assuming honesty) is simply the range of G(q). For a
quadratic, G(q) = ||q||3 — 1. This achieves its maximum at the vertices, and has a minimum when it

is uniform , giving a value of —”7—:1; which when n = 2, is —%.

C.2 Deriving the slackness bound:
From Theorem 2} we know that

g =pi+(x;,—x)/2.

Observe that scaling the payoff of the first question by « is equivalent to scaling the payoff for the
follow-up question by é After this scaling, the range of scores for the follow up questions become
[_%’ 0]. The largest possible deviation (coordinate-wise, i.e. max-norm) is when |x; — Z| is
maximized. Observe that this is achieved when we set one entry in « to be the as low as possible, and
every other entry to be as high as possible. In the case of scaled quadratics, this could be done by
x = [—”—_1 0,...,0]7. A bound for the deviation is thus i (which becomes closer to equality when

na ’

n — 00).



D Appendix: Numerical Simulations of the Probability Simplex

We conducted some numerical simulations to test our scoring rule and illustrated expected payoffs.
We simulated a small example with n = 2. The true belief is p = (0.75,0.25)7, p(V) = (0.5,0.5),
p? = (0.1,0.9). The spherical scoring rule was used for the follow-up question. Our implementation
correctly identifies that the optimal policy is to report ¢ = p.

i /\

(o]
g _
wn | a=pr N
q2 = 2p>
| | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Reported g;

We move from one region to another in the probability simplex when g; = 2p; for any <. In this chart,
we observe the change in region at gs = 2py = 0.5, exactly as predicted.

E Appendix: Full Derivation of General Scoring Rules with General
Transitions

This appendix provides intermediate steps in the proof of the generalized version of the MQSR.

We begin by deriving G(q) and the induced scoring rule S(q, a):

G'(q) = G'(q)H(q) + H'(q)G(q)

=2MqH(q) + H'(q)q¢" Mq (14)
S(q,i) = q" MqH(q)— < 2MqH(q) + H'(q)q" Mq,q > + [2MqH (q) + H'(q)q" Mq],
=—q"MqH(q) — q"Mq(H'(q))" q +2q;:M;;H(q) + H](q)qg" Mq (15)

Applying the workhorse theorem,

argmax Y pi(a. )
q -

K3

= argmax » _ (2piq;MiiH(q) +q" MqH](q)p;) —q" MqH(q) — q" Mq(H'(q))"q
g i

= argmax (2p" MqH(q) +q" Mq < H{(q),p > —q" MqH(q) — q" Mq(H'(q))"q) (16)
q

=p

with uniqueness. As before, let {S(?)} be a collection of positive SPSR’s we wish to apply to the
second question. Re-defining M = diag, (S (¢(?, a(?)), our proposed joint scoring rule is
4di

S(q,¢",a,ai) = Pr(ilq) (1(i = a)2M H(q) + ¢:M;i H},(q) — ;M H(q) — i My (H'(q)) " q)
(17)

10



Suppose the worker has reported ¢ and is now posed with question . His expected payoff as a
function of ¢ is

((j()z) [1(i = a)(2M;;H (q)) + ¢: My H},(q) — ¢:M;ii H (q) — ¢:M;ii(H' (q))" q]

<pZan’())2S() <Z q(<)>S(Z (Z at” )) (Z%H{;(Q)Qi>

() a(®)

=Yl (@8 gD a) H(g) + 4,5 (g, ) (H'(0))q) )

a(®)

Pr |q <Z 450, 5 )) <2pz +qupa ) — (Q)—qi(H’(q))Tq>-

The worker seeks to maximize this quantity. If the factor on the right is positive, then the left factor
(the usual SPSR) will be maximized. If it is negative, then it will be minimized. For brevity, we
define:

R(q,i) = <2pz ) + i Zpa —aiH(q) - Qi(H,(Q))TQ> (18)

arg max (zam 0405 <q<@>,a<z>>) . Rlg,) >0
argmin() (Zam qé<1>5(i)(q(i)7a(i)))7 R(q,i) <0

As a sanity check, observe that if we set H = 1, we obtain exactly the case described in Equation @)
where the ‘cutoffs’ are given by 2p; = q;. Furthermore, if we assume p = g, R(p, ¢) simplifies to
p;H (p), which we have assumed to be positive during the construction of H; this result assures us
that if the first question is answered truthfully, the second will be answered truthfully as well (the
positive case in Equation (T9)). For brevity, define the diagonal matrix

J(q) = diag; (K(Qa l))a
and we will omit the parameter ¢ for clarity. Now, we take argmax over q of expected payoff over

all possible answers the worker gives for the first question, weighted by the probability of future
transition to question %.

arg max Z Pr(i|q)
4 i

K(q,) = (19)

i . .
Pr(ile) K(q,1)R(q,1)

— argmax ¥ . K (¢, ) R(g,7)
4 i

= argmax } | K(q,)q; <2pL ) + 4 Zpa —a:H(q) - Qi(H/(Q))TQ>

q
= arg max <2pTJqH + Zqz Jii ZpaH’ —q"JqH(q) - qTJq(H’(q))Tq>
= argmax (2p” JqH (q) + qTJq < H’(Q),p > —q"JqH(q) — q" Jq(H'(q))"q)

q

This is precisely the optimization equation from the scoring rule induced by G(q) H (q) (see Equa-
tion (I6)), and if J is fixed and positive definite, is minimized at ¢ = p.

We complete this derivation with the simplex traversal argument from Section [5.1]

F Appendix: A Failed Approach

In this appendix, we discuss the Monotically Increasing Parameterized Scoring Rule (MIPSR), an
initial attempt at constructing a J-SPSR that is promising but requires deeper mathematical insight.
We provide the intuition behind this and clearly identify the remaining gap in the proof.
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F.1 Monotically Increasing Parameterized Scoring Rules

Consider a parameterized variant of SPSRs, S (p, a, @), where ¢ is a vector of size n (equal to p).

We require S to be SPSR for all values of ¢ € ®, where @ is the set of permissible values of 6.
Furthermore, we are interested where the payoffs (assuming honest responses) are strictly increasing
as ¢ increases.

argmax »_p;5(q,a,¢) =p, V€ ®,p (20)
q i

ml?‘xzplg(qa a, ¢(1)) < m;xx szg(qa a, ¢(2))5 v¢(1)a ¢(2) € (I)a ¢(1) = ¢(2)7p7 (21)

and the arg-max is unique. Similarly, we define G (p, @) as the score function inducing S. As
before, G is convex in p for all ¢. Lastly, we will require that there exists a baseline ¢ such that
S(p,a,d + e;) is known for all A > 0, where e; denotes the j-th elementary vector.

Example. Trivial additiveAparameterizations.
Let S be any SPSR. Then S(q, a, ) = S(q,a) + >_; ¢; is a monotically increasing in ¢. Setting

¢ = 0 gives a valid baseline.

Example. Trivial multiplicative parameterizations.
Let S be any strictly positive SPSR. Then S(g,a,¢) = S(q,a) x (3_; ¢;) is a monotonically
increasing in ¢. Instead of summation, we could also use | | j ¢; if ¢ € R”}. In both cases, setting

¢ = 1 gives a valid baseline.

Example. Non-trivial parameterizations of the Quadratic scoring rule.
Consider the Asymmetric Quadratic Scoring Rule. Then setting M = I + diag(¢) gives us a

monotonically increasing rule for ¢ € R”}. Setting (]3 = 0 gives a valid baseline.

Example. Non-trivial parameterizations of the Spherical scoring rule.

Consider the generalized spherical scoring rule with the pseudospherical score. The expected payoff

under truthful reporting is the a-norm ||p||n, o > 1. Setting o« = 1+ ﬁ gives us a monotonically
i P

increasing rule for ¢; > 0, since in R™, ||p||o decreases as « increases. Setting ¢ = 0 gives a valid
baseline.

F.2 Parameterized Scoring Rules with General Transitions

Let S(p, a, @) and {S@ (p, aD|i € [n]} be the desired parameterized rule and set of rules for the

first and second questions respectively, and G, {G®|i € [n]} be the score functions inducing them.
Our 2-stage scoring rule is

M g _ At
Pr(ilg) Glg,¢)- <G'(q,9).9> (22)

=3¢+ 5D(g", a)e;. (23)
Note that the derivatives are partial, taken with respect to p, and Pr(i|q) is any general transition

function — previously Pr(i|q) = ¢;. We compute the expected reward from the worker’s perspective
as a function of q.

EisBun [S(a.0% .. 0)] = 373 p, Prila) (m )t Gla.0)- < Clad)g >>

=> "5 (Gila.9) + Gla.¢)- < C'(a.).a>).

This is precisely the expected payoff with the parameterized scoring rule S (q,1, ). Although ¢ is
unknown to the question setter, this expression achieves its maximum (regardless of ¢) when g = p.
However, we are not ready to proceed, since ¢ can depend on q.

12



F.3 The final piece of the puzzle

Since ¢ affects the expected payoff in very non-linear ways, the expected payoff given g will vary
smoothly as g changes; this change is not just due to GG, but ¢ changing (due to the second question’s
response). We are unable to show the piecewise nature of the latter effect, unlike in MQSR, where
the parameter was piecewise constant in q. If the first question is answered truthfully, then there is
incentive to answer truthfully for the second question. If the first question is answered truthfully, then
there is an incentive to answer the second question truthfully. However, we are unable to prove if that
the worker cannot obtain a better payoff by answering both questions dishonestly. It may be possible
to perform further analysis by examining subgradients of the complicated function (which contains
terms taking arg max over ¢), but it was beyond us.
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