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Abstract

The advent of machine learning and deep learning applications has increased the
need for obtaining large amounts of labelled data required to train machine learning
algorithms. Due to the high cost associated with labelling of data by experts,
crowdsourcing has emerged as a popular option for labelling data. In this paper
we propose a permutation-based model for estimating labels from crowdsourced
data that is a significant generalization of previous works. While most existing
literature on this topic is based on the classical Dawid-Skene model we argue that
the assumptions made by this model are highly restrictive. We propose a new error
metric to compare different estimators and show that despite greatly relaxing the
assumtions of the Dawid-Skene model, we only incur a minor statistical penalty
in estimation. While previous work on the permutation-based model focused on
binary classification, our work extends this model to the M-ary case. We work
in a high-dimensional, non-asymptotic setting and allow the number of workers,
tasks, and classes to scale. In this setting we derive a sharp lower bound for all
estimators under our proposed model. We also propose a computationally efficient
estimator for a subclass of our model and derive a sharp upper bound on the rate of
convergence of this estimator.

1 Introduction
Crowdsourcing is defined as the practice of obtaining information (such as labels
for items in a large dataset) from a large number of people (the crowd). The
motivation for crowdsourcing in data-labelling applications stems from the fact that
most supervised learning algorithms need to be trained on huge amounts of labelled
data to produce an acceptable level of performance. The lack of availability of such
large labelled datasets and the infeasibility of getting a small group of experts to
label all the data has made researchers turn to the crowd.
In a typical crowdsourcing setting, each item in the dataset is assumed to belong to
one out of M classes. Each crowd worker is asked to label (classify) a subset of
the data and each data item is labelled by more than one person. Thus each item
has multiple labels assigned to it by the crowd. Since the individuals in the crowd
are typically non-experts it is expected that there will be a large amount of error
in the labels collected. The goal of any effective crowdsourcing framework is to
design a suitable model for this uncertainty and to develop inference algorithms
that accept the multiple noisy labels for the items in the data set and return a
single inferred label for each item with minimum error. The varying skill levels
of the crowd workers and the varying difficulty levels of labelling each item are
the major reasons for heterogenity in the data collected and this heterogenity is the
major challenge in designing models and inference algorithms for crowdsourcing.
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Existing works like [1],[2] rely on the classical Dawid and Skene model [3] for
estimating the true labels from crowdsourced data. The Dawid and Skene model
assumes that for all items belonging to a particular class, the probability distribution
of a worker’s responses, to the task of classifying these items, is the same. This
assumption of homogenity across different items belonging to the same class is
often not satisfied in practical settings where one items might be harder to classify
than another even if both belong to the same class. Recent work [4] suggeests that
the assumptions of the Dawid and Skene model can be relaxed to allow different
items from the same class to have a different distribution of worker responses
while still yielding computationally efficient estimators. However the authors only
propose their permutation-based model for the case of binary classificaton. In this
work we generalize the permutation-based approach to the case where items belong
to one of out M classes. We also generalize the difficulty-weighted error metric
proposed in [4] that accounts for the differences in difficulty of classifying items,
as opoosed to the classical Hamming error metric used by Dawid-Skene models,
thus ensuring that estimators are not penalised too heavily for misclassifying items
which are difficult to classify for most crowdowrkers. We derive sharp statistical
lower bounds on the estimation error for our model. We show that the Dawid-Skene
model is a subclass of our model and thus the aforementioned lower bound applies
to all previous estimators derived for this model. We propose a computationally
efficient estimator for our model when the approximate ordering of worker abilities
is known and derive a statistical upper bound on this estimator that is identical to
our lower bound upto a logarithmic factor. The rest of the paper is organized as
follows. In Section 2 we discuss our observation model and survey some existing
literature in this area. Section 3 contains our main results viz. the lower bound
on our model, the estimation algorithm, and the upper bound on the proposed
estimator. We present proofs of our results in Section 4 . We conclude the paper
with a summary of our work and a discussion of future directions in Section 6.

2 Observation Model and Prior Work

In this section we dicuss our observation model for crowd-labelled data and the
loss function we use for evaluating estimators. We conclude the section with a
survey of prior work and comparison of earlier models with our model.

2.1 Observation Model

We consider a crowdsourcing system that consists of n workers and d questions or
items to be classified. Each item belongs to 1 out M classes (an item is not allowed
to belong to more than one class under our model). Thus the quantity representing
the true class of an item can take 1 out of M possible values. Integers in the set
FM = {1, . . . ,M} are used to represent class labels and the true classs labels of
the d items are stored in a vector x ∈ FdM . A tensor Q∗ ∈ [0, 1]n×d×M is used to
model the probability of selecting different classes for an item. Q(k, l,m) is the
probability that worker k selects class m for item l.
We assume that a worker is asked to label an item with probability p0 and the
worker responses are stored in a n × d matrix Y . Specifically, Ykl is the label
assigned by worker k to item l if the worker is asked to label the item and is 0
otherwise. Assuming that worker responses are independent given x∗, the vector
of true class labels, and Q∗, the tensor of probabilities, we have the following
distribution on the entries of Y :

Ykl =

{
m, with probability p0Q∗(k, l,m)

0, with probability 1− p0

Given this random matrix Y our goal is to estimate the vector x∗ ∈ FdM of true
class labels.
To ensure identifiability of the proposed model and obtain non-trivial guarantess, we
need to impose some structure on the probability tensor Q∗. These assumptions are
in the spirit of the structural assumptions imposed by [4] on the permutation-based
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model for the binary classification case and are considerably weaker than those
introduced by the Dawid-Skene model and works [1],[2],[3], based on this model.
Before we introduce our structural assumptions, we define a matrix R∗ ∈ [0, 1]n×d

whose (k, l)th entry is given by:

R∗kl = Q∗(k, l,m∗l )− argmax
m6=x∗l

Q(k, l,m)

i where m∗l is the true class label of item l.
We impose the following structural assumptions on the tensor Q∗:

1. Law of total probabilities: As each worker must pick one of the M classes
when asked to classify an item,

∑m=M
m=1 Q∗(k, l,m) = 1,∀k, l

2. Non-adverserial workers: For each item, the probabiity of choosing an incor-
rect class is smaller than the probability of choosing the correct class for all
workers i.e. Q∗(k, l,m∗l ) ≥ Q∗(k, l,m)∀m 6= m∗l

3. Worker monotonicity: There exists a permutation π∗ : [n]→ [n] such that for
every pair of workers k, k′ for which π∗(k) < π∗(k′) and every item l, we
have R∗kl ≥ R∗k′l

4. Item monotonicity: There exists a permutation σ∗ : [d] → [d] such that for
every pair of items l, l′ for which σ∗(l) < σ∗(l′) and every worker k, we have
R∗kl ≥ R∗kl′

The first assumption is a simple consequence of the law of total probabilities
for our model. The second assures that workers are not adversarial in nature
and classify items uniformly at random in the worst case since it guarantees that
Q∗(k, l,m∗l ) ≥ 1

M . It also assures that the entries of the matrix R∗ are always non-
negative. This is a generalization of a similar assumption in [3] that the probability
of a worker picking the correct option for an item is always greater than 0.5 for the
binary classification case. To understand the third and fourth assumptions we need
to take a closer look at the matrix R∗ which is a measure of the "certainty" of a
worker about an item. It can be seen that the maximum value Rkl = 1 occurs when
worker Q∗(k, l,m∗l ) = 1 and Q∗(k, l,m) = 0 for all other m i.e. worker k is
absolutely certain about the true class of item l, while the minimum value Rkl = 0
occurs when ∃m 6= m∗l for which Q∗(k, l,m) = Q∗(k, l,m∗l ) i.e the worker k is
uncertain about item l and can pick an incorrect class with as much probability as
the correct class. In between these two extremes, a larger value of Rkl implies a
higher difference between the probability of choosing the correct class and that of
choosing an incorrect class i.e. higher certainty about the true class of the item.
With this in mind, we can see that our third and fourth assumptions regarding
worker and item monotonicity imply the existence of an ordering of workers based
on their abilities and on questions based on their difficulties such that a worker with
a higher ability is more certain about any item than a worker with lower ability,
while an item with higher difficulty causes greater uncertainty among all workers
than an item with lower difficulty.
In light of the above description of the structural assumptions of our model, it is easy
to see that the popular Dawid-Skene model satisfies all of the above assumptions
and thus corresponds to a particular type of probability tensors Q∗ which, in
addition to satisfying the aforementioned assumptions also includes the highly
restrictive constraint that for any pair of items l, l′, ifm∗l = m∗l′ thenQ∗(k, l,m) =
Q∗(k, l′,m)∀k,m i.e. the distribution of worker responses is identical for items
belonging to the same class.
In summary, let Cperm(x

∗) denote the class of probability tensorsQ∗ that satisfy our
model assumptions, and let CDS denote the class of probability tensors satisfying
the Dawid-Skene assumptions. Thus:

Cperm(x
∗) : = {Q ∈ [0, 1]n×d×M | Q satisfies (i) - (iv)}

CDS(x
∗) : = {Q ∈ Cperm |m∗l = m∗l′ implies Q∗(k, l,m) = Q∗(k, l′,m)∀k,m}
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2.2 Loss Function for Estimators
i We define an estimator as a function that maps the matrix of worker responses Y
to a vector x̂ ∈ FM

d. A popular loss function for evaluating such estimators is the
Hamming error which can be generalised to our case as:

dH(x̂, x∗) =
1

d

d∑
l=1

1{x̂l 6= x∗l } (1)

Since we assume non-uniform difficulty of questions, we would like to weight
them differently while evaluating estimators in order to factor in the difference in
difficulty levels. Consider the following, weighted version of the Hamming error:

LQ∗(x̂, x
∗) =

1

nd

d∑
l=1

n∑
k=1

(Q∗(k, l,m∗l )−Q∗(k, l, m̂l))
2 (2)

Here m̂l is the estimated class label corresponding to item l for the estimator x̂.
Thus using the above loss function (henceforth referred to as theQ∗-Error) the error
is 0 if x̂l = xl, and otherwise it is 1

n

∑n
k=1(Q

∗(k, l,m∗l )−Q∗(k, l, m̂l))
2 which

is the mean squared difference between the probability of picking the estimated
and true classes for item l by each worker. In general if the probability of picking
the estimated class is much smaller than the probability of picking the true class,
then such an estimator is penalised more heavily under this criterionas opposed to
one where the two have similar probabilities of being picked since we expect that
in such a scenario it would be harder to distinguish between the two classes. For
the case of binary classification this error metric reduces to the Q∗-Loss defined in
[4].

2.3 Prior Work
The prior work in this area can be broadly divided into two classes. The first consists
of a vast body of work of which [1],[2] are some representative samples. These
works are based on the classical Dawid-Skene model [3] where the underlying
assumption is that the questions (or items to be labelled) are of the same difficulty.
Thus these models assume that each worker is associated with a confusion matrix
π which defines the probability of the worker making an error in labelling an item
such that πkl is the probability of the worker labelling an item as class k when it
belongs to class l. The confusion matrix is distinct for each worker but is the same
for all questions for a particular worker. Various algorithms have been designed
and guarantees have been proved for estimating the true labels of the data items in
this setting. However the assumption of homogenity in the difficulty levels of each
question is often not realised in practice.
The second class consists of a relatively new work [4] where a new "permutation-
based" model has been proposed to account for the difficulty level of each question.
The authors of [4] consider only binary choice questions i.e. each item to be
labelled lies in one of two classes, and define a matrixQ that models the probability
of correctness of labelling each item by each person such that Qij is the probability
of person i labelling item j correctly. In this setting they establish bounds on
the minimax error and provide computationally efficient estimators that achieve
the minimax limits when certain additional constraints are satisfied. However the
model has so far only been explored for the binary choice case.

3 Main Results
In this section we present our main results which include a sharp lower bound on
the minimax risk for our permutation based model, an algorithm for estimating
the true class labels when the ordering of the worker abilities is known exactly or
approximately, and an upper bound on the estimation error under the proposed
algorithm. In our analysis we focus on a non-asymptotic regime and evaluate the
error in terms of n, d,M and p0. We assume that d ≥ n. We also assume that
p0 ≥ 1

n which ensures that on average, at least one worker answers any question.
We use symbols c, c′, cE , c′E to represent universal constants.
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3.1 Lower Bound on Minimax Risk

The minimax risk of an estimator is defined as:

F (x̂) = sup
x∗∈Fd

M

sup
Q∗∈Cperm(x∗)

E[LQ∗(x̂, x∗)]

Thus, it represents the worst case expected error over the set of true class labels and
probability tensors (the expectation is taken over the random matrix Y of worker
responses).
The following theorem gives a lower bound on the minimax risk:

Theorem 1 For a universal constant c, any estimator x̂ has minimax risk at least:

F (x̂) ≥ c

np0
(3)

An important point to note is that the above lower bound holds even when the
set of allowed probability tensors Q∗ is restricted to the Dawid-Skene model i.e.
CDS ⊂ Cperm. Indeed it even holds for the case when Q∗ is known at the estimator.
In what follows, we propose an estimation algorithm with an upper bound that
matches the above lower bound upto a logarithmic factor for a sub-class of our
observation model. This shows that at least for this subclass we incur atmost a
logarithmic penalty in estimation as compared to the Dawid-Skene model which is
far more restrictive than our model.

3.2 Estimation Algorithm

This estimation algorithms is applicable to the case where workers are calibrated,
in the sense that the ordering of worker abilities is known. This is indeed the
case in several real-life crowdsourcing scenarios where workers are employed only
after being thoroughly tested and calibrated. In this setting we expect to know
the permuation π∗ of worker abilities, on the matrix R∗ defined earlier, which
represents the certainty of workers regarding questions. However we do not know
the permuation on the question difficulties or the true values of either R∗ or Q.
For a given permuation of workers π, we first define the notion of bias in responses
of the top r workers for an item l as:

brl = min
m 6=mr

l

∑
k∈[r]

(1{(Yπ−1(k)l = mr
l } − 1{Yπ−1(k)l = m}) (4)

where

mr
l = max

m

∑
k∈[r]

1{Yπ−1(k)l = m} (5)

Essentially our definition of bias corresponds to the difference between the number
of votes received by the most popular response among the top r workers and the
number of votes received by the second most popular response among the top r
workers.
We now use the following 2-step procedure is used to estimate the true class labels:

1. Identifying smart workers: Compute the integer r0

r0 ∈ argmax
r∈p−1

0 log1.5(dn),...,n

∑
l∈[d]

1{brl ≥
1

2

√
kp0 log

1.5(dn)} (6)

2. Majority voting by smart workers: Set m̂π
l , x̂(π) as a majority vote of the best

r0 workers

m̂π
l = argmax

m

∑
k∈[r0]

1{Yπ−1(k)l = m} (7)
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Thus our algorithm first finds a set of "good" workers such that their responses
for any item are significantly biased towards one of the classes. In the next step
we simply take the majority vote of the responses of these workers. Choosing a
resonably good value of r0 is crucial in our algorithm since choosing a large value
would include too many workers with low abilities in the final majority vote, while
a small value would result in too little data for estimating the final answers. We
now give an upper bound on the estimation error under our algorithm.

3.3 Upper Bound on Estimation Error

The following theorem gives an upper bound on the estimation error under our
proposed estimation algorithm:

Theorem 2 For any x∗ in FdM and Q∗ ∈ Cperm(x
∗) with R∗ corresponding to Q∗

if our estimation algorithm is provided with a permutation π of workers, then for
every item l ∈ [d] such that

||R∗l ||22 ≥
5 log2.5(dn)

p0
and ||Rπl −R∗l ||22 ≤

||R∗l ||22√
9log(dn))

(8)

we have

P (x̂(π)l = x∗l) ≥ 1−M exp−cElog
1.5(dn) (9)

and if π is the correct permutation of workers:

LQ∗(x̂(π), x
∗) ≤ c′ 1

np0
log2.5 d (10)

with probability at least 1−M exp−c
′
Elog

1.5(dn)

4 Proofs

In the section we present the proofs of the aforementioned theorems. These proofs
closely follow the proofs for the corresponding results in [4].

4.1 Proof of Theorem 1

The Gilbert-Varshamov bound [5] guarantees that for a universal constant c1 > 0
there exists a collection of β = exp(c1d) vectors, x1, . . . , xβ all lying in FdM , such
that the generalised Hamming error defined in (1) is lower bounded as:

dH(xl, xl
′
) ≥ 1

10
∀ l, l′ ∈ [β] (11)

We define the following probability tensor Q∗ ∈ Cperm(x
∗) for a given x∗ such

that for each item l:

Q∗klm =


1
M + δ, if k ≤ 1

p0
,m = m∗l

1
M − δ, if k ≤ 1

p0
,m = m∗l +M 1

1
M , otherwise

where +M denotes modulo-M addition and δ is a constant in the interval (0, 1
M2 ).

For each l ∈ [β] let Pl denote the probability distribution of observed worker re-
sponses Y , induced by setting x∗ = xl and choosing Q∗ ∈ Cperm(x

l) as described
above. Some algebra gives the following upper bound on the KL-divergence
between any pair of distributions from this collection:

DKL(Pl||Pl
′
) ≤ c2dδ

2

M
(12)
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for another universal constant c2 ≥ 0. Combining the above with Fano’s inequality
[6] yields that any estimator x̂ has an expected Hamming error lower bounded as:

E[dH((̂x), x∗)] ≥ 1

20
(1− c2dδ

2 +M ]log2

M log β
) (13)

Consequently, for our choice of Q∗, the Q∗-Error is lower bounded as:

E[LQ∗((̂x), x∗)] ≥
δ2

np0
(1− c2δ

2

c1M
− log 2

c1d
) ≥ c

np0
(14)

where the choice of δ depends on c1, c2 and c.

4.2 Proof of Theorem 2

The proof of this theorem makes use of the following lemma from [4]:

Lemma 1 For any vector v ∈ [0, 1]n such that v1 ≥ . . . ≥ vn, there must be some
α ≥ d 12 ||v||

2
2e such that

α∑
i=1

vi ≥

√
α||v||22
2 log n

(15)

Using this result, we can follow the corresponding proof in [4] to show that that for
any item l which satisfies the bounds:

||R∗l ||22 ≥
5 log2.5(dn)

p0
and ||Rπl −R∗l ||22 ≤

||R∗l ||22√
9log(dn))

(16)

there exist rl ≥ 1
p0

log1.5(dn) such that:

rl∑
l=1

R∗π−1(k)l ≥
3

4

√
k

p0
log1.5(dn) (17)

This essentially tells us that, for the "easy" questions, i.e. those satisfying the
bounds of (16) we can find a set of top rl workers based on our permutation π who
are significantly "certain" of the correct class label.
For any item l, class m, and integer r ∈ { 1

p0
log1.5(dn), . . . , dn} , we generalise

our definition of the bias in responses brl in (4) as:

γ(r, l,m) = min
m̂ 6=m

∑
k∈[r]

(1{(Yπ−1(k)l = m} − 1{Yπ−1(k)l = m̂}) (18)

brl = γ(r, l,mr
l ) (19)

We can observe that the following properties hold with probability at least 1 −
M exp−cElog

1.5(dn), for γ(r, l,m) as a consequence of the Bernstein inequality
[7]:

1. If
∑r
k=1R

∗
π−1(k)l ≥ 3

4

√
k
p0

log1.5(dn) then γ(r, l,m∗l ) ≥
1
2

√
kp0 log

1.5(dn)

2. γ(r, l,m) ≥ 1
2

√
kp0 log

1.5(dn) only if m = m∗l and
∑r
k=1R

∗
π−1(k)l ≥

1
2

√
k
p0

log1.5(dn)

3. If
∑r
k=1R

∗
π−1(k)l ≥

1
2

√
k
p0

log1.5(dn) then γ(r, l,m∗l ) > 0

For any item l0 that satisfies the bounds of (16), we define a set L0 = {l ∈ [d] :
σ∗(l) ≥ σ∗(l0)} i.e. the set of questions at least as easy as L0. Thus, each question
in L0 also satisfies the bounds in (16) by our assumption on question monotonicity
for R∗. Thus the function γ(r, l,m∗l )∀ l ∈ L0 satisfies property (1) above.
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We also define the set L(r) = {l ∈ [d] : γ(r, l,m) ≥
1
2

√
kp0 log

1.5(dn) for some m}. Thus L(r) is the set of questions for which
the responses of the top r workers are biased towards some answer. As per our
definition of r0 in (6), it is the integer for which the maximum number of questions
have responses by the top r0 workers that are biased towards some answer. Thus
|L(r0)| ≥ |L(rl0)| ≥ |L0| where rl0 corresponds to the upper limit of the summa-
tion in (17) for item l0. This means either L(r0) = L0 or there is some question
outside the set L0 in L(r0).
If L(r0) = L0, by property (2) we can conclude that the response of the top r0
workers is correct for all items in L0 i.e. [x̂(π)]l0 = [x∗l0 ].
If |L(r0| > |L0| then there exists some item l′ outside the set L0 for

which γ(r0, l
′,ml′) ≥ 1

2

√
kp0 log

1.5(dn). From property (2) we know that∑r0
k=1R

∗
π−1(k)l′ ≥

1
2

√
k
p0

log1.5(dn). Since this item must be harder to clas-
sify than l0 for it to lie outside L0, by our assumption on question monotonicity,∑r0
k=1R

∗
π−1(k)l ≥

1
2

√
k
p0

log1.5(dn) for all items l in L0 and thus by properties
(2) and (3) we conclude that [x̂(π)]l0 = [x∗l0 ] even in this case.
Thus for every item l0 that satisfies the bounds of (16), P([x̂(π)]l0 = [x∗l0 ]) ≥
1−M exp−cElog

1.5(dn). This along with the definition of the Q∗-Error yields the
claimed result.

5 Conclusion

We propose a flexible permutation based model for the problem of multi-class
labelling using crowdsourced data. Our model can handle non-binary classification
and varying difficulty of tasks, and is thus a significant generalisation over previous
work. We propose a modified error metric weighted according to the difficulty of
each task for our model. We derive statistical lower bounds on the error, propose
an estimation algorithm, and give an upper bound on the estimation error for this
algorithm. Extending the proposed algorithm to the setting where ordering of
the workers is not known, and performing real world experiments to verify our
approach is left for future work.
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