
Enabling Node Repair in Any Erasure Code for
Distributed Storage

K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar, Fellow, IEEE

Abstract—Erasure codes are an efficient means of storing data
across a network in comparison to data replication, as they tend
to reduce the amount of data stored in the network and offer
increased resilience in the presence of node failures. The codes
perform poorly though, when repair of a failed node is called
for, as they typically require the entire file to be downloaded
to repair a failed node. A new class of erasure codes, termed
as regenerating codes were recently introduced, that do much
better in this respect.

However, given the variety of efficient erasure codes available
in the literature, there is considerable interest in the construction
of coding schemes that would enable traditional erasure codes
to be used, while retaining the feature that only a fraction of
the data need be downloaded for node repair. In this paper, we
present a simple, yet powerful, framework that does precisely
this. Under this framework, the nodes are partitioned into two
types and encoded using two codes in a manner that reduces
the problem of node-repair to that of erasure-decoding of the
constituent codes. Depending upon the choice of the two codes,
the framework can be used to avail one or more of the following
advantages: simultaneous minimization of storage space and
repair-bandwidth, low complexity of operation, fewer disk reads
at helper nodes during repair, and error detection and correction.

I. INTRODUCTION

In a distributed storage system, a data-file (the message)
is dispersed across nodes in a network in such a manner
that an end-user (also referred to as a data-collector) can
retrieve the message by tapping into neighbouring nodes. It
is desirable that a distributed storage system be reliable and
use network resources such as storage and network bandwidth
sparingly. The simplest means of increasing reliability of a
storage system is through replication, i.e., by storing identical
copies of the message in multiple storage nodes. However,
for a given level of reliability, such systems are inefficient in
storage space utilization as compared to other approaches.

A popular option that reduces the data stored in the network,
and leads to increased resiliency in the face of node failures,
is to employ erasure coding. Let the message to be stored
in the network be represented by a collection of B message
symbols, with each message symbol drawn from a finite field
Fq of size q. With (MDS) erasure codes, data is stored across
n nodes in the network in such a way that the entire message
can be recovered by a data-collector by connecting to any
arbitrary k nodes. This process of data recovery is referred
to as data-reconstruction. Several distributed storage systems
such as RAID-6, OceanStore and Total Recall employ such an
erasure-coding option.

The authors are with the Dept. of ECE, Indian Institute Of Science,
Bangalore, India. Email: {rashmikv, nihar, vijay}@ece.iisc.ernet.in. P. Vijay
Kumar is also an adjunct faculty member of the Electrical Engineering
Systems Department at the University of Southern California, Los Angeles,
CA 90089-2565.

Another important aspect of distributed storage system
design is the handling of node failures. Upon failure of an
individual node, a self-sustaining data storage network must
necessarily possess the ability to repair (or, regenerate) the
failed node. A typical means of accomplishing this task under
erasure coding, is to first permit the replacement node to
download the entire data stored in any k nodes and then
proceed to extract the data that was stored in the failed node.
Such a procedure is clearly wasteful of network resources.
This raises a natural question as to whether there is a better
alternative. Such an alternative is provided by the concept of
a regenerating code introduced in the pioneering paper by
Dimakis et al. [1].

In the regeneration framework introduced in [1], codes
whose symbol alphabet is a vector over Fq , i.e., an element
of Fαq for some integer parameter α > 1 are employed.
Given the vector nature of the code-symbol alphabet, we may
equivalently, regard each node as storing a collection of α
symbols, each symbol drawn from Fq . Apart from this new
parameter α, two other parameters (d, β) are associated with
this framework. A replacement node is permitted to connect
to an arbitrary subset of d (≥ k) nodes out of the remaining
(n−1) nodes and download β ≤ α symbols from each. These
d nodes helping in the repair of a failed node are termed as
helper nodes. The total amount dβ of data downloaded for
repair purposes is termed the repair-bandwidth. Typically, with
a regenerating code, the average repair-bandwidth dβ is small
compared to the size B of the message.

A major result in the field of regenerating codes is the proof
in [1] that uses the cut-set bound of network coding to establish
that the parameters of a regenerating code must satisfy:

B ≤
k−1∑
i=0

min{α, (d− i)β} . (1)

It can be deduced (see [1]) that achieving equality in (1), with
parameters B, k and d fixed, leads to a tradeoff between the
storage space α and the repair-bandwidth dβ. This tradeoff is
termed as the storage vs repair-bandwidth tradeoff.

The property of reconstruction of the B source symbols
from k nodes requires the storage per node α to be at least
B
k . The case when α = B

k is termed the Minimum Storage
Regeneration (MSR) point. On the other hand, to repair a
failed node storing α symbols, one must necessarily download
at least α symbols from the network, and the case when the
repair bandwidth dβ is equal to α is termed the Minimum
Bandwidth Regeneration (MBR) point. However, both these
parameters cannot be minimized simultaneously: the minimum
storage case requires a repair bandwidth of dβ ≥ α+(k−1)β
while the minimum bandwidth point requires a storage per
node of α ≥ B

k + (k−1)
2 β.



R
e
p
a
ir
 b
a
n
d
w
id
th

Regenerating Codes

MSR

Storage per node

xxxx
Twin MDS codes

Regenerating Codes

MBR

Storage per node

Fig. 1: The storage vs repair-bandwidth tradeoff in the regenerating
codes setup, when B = 27000, k = 10, d = 18, and n > 18.
The Twin-code framework, by relaxing certain constraints in the
regenerating codes setup, can operate at the point (storage = 2700,
repair-bandwidth = 2700).

Fig. 1 plots the tradeoff for the case when B = 27000
symbols, k = 10, and d = 18. For this example parameter
set, the minimum possible storage space required at each
node can be computed to be 2700 symbols, for which the
repair-bandwidth required is at least 5400 symbols. On the
other hand, at the MBR point, the minimum possible repair-
bandwidth is 3600 symbols, while each node is required to
store at least 3600 symbols.

For an overview of the explicit codes and schemes under
the regenerating codes framework, non-existence results, and
alternative models, the reader is referred to [2], [3] and the
references therein.

In the present paper, we propose a novel, simple, yet
powerful, ‘Twin-code framework’ for a distributed storage
network that facilitates both data-reconstruction and efficient
node-repair. The framework attempts to answer the following
two questions:
Q1. As seen above, it is not possible to simultaneously
minimize both repair-bandwidth and storage per node in
the regenerating codes setup. On the other hand, in many
applications, both storage and bandwidth may be expensive,
while the property that data-reconstruction and node-repair be
possible from any subset of nodes of size k and d respectively
may not be required. A natural question that arises is whether
it is possible to further reduce storage and repair-bandwidth
by relaxing these constraints (while still retaining the property
of having several subsets of nodes to choose from during
reconstruction and repair).
Q2. The rich history of research on erasure codes makes
available a wide variety of codes with various useful proper-
ties. Thus, another question that arises is whether these codes
can be employed in a distributed storage network while still
enjoying the benefits of efficient node repair.

Recently, there has been some work ([4], [5]) in the litera-
ture that relate to the questions posed above. In [4], the authors
relax certain requirements on node-repair to generalize the
repair-by-transfer (uncoded-repair) MBR codes constructed
in [6] to a wider range of parameters. In [5], the authors
provide mechanisms to lower the repair-bandwidth in certain

DC

Type 1 storage node

Type 0 storage node

Data collectorDC

(a)

Replacement node of Type 0

(b)

Fig. 2: The setting: (a) a data-collector connecting to a subset of
storage nodes of Type 1, and (b) a replacement node of Type 0
connecting to a subset of storage nodes of the opposite type, Type 1.

existing Array codes.
Under the Twin-code framework introduced in the present

paper, nodes in the network are partitioned into two types,
labeled as Type 0 and Type 1 nodes . To arrive at the data
stored in nodes of Type 0, the message is encoded using a
linear code C0. To arrive at the data stored in Type 1 nodes,
the message symbols are first permuted by means of simple
transposition and then encoded by a second linear code C1.
The two codes do not necessarily have to be distinct. Repair
of a failed node of one type is accomplished by downloading
data from a subset of nodes of the other type. Further, a data-
collector can recover the entire message by connecting to a
subset of the nodes of the same type (see Fig. 2).1

Under this framework, the operations of encoding, data-
reconstruction and node-repair employ the encoding and de-
coding algorithms of the constituent codes. And it is this
feature we feel, that makes the approach powerful. The
characteristics of the resulting network reflect features such
as erasure performance and decoding complexity of the two
constituent codes. For example:
(a) when the two constituent codes are chosen to be Maximum-
Distance-Separable (MDS), for example Reed-Solomon codes,
both storage per node as well as repair-bandwidth are mini-
mized simultaneously (see Fig. 1).
(b) when the two constituent codes are chosen to be codes
such as LDPC or Fountain codes that possess very low erasure
decoding complexity, the result is a distributed storage network
in which efficient data-reconstruction and node-repair can be
carried out in low-complexity fashion.
(c) when codes possessing sparse generator matrices are
employed, the repair can be carried out with very few disk
reads at the helper nodes.
(d) when the two constituent codes are chosen to be MDS
Array codes, such as EVENODD codes, they minimize both
resources, as well as lower the complexity to a certain extent.
The latter is by virtue of the property of Array codes that they
operate in the binary field and employ XOR operations alone.

The Twin-code framework, as well as a specialization to

1The subsets of nodes to which a data-collector or replacement node can
connect to are governed by the decoding algorithms of the constituent codes
C0 and C1. This is made clear in Section II.



the case when the constituent codes are MDS, is provided in
the next section, Section II. The principal advantages of this
framework are presented in Section III.

II. THE TWIN-CODE FRAMEWORK

Under the Twin-code framework, the n storage nodes in
the network are partitioned into two categories, consisting
of n0 and n1 nodes, which we will refer to as Type 0 and
Type 1 nodes respectively. The message to be stored across the
network comprises of B symbols drawn from the finite field
Fq . For i = 0, 1, let Ci be an arbitrary [ni, k] linear code over
Fq having (k×ni) generator matrix Gi. Let g

(i,`)
(1 ≤ ` ≤ ni)

denote the `th column of Gi.

A. Encoding

The message is first divided into fragments of k2 symbols.2

The rest of the section describes the code for a single fragment,
and constructions for the case when the size of the message
is larger can be obtained by concatenating multiple such
fragments. Thus, we have

B = k2. (2)

Let the k2 symbols be arranged in the form of a (k×k) matrix
M0, which we will call the message matrix. Let

M1 ,M t
0 , (3)

where the superscript ‘t’ denotes the transpose. For i = 0, 1,
the data stored in the nodes of Type i is obtained using code Ci
and message matrix Mi as follows. Each node of Type i stores
the k symbols corresponding to a column of the (k×ni) matrix
MiGi. More specifically, node ` (1 ≤ ` ≤ ni) of Type i stores
the symbols in its `th column (see Fig. 3), given by

Mi g(i,`). (4)

Thus, under our encoding algorithm, every node stores k
symbols.3 Also, each node ` of Type i is associated with a
distinct column g

(i,`)
of Gi, and we will refer to g

(i,`)
as the

encoding vector of this node.
This completes the description of how the data is encoded

and mapped onto the network. In the sections to follow, we
first discuss data-reconstruction and node-repair for the case
when both C0 and C1 are MDS codes, before moving on to
the general case. MDS codes serve as a simple and concrete
example, and also turn in a strong performance by minimizing
both storage per node and repair-bandwidth. We call the codes
resulting from the Twin-code framework when the constituent
codes are MDS as Twin-MDS (distributed storage) codes.

B. Twin-MDS Codes

In this subsection, we specialize to the case when both C0
and C1 are MDS codes over Fq . In this case:
• a data-collector can recover the entire message by connect-

ing to any k nodes of the same type and downloading the k2

symbols stored in them. Note that a connectivity of 2k − 1
or higher guarantees the availability of such a subset.

2In the terminology of distributed storage, each fragment is called a stripe.
3It can be shown that the encoded symbols correspond to the first and the

third quadrants of a Product-code [7] built out of the constituent codes. For
lack of space, we do not elaborate here.

Fig. 3: The encoding procedure under the Twin-code framework.

• a replacement node of a certain type can recover the k
symbols that were stored in the failed node by downloading a
single symbol over Fq from any subset of k nodes belonging
to the other type.4

To see how data-reconstruction is accomplished in this case,
let us assume without loss of generality that the data-collector
connects to the first k nodes of Type 1. The data-collector
gains access to the k2 symbols given by the matrix:

M1

[
g
(1,1)
· · · g

(1,k)

]
. (5)

The MDS property of code C1 guarantees linear independence
of the corresponding k columns of G1. Thus, the data-collector
can recover the message matrix M1 by inverting the matrix
formed by these columns.

Equivalently, the action of the data-collector can also be
viewed as erasure decoding of code C1 in the presence of
(n1 − k) erasures. To see this, consider the k symbols in the
first row of the matrix in (5). Clearly, these are k components
of the codeword of code C1 corresponding to the k message
symbols in the first row of M1. Thus, each row of the message
matrix M1 can be decoded independently, allowing the data-
collector to perform scalar decoding of the vector code.

To see how node-repair is accomplished in this case, let us
assume that node f of Type 0 fails. Thus the replacement node
needs to recover the k symbols

M0g(0,f). (6)

We further assume without loss of generality that it connects to
the first k nodes of Type 1. Under the Twin-code framework,
the replacement node makes known its identity to each of the
helper nodes. In turn, the `th helper node (1 ≤ ` ≤ k) passes
the inner product of the k symbols M1g(1,`) stored in it with
the encoding vector g

(0,f)
of the failed node: gt

(0,f)
M1g(1,`).

Thus, the replacement node gains access to the k symbols

gt
(0,f)

M1

[
g
(1,1)
· · · g

(1,k)

]
. (7)

4Regenerating codes permit node-repair using any d (≥ k) nodes in the
system. However for a setting where storage per node is to be minimized
(MSR), the value of d must be much larger than k to make the repair-
bandwidth close to the fraction of data stored per node.



m1 m4 m7 m1 +m4 + m7

m2 m5 m8 m2 +m5 + m8

m3 m6 m9 m3 +m6 + m9

Node 1 Node 2 Node 3 Node 4

m1 m3 m1 +m2 + m3 m1 + 2m2 + 3m3 m1 + 3m2 + 2m3

m m m +m + m m + 2m + 3m m + 3m + 2m

Type 0 nodes

m3 m1+m2+m3 m1+2m2+3m3

m4 m6 m4 +m5 + m6 m4 + 2m5 + 3m6 m4 + 3m5 + 2m6

m7 m9 m7 +m8 + m9 m7 + 2m8 + 3m9 m7 + 3m8 + 2m9

Type 1 nodes

Node 1 Node 2 Node 3 Node 4 Node 5

Fig. 4: An example of the Twin-code framework with C0 and C1 as
MDS codes with parameters n0 = 4, n1 = 5 and k = 3.

Now, setting
µt , gt

(0,f)
M1 , (8)

we see that the replacement node has access to

µt
[
g
(1,1)
· · · g

(1,k)

]
. (9)

It is clear that µt can be recovered by erasure decoding of
the MDS code C1 under (n1 − k) erasures. Recall that by
construction, we have M0 =M t

1, and hence

µ = (gt
(0,f)

M1)
t = M0 g(0,f) . (10)

Thus, the vector µ comprises of precisely the k symbols
required by the replacement node. It follows that repair of
a node of Type 0 is reduced to erasure decoding of code C1.

Fig. 4 illustrates a numerical example, where the network
has n = 9 nodes, with n0 = 4, n1 = 5, k = 3, giving B =
k2 = 9. The code operates over F7. The message matrices M0

and M1(=M t
0) populated by the message symbols {mi}9i=1,

and the generator matrices G0 and G1 are:

M0=

m1 m4 m7

m2 m5 m8

m3 m6 m9

, G0=

1 0 0 1
0 1 0 1
0 0 1 1

, G1=

1 0 1 1 1
0 0 1 2 3
0 1 1 3 2

.
It can be verified that this code permits a data-collector to

reconstruct the entire message from any three nodes of the
same type. The figure also depicts repair of node 1 of Type 0,
which has an encoding vector [1 0 0]t, with the help of nodes
2, 3 and 4 of Type 1.

C. The Twin-Code Framework in a General Setting

In this subsection, we describe the Twin-code framework
applied to arbitrary linear block codes. By a linear code we
mean a code where every code symbol can be expressed as a
linear combination of the message symbols. We consider each
symbol to belong to the finite field Fq . Data is encoded onto
the network as described in Section II-A, and it remains to
explain how data-reconstruction and node-repair are accom-
plished. We first define the term feasible set of nodes which
will aid in the description.

Definition 1 (Feasible set of nodes): A feasible set of
nodes is a set of nodes of the same type, say Type i, such
that the columns of the generator matrix Gi associated to
these nodes permit erasure decoding of the code Ci.

For example, when code C0 is an [n0, k] MDS code, any k
columns of its generator matrix G0 are linearly independent,
enabling erasure decoding from any k columns of G0. It
follows that when C0 is MDS, any set of k nodes of Type 0
is a feasible set.

Under the Twin-code framework, a data-collector can re-
cover the entire message by connecting to any feasible subset
of nodes of the same type. For example, when the constituent
codes are MDS as in Section II-B, the message can be
recovered from any k nodes of the same type.

To see how data-reconstruction is accomplished, let us
suppose that the data-collector connects to a feasible subset
of Type 1 nodes. Restricting our attention to nodes of Type 1
alone, the system is identical to a distributed storage system
employing only code C1. Thus, the data-collector can recover
the entire message by applying the decoding procedure of code
C1, k times (once for each row of the message matrix M1).

We now turn our attention to node-repair. Under the Twin-
code framework, a replacement node of a certain type can
recover the symbols stored in the failed node by downloading
a single symbol from any feasible subset of the other type.
Our repair algorithm reduces the problem of node-repair to one
of data-reconstruction, however with an amount of download
which is close to a small fraction of the entire data.

To see how node-repair is accomplished, let us assume
failure of node f of Type 0. The replacement node desires
to recover the k symbols M0 g(0,f). The replacement node
connects to a feasible set F of Type 1 nodes. As in the
case of Twin-MDS codes, each helper node ` ∈ F passes
the symbol gt

(0,f)
M1 g(1,`) to the replacement node. Setting

µt , gt
(0,f)

M1, we see that the replacement node gains access
to the symbols { µtg

(1,`)
| ` ∈ F}. Since the set of helper

nodes form a feasible set of Type 1 nodes, it is clear that the
replacement node can recover µt through erasure decoding
of code C1. Under our framework, M0 = M t

1 and hence,
µ = (gt

(0,f)
M1)

t = M0 g(0,f). The vector µ thus comprises
of precisely the k symbols required by the replacement node.
In this manner, our repair algorithm requires a download equal
to a fraction 1

k of the data download required during the data-
reconstruction process.

Remark 1 (Application to Vector Codes): One could also
employ vector codes such as EVENODD and other Array
codes in the the Twin-code framework. Under a constituent
code where each code symbol is a vector of length ν, each
storage node is associated to ν encoding vectors, specifically,
the ν columns associated to a (vector) code symbol in the
generator matrix of the constituent code. We do not delve into
the details of such constructions here due to lack of space.

Worst-case analysis: In the Twin-MDS code, the system
can clearly handle failure of any n−(2k−1) nodes with respect
to data-reconstruction. Optimal repair of a node, say of Type 0,
can be performed even if any (n1−k) nodes of Type 1 fail. In
the situation when only k̂ < k nodes of Type 1 are available,
repair can be carried out with a greater download (assuming at
least k nodes of Type 0 are available) by first repairing (k− k̂)
(imaginary) nodes of Type 1, and then using this augmented
collection of Type 1 nodes for repair. A similar worst-case



S

S Source of data

Node without data

(a)

Nodes with coded data,

(b)

(c) (d)

Fig. 5: Data deployment using the Twin-code framework: (a) The
source transfers coded data to a subset of nodes. (b),(c) These nodes
now help in the ‘repair’ of nodes in their neighbourhood that have
not received data. The system eventually reaches a state as in (d).

analysis can be carried out when the constituent codes are not
MDS, by replacing the parameter k by (n− dmin +1), where
dmin is the minimum distance of the constituent code.

III. ADVANTAGES OF THE TWIN-CODE FRAMEWORK

A. Employing Existing Codes

One of the main attractions of the Twin-code framework is
that it permits the utilization of any linear erasure code. More-
over, the process of node-repair is reduced to one of erasure
decoding of the constituent codes. Thus, this framework also
allows a system designer to use the encoders and decoders of
the constituent codes for all operations including node-repair.

B. Reduced Repair Overhead

Under the Twin-code framework, the node-repair algorithm
is such that the symbols passed by a helper node are indepen-
dent of the identity of the other nodes helping in the repair
process. Hence a helper node needs to be cognizant of only the
encoding vector of the replacement node, allowing repair to be
performed in an entirely distributed manner. This makes the
implementation of such a system easier, and further reduces
the communication overhead.

C. Data Deployment

Codes with efficient node-repair properties, such as Regen-
erating codes and the Twin-code framework, can be employed
for efficient deployment of data across a storage network. In
such a scenario, the source first transmits the encoded data to
a subset of nodes, following which, the source is no longer
required to be available. Now, the nodes that have not received

the data are treated as replacement nodes, and the repair
algorithm is used to transmit data to this node (see Fig. 5 for
an illustration). The distributed nature of such a deployment
process will potentially make traffic more uniform across the
network, thus aiding in load-balancing.

Twin-MDS codes possess the additional advantage of hav-
ing the minimum possible repair-bandwidth of Bk . Thus, unlike
any regenerating code, it reduces the total amount of data
transferred during the deployment process to the minimum
possible, and equal to the amount of data transferred when
source directly transmits all encoded data.

D. Error correction and detection

Although the preceding sections describe data-
reconstruction and node-repair in the absence of errors,
it is easy to see that for error-prone networks, one can use
appropriate error correcting codes as the constituent codes
in the Twin-code framework. The decoding algorithms of
these codes can be employed for data-reconstruction and
node-repair in the error-prone network.

E. Extensions to the Twin-Code Framework

The Twin-code framework, when applied to two different
constituent codes, allows the system designer to cater to
two possibly different classes of end-users. For instance,
the choice of C0 as a Reed-Solomon code and C1 as an
LDPC code permits the bandwidth-constrained data-collector
to connect to Type 0 nodes and download minimum amount
of data, and the computation-constrained data-collector to
connect to Type 1 nodes and perform data reconstruction
with a low-complexity algorithm. In general, the Twin-code
framework can be extended to include more than two types
of nodes (representing the message as an array having a
dimension equal to the number of types). Furthermore, one
can choose constituent codes of different dimensions (instead
of an identical dimension k), in which case, the message
matrix will be rectangular. Finally, the alphabet need not be
restricted to a finite field; any alphabet with two operators
satisfying commutativity and distributivity can be employed,
for example, a commutative ring.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran, “Network Coding for Distributed Storage Systems,” IEEE Trans.
on Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[2] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-Regenerating
Codes for the MSR and MBR Points via a Product-Matrix Construction,”
IEEE Trans. on Inf. Theory, vol. 57, no. 8, pp. 5227–5239, Aug. 2011.

[3] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Distributed
Storage Codes with Repair-by-Transfer and Non-achievability of Interior
Points on the Storage-Bandwidth Tradeoff,” IEEE Trans. on Inf. Theory,
submitted for publication. [Online]. Available: arXiv:1011.2361 [cs.IT]

[4] S. El Rouayheb and K. Ramchandran, “Fractional Repetition Codes for
Repair in Distributed Storage Systems,” in Proc. Allerton Conf., Urbana-
Champaign, Sep. 2010.

[5] Z. Wang, A. G. Dimakis, and J. Bruck, “Rebuilding for Array Codes in
Distributed Storage Systems,” in ACTEMT, Dec. 2010.

[6] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit
Construction of Optimal Exact Regenerating Codes for Distributed Stor-
age,” in Proc. Allerton Conf., Urbana-Champaign, Sep. 2009.

[7] P. Elias, “Error-free Coding,” IRE Transactions on Information Theory,
vol. 4, no. 4, pp. 29–37, Sep. 1954.


