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Abstract

We consider a prediction problem based on opinions elicited from multiple agents. Making
an accurate prediction with a minimal cost requires a joint design of incentive mechanisms and
prediction algorithms. Such a problem lies at the interface of statistical learning theory and game
theory, and arises in many domains such as the consumer surveys and mobile crowdsourcing. Under
a fairly general problem setup, we jointly design a mechanism and algorithm to achieve the optimal
system objective. Our results offer several valuable engineering insights. When the costs incurred
by the agents are linear in the exerted effort, then the optimal mechanism calls for a “crowd-tender”,
where the principal only employs the agent with the lowest bid. When the costs are quadratic, then
it is optimal to use a “crowd-sourcing” mechanism that employs multiple agents at the same time.
Synthetic simulations demonstrate the gains achieved under our proposed mechanism, as compared
to those that do not account for the heterogeneity of the agents.

1 Introduction

Prediction algorithms are often designed under the assumption that the training data is provided
to the algorithm, and that the algorithm has no control over the quality of the training data. In many
situations, however, the training data is collected by surveying people, for instance, in the prediction of
the future demand for a product by surveying a number of potential customers [Hay98], or the prediction
of the winner of an election by surveying potential voters [WR11]. Collecting data from people is much
cheaper, easier and faster today due to the emergence of several commercial crowdsourcing platforms
such as Amazon Mechanical Turk and others. In such situations, it is possible to monetarily incentivize
the respondents to provide higher quality inputs.

In any realistic setup, the responses obtained from people (“the agents”) are noisy: one cannot expect
a naive customer to gauge the sales of a product accurately. Moreover, every individual has a different
expertise and ability, and will likely react differently to the amount of money paid per task. For example,
some people may be active users of the surveyed product, therefore have a better understanding of its
anticipated usage. We assume that the surveyor (“the principal”) has no knowledge of the behavior
of individual agents. It is therefore important to design an appropriate incentive mechanism for the
prediction procedure that exploits the heterogeneity of the agents, motivating them to participate and
exert suitable levels of effort. An appropriate incentive will provide higher quality data and as result,
a superior prediction performance. This requirement motivates the problem at the interface between
statistical estimation and mechanism design considered in this paper.

As compared to problems that tackle only one of the prediction and the mechanism design problems,
the problem of joint design poses a significantly greater challenge. From the statistical prediction point
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of view, the challenge is that every sample is drawn from a different distribution, whose properties
are unknown apriori to the principal. From the mechanism design perspective, the challenge is that
the incentivization procedure not only needs to ensure that agents report truthfully, but also needs to
ensure that each agent exerts an effort that minimizes the overall prediction error. In this paper, we
formulate and optimally solve a “parametric” form of this joint design problem. More specifically, the
principal desires to predict a parameter of a known distribution. Each agent is modeled in a parametric
fashion, with her work quality (or expertise) governed by a single parameter that is the agent’s private
information. While each agent aims to maximize her own expected payoff (i.e., the revenue minus the
cost of effort), the principal must optimize a joint utility that trades off the prediction error and the
monetary costs.1

Our contributions. We design a mechanism (which we call “COPE”, for COst and Prediction
Elicitation) that jointly optimizes the principal’s payoff in terms of the payments made to the agents
and the prediction error incurred. COPE provides a systematic way for the principal to incentivize
all participating agents to report their estimations truthfully and exert appropriate amounts of effort
based on their respective capabilities. The mechanism incorporates and exploits the heterogenity of
the agents in terms of their capabilities and costs, in order to minimize the prediction error.

Our COPE mechanism operates under a fairly general framework, encompassing a wide range of
distributions of the parameters for prediction as well as the cost functions of the agents. In this
paper, however, we focus on two special settings to gain engineering insights towards the design of such
mechanisms. We investigate the special scenario where the noise follows a Gaussian distribution, and
study the impact of two specific cost functions on the principal’s decision. Our results show that when
the costs incurred by the agents are linear in the amount of exerted effort, the principal should conduct
a crowd-tender, soliciting service of only the agent with the lowest reported cost. On the other hand,
when the costs are quadratic in the exerted effort, the optimal mechanism is that of crowd-sourcing,
where the principal recruits multiple agents to complete the task. We subsequently comment on the
structure of the optimal mechanism in the general case, but defer the details for a future version.

Related literature. Mechanism design for truthful elicitation of agents’ opinions is an extensively
studied problem, most recently investigated in [CJ15, MRZ05, Pre04, SZP15, DG13, TPPZ15] in the
context of modern crowdsourcing setups. In contrast to our work, this line of literature does not
consider the estimation aspect, and only focuses on the elicitation problem alone. Mechanism design
for truthful elicitation of agents’ opinions is also studied in the context of prediction markets (e.g.,
see [WZ04,Con09]). These works, however, study the scenario where the agents take the responsibility
of aggregating information. Our paper concerns a different setting and objective in which the principal
is in charge of information gathering and making the final prediction.

A parallel line of literature considers the problem of efficiently predicting or estimating underlying
parameters given the agents’ responses. The problems addressed there include estimation of an objective
ground truth [IPSW14,KOS11,ZBMP12], or inference of subjective preferences [NOS12,SBB+15]. Here,
the agents are assumed to be noisy, but not strategic, and there are no monetary considerations.

The scenario turns quite different when prediction must be done taking incentives into account,
and calls for the design of new procedures catering to both aspects. The recent works [FSW07,DFP08,
FCK15,CDP15] address problems in this space. The work that is closest to ours is that of [CDP15]
which considers a setting that involves both elicitation and estimation. There are several differences
between [CDP15] and our work. First, in [CDP15], the relationship between each agent’s effort and the
noise in its observation is assumed to be known. Our work, however, assumes this relation is governed
by a parameter that is unknown to the principal, which adds a non-trivial complexity to the problem.
We address this issue by eliciting the cost types of the agents and ensuring that they are incentivized
to report their cost types correctly. Second, it is assumed in [CDP15] that the agent always reports

1For ease of exposition, we refer to the principal as “he” and each agent as “she”.
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Figure 1: Sequence of interactions between the principal and the agents.

truthfully once she makes an observation. Our work, in contrast, accommodates strategic agents, and
truth-telling is no longer automatically achieved. In order to address this key difficulty, we add a
scoring-rule component, where we assume that the principal eventually observes the true value of the
parameter. This assumption is not required in [CDP15]. Making this assumption limits the scope of
the application, but makes the joint optimization of elicitation and estimation possible.

2 Problem Setting

We begin with a formal description of the problem formulation. The description requires us to
set up notation to capture the behavior of the agents, the objective of the principal, the prediction
problem, and the mechanism-design problem.

2.1 System Model

We consider a setting where the principal wishes to make a parametric prediction, that is, to form an
informed estimate about a parameter x∗ ∈ X ⊆ R. Predicting the winner of an election is a motivating
example. We assume that x∗ has a prior distribution that is publicly known, for instance, from the
results of an earlier election. We assume that the principal will come to know the precise value of x∗

sometime in the future, for instance, upon completion of the election.
Figure 1 pictorially depicts the interaction between agents and the principal. The individual com-

ponents of the figure are explained in the following text.
Observation and Reporting: The principal’s prediction is based on queries made by the prin-

cipal to a set A = {1, . . . , N} of N agents. When queried, an agent can put in some effort to form
an “observation” whose value is known only to that agent. We assume that the distribution of the
observation yn comes from a parameterised family of distributions φ(x∗, qn), where qn represents the
effort exerted by agent n to make observation. The higher value of qn, the more effort agent n exerts,
and thus the better quality of agent n’s observation. An example that we focus on subsequently in the
paper is additive Gaussian noise, with

yn ∼ N (x∗,
1

qn
). (1)

Conditioned on x∗, the observations of the agents are assumed to be mutually independent. As a
shorthand, we let y = [y1, y2, . . . , yN ]T . We assume that agents do not collude with each other.

Effort Level and Cost Type: Every agent n ∈ A’s performance is governed by two parameters,
qn and θn, whose values are known privately only to that agent. The parameter qn ≥ 0 introduced
earlier represents the amount of effort exerted by agent n ∈ A in making her observation. The agent
is free to choose the value of qn, and a higher value of qn leads to a less noisy observation (see (1) for
instance). We let q = [q1, q2, . . . , qN ]T as a shorthand.

Each agent n ∈ A incurs some cost to exert effort when making an observation, and this cost is
governed by the agent’s cost-type parameter θn. The cost types of different agents are allowed to be
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different, capturing the heterogenity of the agents. A smaller value of θn implies a higher capability of
agent n. Specifically, we consider a publicly known cost function C : R+ × R+ → R+ and assume that
the cost incurred by an agent n ∈ A (having the cost type θn) when exerting an effort qn is C(qn, θn).

The cost types {θn}n∈A are assumed to be random, independently and identically distributed on
support [θ, θ̄] for some 0 ≤ θ < θ̄ < ∞. This distribution is assumed to be public knowledge. In
this paper we focus on the case where the distribution is uniform on the interval [θ, θ̄]. We let θ =
[θ1, θ2, . . . , θN ]T .

Reporting Observations and Making Payments: The principal employs monetary incentives
to ensure that agents make their observations and report them to the principal. In order to incentivize
agents to participate the prediction task, the payment to an agent must, at the least, cover the cost
incurred by that agent in putting effort to make the observation. However, since each agent’s cost
parameter is known only to that agent, the principal needs to ask each agent to report her own cost
type (Figure 1a). The agents are strategic, and any agent n ∈ A may report a cost type θ̂n that is
different from her true cost type θn. Let θ̂ = [θ̂1, θ̂2, . . . , θ̂N ]T .

As we will see subsequently, incentivizing different agents to put different levels of effort depending
on their respective cost types allows for a significantly better prediction performance. The principal
must incentivize these different effort levels, and the choice of these effort levels is based on the agents’
reported cost types θ̂ (Figure 1b). Let function Qp : [θ, θ̄]N → R+ denote the effort that the prin-
cipal requires an agent to exert. The function Qp depends on the cost types reported by the agents:
Qp(θ̂n, θ̂−n) represents the effort required from agent n ∈ A, where θ̂−n = [θ̂1, . . . , θ̂n−1, θ̂n+1, . . . , θ̂N ]T

is the reported cost parameters of all agents except agent n. Here (and elsewhere in the paper), we use
the superscript “P" to represent the principal. In order to simplify notation, we will henceforth use qpn
as a shorthand for Qp(θ̂n, θ̂−n). We let qp = [qp1 , . . . , q

p
N ]T .

Each agent n ∈ A is strategic and may exert an effort qn 6= qpn to suit her own interests. When
choosing the effort to exert, the agent may also exploit the fact that the principal cannot directly
observe the actual effort exerted. Upon exerting the chosen effort qn, the agent obtains an observation
yn (Figure 1c). The principal seeks the value of the observation yn, but the agent may report a
strategically chosen value ŷn 6= yn to the principal (Figure 1d) that suits her own interests. We adopt
the shorthand ŷ = [ŷ1, ŷ2, . . . , ŷN ]T . Based on the information obtained, the principal must make a
prediction for the value of x∗ (Figure 1e).

The principal makes payment to each agent once he observes the true value of x∗. Specifically, we
define the payment function as R : R×R× [θ, θ̄]N× → R+; the payment to agent n is R(x∗, ŷn, θ̂n, θ̂−n),
which depends on the value of x∗, the agent n’s reported observation ŷn, and all agents’ reported cost
parameters θ̂.

As indicated above, the model considered is a one-shot model where the principal communicates
with all agents simultaneously and not sequentially.

Payoff of Agent: Given the payment function announced by the principal, each agent n’s payoff
Ua : R× [θ, θ̄]×R+×R× [θ, θ̄]N → R+ is defined as the difference between the payment received from
the principal and the cost incurred in making the observation, and is given as

Ua(x∗, θ̂n, qn, ŷn, θn, θ̂−n) =R(x∗, ŷn, θ̂n, θ̂−n)− C
(
qn, θn

)
, (2)

Here the superscript “A” indicates a term associated to the agents. The above equation shows that agent
n ∈ A’s payoff also depends on other agents’ reported cost parameters θ̂−n. When each agent n ∈ A
chooses her strategy, i.e., her cost reported value θ̂n, exerted effort qn, and the reported observation
ŷn, to maximize her expected payoff, she assumes that all other agents report truthfully. The expected
payoff of the agent n is calculated as

E[Ua(x∗, θ̂n, qn, ŷn, θn,θ−n)] = E[R(x∗, ŷn, θ̂n,θ−n)]− C(qn, θn),
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where the expectation is taken with respect to the distributions of x∗ and all agents’ cost parameters
θ−n. Recall that each agent n only knows her own cost parameter θn, and only has distributional
information about other agents’ cost parameters.

Payoff of the Principal: Let `p : R×R→ R+ be the loss function that characterises the penalty
term for mistakes in the prediction. For instance, one could consider the squared loss `p(x∗, x̂) =
(x∗ − x̂)2 as the penalty for the principal. We measure the utility gained by the principal through the
prediction in terms of the Bayes risk incurred under this loss function: If all agents report their true
observations (i.e., ŷ = y) and exert efforts as desired by the principal (i.e., q = qp), then the Bayes
risk Bp : R× R→ R+ is

Bp(qp) = inf
x̂
E[`p(x∗, x̂(y, qp))],

where the expectation is taken with respect to x∗ and y. The net payoff of the principal Up : R ×
RN × [θ, θ̄]N → R is then defined as the difference between his utility obtained from prediction and the
monetary payments to all agents:

Up(x∗, qp,y, θ̂) = −Bp(qp)−
∑
n∈A

R(x∗, yn, θ̂n, θ̂−n). (3)

Here, we assumed without loss of generality that the monetary payment and the prediction loss is
normalized to be on the same scale.

2.2 Design Objective

Before we explain our objective, we begin by defining two standard game-theoretic terms (applied
to our setting) that are required for subsequent discussions.

Definition 1. (BIC: Bayesian Incentive Compatibility) A mechanism is said to be Bayesian incentive
compatible (BIC) if for every agent n ∈ A, her expected payoff satisfies

E
[
Ua(x∗, θn, q

p
n, yn, θn,θ−n)

]
≥E
[
Ua(x∗, θ̂n, qn, ŷn, θn,θ−n)

]
∀(θ̂n, qn, ŷn) 6=(θn, q

p
n, yn), (4)

where the expectation is taken with respect to x∗ and all other agents cost parameters θ−n.

BIC means that for any agent n, reporting the true cost parameter, exerting the effort requested
by the principal, and reporting true observation will maximize her expected payoff, given common
knowledge about the distribution on agents cost parameters and when other agents are truthfully
report their cost parameters.

Definition 2. (BIR: Bayesian Individual Rationality) A mechanism is said to be Bayesian incentive
rationality (BIR), if the expected payoff of every agent n ∈ A is non-negative, given that she reports
truthfully, exerts effort as the principal desires, and assumes that all other agents report their cost
parameters truthfully, that is,

E
[
Ua(x∗, θn, q

p
n, yn, θn,θ−n)

]
≥ 0 ∀n ∈ A, (5)

where the expectation is taken with respect to x∗ and all other agents’ cost parameters θ−n.

Assuming (without loss of generality) that the payoff of an agent not participating in this process
equals zero, BIR means that an agent will participate only if her expected payoff is at least as much as
that of a non-participating agent.
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Based on the above definitions, the problem that we want to solve is formalized as follows. The
goal is to design a mechanism, say M, that maximizes the principal’s utility while ensuring truthful
reports from the agents:

sup
M

E
[
Up(x∗, qp,y, θ̂)

]
subject to: BIC and BIR in (4) and (5),

(6)

where the expectation is taken with respect to x∗, y and θ. In words, the goal is to design a mechanism
such that: (i) the principal’s payoff is maximized in expectation; (ii) the principal can elicit truthful
information from all agents; and (iii) the principal can incentivise suitable effort from the agents based
on their respective cost parameters.

3 The COPE Mechanism

In this section, we present an optimal mechanism which we call “COPE” (COst and Prediction
Elicitation) to solve (6). In this paper, we choose to focus on two specific cases, enumerated below.
The reason for our choice is that these two settings illustrate all the key ideas behind the general
construction, are easier to understand, and offer some concrete engineering insights. We subsequently
provide a brief commentary on the mechanism in the general case; we defer the details to a subsequent
version of the paper.

We consider the following pair of specific settings in this section. We consider the Gaussian case,
where we assume the prior x∗ ∼ N (µ0, σ

2
0), and the observation of every agent n follows the distribution

yn ∼ N (x∗, 1
qn

). The values of µ0 and σ0 are assumed to be public knowledge. We assume θn ∼
Uniform[θ, θ̄], independent for every n ∈ A. We consider the squared `2-loss to measure the prediction
error, namely, `p(x∗, x̂) = (x∗−x̂)2. We consider two cost functions: (i) linear cost function C(q, θ) = qθ,
and (ii) quadratic cost function C(q, θ) = 1

2θq
2.

3.1 Linear Cost Function C(q, θ) = qθ

We first consider the linear cost function C(q, θ) = qθ and discuss the corresponding COPE mecha-
nism. Algorithm 1 presents the higher-level structure of the mechanism; the working of the mechanism
crucially relies on the careful construction of specific functions referred to in the algorithm, and these
constructions are described below.

Algorithm 1: COPE
Step 1: The principal announces a payment function R
Step 2: Every agent n ∈ A independently reports a cost type θ̂n ∈ [θ, θ̄] to the principal
Step 3: The principal sends each agent n ∈ A a contract which specifies the effort level qpn along with
values of functions π(θ̂n, θ̂−n), K(θ̂n, θ̂−n), and S(θ̂n, θ̂−n) that comprise the function R
Step 4: Each agent n ∈ A exerts effort qn and makes an observation yn
Step 5: Each agent n ∈ A reports an estimate ŷn
Step 6: The principal makes prediction x̂
Step 7: The true value x∗ is realized
Step 8: The principal makes the payment R(x∗, ŷn, θ̂n, θ̂−n) to every agent n ∈ A

Recall that the function Qp : [θ, θ̄]× [θ, θ̄]N−1 → R+ specifies the effort that the principal requires
an agent to exert, based on the cost parameters reported by all agents. In Theorem 1 subsequently, we
show that when the cost function is linear, the principal requires only one agent to exert effort. This
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property is reflected in the following choice of function Qp:

Qp(θ̂n, θ̂−n) =

{
max{(2θ̂n − θ)−

1
2 − σ−2

0 , 0} if n = arg minm∈A θ̂m
0 otherwise.

(7)

The function Qp is designed to strike an optimal balance between the prediction error and the monetary
expenditure, accommodating the fact that the agents are heterogeneous. As a shorthand, we let qpn =
Qp(θ̂n, θ̂−n) be the value of the effort that the principal requires the agent n to exert. We also define
n0 = arg minm∈A θ̂m, that is, n0 is the agent with the lowest reported cost parameter.

We now characterize the function R that governs the payment made by the principal to the agents.
The payments to all agents other than agent n0 are zero since these agents are not involved in the
observation and prediction procedure. The payment made to agent n0 is

R(x∗, ŷn0 , θ̂n0 , θ̂−n0) = π(θ̂n0 , θ̂−n0)− (x∗ − ŷn0)2 ·K(θ̂n0 , θ̂−n0) + S(θ̂n0 , θ̂−n0), (8)

where

π(θ̂n0 , θ̂−n0) =θ̂n0(2θ̂n0 − θ)−
1
2 − θ̄σ−2

0 + 2[(2θ̄ − θ)
1
2 − (2θ̂n − θ)

1
2 ],

K(θ̂n0 , θ̂−n0) =θ̂n0(2θ̂n0 − θ)−1, S(θ̂n0 , θ̂−n0) = θ̂n0(2θ̂n0 − θ)−
1
2 .

Let us explain the main ideas behind this construction. The term (x∗ − ŷn0)2 in (8) ensures that
the agent reports her observation truthfully. Since no other terms in (8) depend on ŷ, and K > 0,
the agent must necessarily report a certain deterministic function of her observation yn in order to
maximize her own expected payoff. The choices of functions K and S ensure that the agent’s expected
payoff is maximized only when the agent chooses qn0 = qpn0

. This property ensures that the agent
exerts an effort as desired by the principal. Now given that the agent’s behavior is guaranteed to be
truthful with respect to qpn0

and yn0 , the expected value of R simply equals to the value of the function
π. This function is designed to ensure that the agent truthfully reports her cost parameter in the first
place. Interestingly, in the case of linear costs, given the identity of agent n0, the payment function
R is independent of θ̂−n0 . Finally, the predictor x̂ employed by the principal is the standard Bayes
estimator operating on the agents’ responses x̂ = ŷn0 .

We prove that the proposed COPE mechanism is indeed guaranteed to work as claimed.

Theorem 1. Under the linear cost function C(q, θ) = qθ, COPE is feasible and maximizes the
principal’s expected payoff.

An important consequence of the theorem is that the optimal mechanism in the case of linear costs
awards the task to the single agent with the lowest bid. When costs are linear, this result therefore
suggests the practitioner to build what we call a “crowd-tender” system where all agents submit their
cost parameters, and the lowest bidder is awarded the task.

3.2 Quadratic Cost Function C(q, θ) = 1
2
θq2

We now consider a quadratic cost function C(q, θ) = 1
2θq

2 and present COPE for this setting. The
higher level structure of COPE is again given by Algorithm 1, and the design of the specific functions
referred to in the algorithm is provided below. Under COPE, the function Qp : [θ, θ̄]× [θ, θ̄]N−1 → R+

that governs the effort that the principal requires an agent to exert is given as

Qp(θ̂n, θ̂−n) = (2θ̂n − θ)−1(W (θ̂))−2, (9)

where W is the solution of the equation [W (θ)]3 − 1
σ2
0
[W (θ)]2 =

∑
m∈A

1
2θm−θ . An explicit (although

cumbersome) solution of W is provided in Appendix A.2.
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As in the case of linear costs, the function Qp is designed to optimally harness the heterogenity of
the agents in order to minimize the prediction error with a small enough payment. Observe that in
contrast to the linear case (7), here the principal requires every agent to exert a positive effort.

We again adopt the shorthand of qpn = Qp(θ̂n, θ̂−n). We define the function R that governs the
payment to any agent n as

R(x∗, ŷn, θ̂n, θ̂−n) = π(θ̂n, θ̂−n)− (x∗ − ŷn)2 ·K(θ̂n, θ̂−n) + S(θ̂n, θ̂−n),

where

π(θ̂n, θ̂−n) =
1

2

(
θ̂n ·

[
Qp(θ̂n, θ̂−n)

]2
+

∫ θ̄

θ̂n

[
Qp(z, θ̂−n)

]2
dz
)
,

K(θ̂n, θ̂−n) =
[
Qp(θ̂n, θ̂−n) + 1/σ2

0

]2
θ̂n ·Qp(θ̂n, θ̂−n),

S(θ̂n, θ̂−n) =
[
Qp(θ̂n, θ̂−n) + 1/σ2

0

]
θ̂n ·Qp(θ̂n, θ̂−n).

These functions have a form similar to those in the case of linear costs (8), except that these functions
depend on the reported cost parameters of all N agents, whereas the corresponding functions in the
linear cost setting depended only on the reported cost parameter of one agent. The remaining higher
level intuition behind this construction is identical to that behind the linear-cost case described in the
previous section.

The principal uses the Bayes estimate as his predictor: x̂(ŷ, qp) =
(1−N)µ0/σ2

0+
∑

n∈A (1/σ2
0+qpn)·ŷn

1/σ2
0+

∑
n∈A q

p
n

.
The following theorem establishes the optimality guarantee of COPE under quadratic costs.

Theorem 2. Under the quadratic cost function C(q, θ) = 1
2θq

2, COPE is feasible and maximizes the
principal’s expected payoff.

Thus the optimal mechanism in the case of quadratic costs requires participation of all agents. Our
theory thus recommends the practitioner to build a “crowd-sourcing” system when the costs of agents
are believed to be quadratic.

3.3 Commentary on Interpretations and Generalizations

Our results show that interestingly, it is optimal for the principal to call for a crowd-tender when
the cost function is linear, while it is optimal to design a crowd-sourcing mechanism when the cost
function is quadratic. Informally, the cost function acts as a regularizer on the choice of effort levels
qp, and the dichotomy of these two cost functions is related to the sparsity inducing properties of the
`1-regularizer, and the lack thereof of the squaredâĂž `2-regularizer.

We briefly comment upon the structure of the optimal mechanism under more general forms of the
cost function, the noise distribution, the prior distribution, and the prediction loss function. Under these
general conditions, the structure of the mechanism remains identical to Algorithm 1. The structure of
the payment function remains identical to (8), except that under a more general distribution of noise
in the agents’ observations, the term (x∗ − ŷn0)2 is replaced by a loss function that permits a unique
Bayes estimator under the given noise distribution. The structure of the functions π, K, and S in (8) is
different from that for the linear and quadratic cases; interestingly, they depend on the distribution of
{θn} only through the ratio of the c.d.f. F (θn) and the p.d.f. f(θn) of the distribution. The principal’s
predictor x̂ remains the standard Bayes estimator. We have shown that COPE with these modifications
to be optimal and feasible under certain regularity conditions. Given the space constraints, we defer
the details for a future version.
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(a) Linear cost function.
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Figure 2: The principal’s expected payoff under COPE and the homogenous mechanism.

4 Simulations

We conduct numerical studies to evaluate the performance of COPE. In particular, we investigate
the amount of gain that can be achieved by (optimally) exploiting the heterogenity of the agents. To
this end, we compare the performance of COPE to the following “homogeneous” benchmark mechanism.
The homogenous mechanism assumes that all agents are identical and that the principal operates under
the belief that every agent’s cost parameter equals θ† ∈ [θ, θ̄]. The principal then chooses a mechanism
that incentivizes every agent to exert optimal effort and to report observations truthfully in a manner
that maximizes his expected payoff, and then employs the predictor that leads to the smallest risk.
(Please see Appendix B for details on this optimal homogeneous mechanism.) Each agent, on the other
hand, knows the value of her own cost parameter, and given this payment function, exerts an effort
and reports the observation that maximizes her own payoff.

In the simulations, we draw x∗ ∼ N (0, 1), and set θ = 0 and θ̄ = 1. We vary the number of
agents from N = 3 to N = 19. Each point in the plots is an average across 50000 trials. Without
loss of generality, we have normalized the principal’s payoff (see (3)) so that it equals zero in the ideal
(unachievable) case of zero prediction error and a zero payment. Note that the principal can always
achieve a payoff of −1 by not making any payments, and simply choosing the prior mean has her
prediction.

Figure 2 depicts the expected payoff of the principal under COPE and under the homogeneous
mechanism with different values of θ† (The error bars on many points in Figure 2 are too small to
be visible). The two primary observations from the simulation results are as follows. First, under
COPE, the principal’s expected payoff increases with the number of agents. This is because COPE
optimally exploits the presence of additional agents by making them exert different efforts based on
their respective cost types. A second inference is that exploiting the heterogeneity of agents allows
COPE to outperform the homogeneous mechanism consistently, and the difference depends on the
principal’s belief of θ†.

5 Conclusions

All in all, we see that one can obtain a (much) higher payoff by eliciting and exploiting the het-
erogenity in the agents. The mechanism COPE proposed in this paper indeed achieves this goal, and
moreover, attains the optimal payoff. In the future, we intend to use this mechanism as a building block
for studying more complex problems at the interface of statistical learning theory and game theory.
In particular, it remains to be seem whether COPE can be extended to non-parametric settings with
minimal structural assumptions on the behavior of the agents.
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Appendix

A Proof

A.1 Proof for Theorem 1

Proof. The proof will proceed in four steps. The first three steps show that our mechanism incentivizes
the agents to be truthful, and the fourth step proves optimality of our mechanism. First, we show
that irrespective of what an agent reports as her cost parameter, and irrespective of the effort she
exerts, the agent is always incentivized to report her true observation. We follow this up and show that
irrespective of the effort that an agent exerts, she is always incentivized to report her cost parameter
correctly. The third step completes the proof of truthfulness, showing that under truthful reporting
of the cost parameter and the observation, under our mechanism, an agent is always incentivized to
exert precisely the effort as desired by the principal. Finally, we show that among all mechanisms that
ensure truthful reports, our mechanism maximizes the principal’s expected utility.

We assume that the random variables {θn}n∈A are independently and identically distributed on
support [θ, θ̄], with a cumulative distribution function F : [θ, θ̄] → R+ and a probability density
function f : [θ, θ̄]→ R+. We further assume that the c.d.f. function F is continues, differentiable, and
log concave in [θ, θ̄]. This assumption is satisfied by a wide range of distributions, such as the uniform,
gamma, and beta distributions.

Step 1. Truthful reporting of observation under COPE
We will analyze the strategies of the agent who is recruited by the principal and the agents who are

not recruited by the principal, respectively.
We first study the observation reporting strategy of the agent n0 who is recruited and rewarded by

the principal, where n0 = arg minm∈A θ̂m.
We will show that the agent n0 will choose

ŷn0 =
µ0 · 1/σ2

0 + yn0 · qn0

1/σ2
0 + qn0

(10)

to maximize her expected payoff given her exerting effort qn0 and own observation yn0 .
As shown in (8), π(θ̂n0),K(θ̂n0) and S(θ̂n0) are independent of ŷn0 . Moreover, the value of calculated

by K(θ̂n0) is always positive. Hence, when the agent n0 makes reporting observation strategy to
maximize her expected payoff, i.e.,

ŷn0 ∈ arg maxE
[
π(θ̂n0)−K(θ̂n0) · (x∗ − ŷn0)2 + S(θ̂n0)

]
− C

(
qn0 , θn0

)
,

where the expectation is taken with respect to x∗ and cost parameters θ−n0 = [θ1, . . . , θn0−1, θn0+1, . . . , θN ]T

except agent n0, it is equivalent for the agent n0 to choose reporting strategy such that

ŷn0 ∈ arg minEx∗ [(x∗ − ŷn0)2]. (11)

It is well known that only when ŷn0 =
µ0·1/σ2

0+yn0 ·qn0

1/σ2
0+qn0

, the value of Ex∗ [(x∗ − ŷn0)2] is minimized
and the expected value is

Ex∗ [(x∗ − ŷn0)2] =
1

1/σ2
0 + qn0

.

We then study the observation reporting strategy of other agents who are not recruited and rewarded
by the principal. For agent n ∈ A, n 6= n0, she will put zero effort as she does not received the

12



reward from the principal. In such case, only when reporting her observation ŷn = µ0 can minimize
Ex∗ [(x∗ − ŷn)2]. The expected value of Ex∗ [(x∗ − ŷn)2] is

Ex∗ [(x∗ − ŷn)2] =
1

1/σ2
0

, n ∈ A, n 6= n0.

Step 2. Truthful reporting of cost parameter under COPE
We first show that the agent n0 will truthfully reveals her cost type. We first rewrite the function

π, K, and S as follows.

π(θ̂n0 ,θ−n0) =θ̂n0 ·Qp(θ̂n0 ,θ−n0) +

∫ θ̄

θ̂n0

Qp(z,θ−n0)dz,

K(θ̂n0 ,θ−n0) =
[
Qp(θ̂n0 ,θ−n0) + 1/σ2

0

]2 · θ̂n0 ,

S(θ̂n0 ,θ−n0) =
[
Qp(θ̂n0 ,θ−n0) + 1/σ2

0

]
· θ̂n0 .

The expected payoff of the agent whose cost type is θn0 but report θ̂n0 is:

E{x∗,yn0 ,θ−n0}
[
Ua(x∗, θ̂n0 , qn0 , yn0 , θn0 ,θ−n0)

]
= Eθ−n0

[
π(θ̂n0 ,θ−n0)−K(θ̂n0 ,θ−n0) · 1

1/σ2
0 + qn0

+ S(θ̂n0 ,θ−n0)− qn0θn0

]
.

(12)

For notation convenience, we define the function Uae : R× [θ, θ̄]× R+ × [θ, θ̄]N → R+ as

Uae(θ̂n0 , qn0 , θn0 ,θ−n0) =
[
π(θ̂n0 ,θ−n0)−K(θ̂n0 ,θ−n0)

1

1/σ2
0 + qn0

+ S(θ̂n0 ,θ−n0)− qn0θn0

]
, (13)

where θ−n0 are the random variables of all agents cost type except the agent n0. By comparing (12)
to (13), the expected payoff of the agent n is

E{x∗,yn0 ,θ−n0}
[
Ua(x∗, θ̂n0 , qn0 , yn0 , θn0 ,θ−n0)

]
= Eθ−n0

[
Uae(θ̂n0 , qn0 , θn0 ,θ−n0)

]
.

By the mean value theorem, we have:

E
[
Uae(θn0 , qn0 , θn0 ,θ−n0)

]
− E

[
Uae(θ̂n0 , qn0 , θn0 ,θ−n0)

]
= E

[
∂Uae(η, qn0 , θn0 ,θ−n0)

∂η

]
· (θn0 − θ̂n0),

(14)
where the expectation is taken with respect to θ−n0 , and η lies between θn0 and θ̂n0 .

We further have:

Eθ−n0

[
∂Uae(η, qn0 , θn0 ,θ−n0)

∂η

]
= Eθ−n0

[
∂

∂η

(
ηQp(η,θ−n0) +

∫ θ̄

η
Qp(z,θ−n0)dz −

[
Qp(η,θ−n0) + 1/σ2

0

]2
1/σ2

0 + qn0

η

+
[
Qp(η,θ−n0) + 1/σ2

0

]
η − qn0θn0

)]
= Eθ−n0

[
2η
∂Qp(η,θ−n0)

∂η
−
[
Qp(η,θ−n0) + 1/σ2

0

]2
1/σ2

0 + qn0

− 2
[Qp(η,θ−n0) + 1/σ2

0]

1/σ2
0 + qn0

· ∂Q
p(η,θ−n0)

∂η
· η +

[
Qp(η,θ−n0) + 1/σ2

0

]]
= Eθ−n0

[(
1− Qp(η,θ−n0) + 1/σ2

0

qn0 + 1/σ2
0

)
·
(

2η · ∂Q
p(η,θ−n0)

∂η
+Qp(η,θ−n0) + 1/σ2

0

)]
.

(15)
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If we have

−
∂Qp(η,θ−n0)/

(
Qp(η,θ−n0) + 1/σ2

0

)
∂θn0/θn0

≥ 1

2
, (16)

then we have
2η · ∂Q

p(η,θ−n0)

∂η
+Qp(η,θ−n0) + 1/σ2

0 ≤ 0.

Lemma 1. If θn ∼ Uniform[θ, θ̄], independent for every n ∈ A, then (16) is satisfied.

Proof. First consider the case N = 1. Then there is only one agent, and hence the principal automati-
cally selects that agent. So Qp is simply Q of that agent:

Q(θ) = 1/
√
θ + F (θ)/f(θ)− 1/σ2

0,

and hence

−∂Q(θ)

∂θ

θ

Q(θ) + 1/σ2
0

=
1 + ∂

∂θ

(
F (θ)
f(θ)

)
2[θ + F (θ)/f(θ)]

1√
θ + F (θ)/f(θ)

θ

1/
√
θ + F (θ)/f(θ)

=
1

2

1 + ∂
∂θ

(
F (θ)
f(θ)

)
1 + 1

θ

(
F (θ)
f(θ)

) ≥ 1

2
,

where the final inequality holds for uniform distribution.
We now extend this condition to N > 1. Observe that the calculation above will be violated

only when the cost parameter of some other agent is infinitesimally close to θn0 (since in that case,
∂Qp(θn0 ,θ−n0 )

∂θn0
is different from that calculated above). However given our assumptions that the distri-

bution of θ has a valid pdf, and the number of agents N is finite, θn0 will be well separated from the
cost types of all other agents with probability 0.

Because the agent will exert effort qn0 to maximize her expected payoff. By taking the first order
derivative of (12) with respect to qn0 and set it to zero, we have

(1/σ2
0 + qpn0

)2 · θ̂n0 = (1/σ2
0 + qn0)2 · θn0 , (17)

where qpn0
is a shorthand for Qp(θ̂n0 ,θ−n0).

Based on (17), we have (i) if θ̂n0 > θn0 , qpn0
< qn0 , (ii) if θ̂n0 < θn0 , qpn0

> qn0 , and (iii) if θ̂n0 = θn0 ,
qpn0

= qn0 .
Hence, If θ̂n0 > θn0 , the equation (15) is negative and (14) is positive. This inequality also holds for

θ̂n0 < θn0 , by a similar argument. Therefore, agent n0 will truthfully report her own cost parameter.
We then show that the agent n ∈ A, n 6= n0 will truthfully reveals her cost type. Recall that the

principal does not recruit and reward the agent n ∈ A, n 6= n0. Hence, the payment to the agent
n ∈ A, n 6= n0 is zero. The we have

Eθ−n

[
Uae(θn, qn, θn,θ−n)

]
− Eθ−n

[
Uae(θ̂n, qn, θn,θ−n)

]
= 0, ∀n ∈ A, n 6= n0,

which shows that there is indifference between truthfully report cost type or not in terms of expected
payoff for the agent n. We assume that in such case, the agent will truthfully report their cost types.

Step 3. Incentivized agent to exert precisely the effort as desired by the principal
under COPE

14



As we have proved in Step 2 that the agent n0 would truthfully report her cost type (θ̂n = θn), then
we will show that the agent n0 exerts effort such that qn0 = qpn0

would maximize her expected payoff
which is given as

E
[
Uae(θn0 , q

p
n0
, θn0 ,θ−n0)

]
= π(θn0 ,θ−n0)−K(θn0 ,θ−n0)

1

1/σ2
0 + qn0

+ S(θn0 ,θ−n0)− qn0θn0 . (18)

where the expectation is taken with respect to θ−n0 .
It can be verified that (18) is concave in qn0 . Hence, by taking the first order derivative of (18) with

respect to qn0 , we have

∂

∂qn0

E
[
Uae(θn0 , q

p
n0
, θn0 ,θ−n0)

]
=

[
1/σ2

0 + qpn0

1/σ2
0 + qn0

]2

· θn0 − θn0 . (19)

We can verify that the value of (19) equals to zero only when qn0 = qpn0
. Hence, agent n0 will exert

the effort as the principal desires to maximize her expected payoff. Then (10) is rewritten as

ŷn0 =
µ0 · 1/σ2

0 + yn0 · qpn0

1/σ2
0 + qpn0

. (20)

Because the principal knows the value of µ0, σ2
0, and qpn0

, he can infer the agent n0’s truth observation
yn0 from (20).

Step 4. Maximizes the principal’s expected utility under COPE
Then we look at the expected payoff of the principal. The following lemma describes COPE is the

optimal mechanism that maximizes the principal’s expected utility.

Lemma 2. The optimal predictor x̂ =
µ0·1/σ2

0+
∑

n∈A yn·qpn
1/σ2

0+
∑

n∈A q
p
n

defined in COPE maximizes the principal’s

expected utility, and the Bayes risk of the principal’s prediction is Bp
(
qp
)

= 1
1/σ2

0+
∑

n∈A q
p
n
.

Proof. Recall that qpn = Qp(θn,θ−n). Given all agents’ observation y and agents’ exert effort qp, the
principal’s updated belief on the realization of x∗ can be expressed as

x∗|(y, qp) ∼ N
(
µ0 · 1/σ2

0 +
∑

n∈A yn · qpn
1/σ2

0 +
∑

n∈A q
p
n

,
1

1/σ2
0 +

∑
n∈A q

p
n

)
.

To maximize the expected utility for the prediction, the principal solves

max
x̂

E
[
v − (x∗ − x̂)2|(y, qp)

]
= max

x̂

(
v −

{
E
[
x∗2|(y, qp)

]
− 2x̂E

[
x∗|(y, qp)

]
+ x̂2

})
= max

x̂

(
v −

[
x̂−

µ0 · 1/σ2
0 +

∑
n∈A yn · qpn

1/σ2
0 +

∑
n∈A q

p
n

]2

− 1

1/σ2
0 +

∑
n∈A q

p
n

)
≤ v − 1

1/σ2
0 +

∑
n∈A q

p
n

The equality holds only when

x̂ =
µ0 · 1/σ2

0 +
∑

n∈A yn · qpn
1/σ2

0 +
∑

n∈A q
p
n

. (21)
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Hence, the optimal predictor that maximizes the principal’s expected utility is

x̂
(
y, qp) =

µ0 · 1/σ2
0 +

∑
n∈A yn · qpn

1/σ2
0 +

∑
n∈A q

p
n

(22)

and the Bayes risk is

Bp(qp) = inf
x̂
E[(x∗ − x̂)2] =

1

1/σ2
0 +

∑
n∈A q

p
n

,

where the expectation is taken with respect to x∗ and y.
Recall that under the linear cost function, the principal only recruits agent n0 to exert effort, in

such case, qpn = 0, ∀n ∈ A, n 6= n0. Also recall that the principal can infer the true observation of the
agent n0 through the function g : R → R and is defined as yn0 = g(ŷn0) = ŷn0 + (ŷn0 − µ0)/(qpn0

σ2
0).

Then putting back to (22) we can get the conclusion.

We then show that the desired effort level Qp(θn,θ−n) defined in (7) and the function π(θn,θ−n)
defined in (8) can maximize the principal’s expected payoff and satisfy BIC and BIR condition.

Notice that the agent n0 exerts effort such that qn0 = qpn0
and reports ŷn0 =

µ0·1/σ2
0+yn0 ·q

p
n0

1/σ2
0+qpn0

, the
expected payment function is reduced to

E{x∗,yn0 ,θ−n0}
[
R(x∗, yn0 , qn0 , θn0 ,θ−n0)

]
= Eθ−n0

[
π(θn0 ,θ−n0)−K(θn0 ,θ−n0) · 1

1/σ2
0 + qn0

+ S(θn0 ,θ−n0)
]

= Eθ−n0

[
π(θn0 ,θ−n0)

]
. (23)

For other agent n ∈ A, n 6= n0, as the principal does not require her to do the observation, we first
assume that the expected payment to her is as follows

E{x∗,yn0 ,θ−n0}[R(x∗, yn, θn,θ−n)] = Eθ−n0

[
π(θn,θ−n)

]
, ∀n ∈ A, n 6= n0 (24)

Later we will show that π(θn,θ−n) = 0,∀n 6= n0.
The expected payoff of agent n ∈ A is

Eθ−n

[
Uae(θ̂n0 , q

p
n0
, θn0 ,θ−n0

)]
=Eθ−n

[
π(θ̂n,θ−n)− θnQp(θ̂n,θ−n)

]
,

where qpn0
is the shorthand ofQp(θ̂n,θ−n). For notation convenience, we adopt Uae

(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)
in the later proof of Theorem 1, where the function Uae is rewritten as

Eθ−n

[
Uae(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
= Eθ−n

[
π(θ̂n,θ−n)− θnQp(θ̂n,θ−n)

]
. (25)

Correspondingly, BIC and BIR conditions, i.e., (4) and (5) can be rewritten as

Eθ−n

[
Uae(π(θn,θ−n), Qp(θn,θ−n), θn

)]
≥ Eθ−n

[
Uae(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
, ∀θ̂n 6= θn (26)

Eθ−n

[
Uae(π(θn,θ−n), Qp(θn,θ−n), θn

)]
≥ 0, ∀θn ∈ [θ, θ̄]. (27)

Base on Lemma 2, (23), and (24), the expected payoff of the principal is

Ex∗,y,θ[Up(x∗, qp,y, θ̂)] = −Bp(qp)− Ex∗,y,θ
[∑
n∈A

R(x∗, yn, θn,θ−n)
]

= − 1

1/σ2
0 +

∑
n∈A q

p
n

− Eθ
[∑
n∈A

π(θn,θ−n)
]
.
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Recall that qpn = Qp(θn,θ−n), the principal’s optimal problem defined in (6) can be rewritten as

sup
{Qp(θ),π(θ)},∀θn∈θ,∀n∈A

E[Up(x∗, qp,y, θ̂)],

subject to : BIC and BIR in (26) and (27).
(28)

In the following lemmas, we characterize an equivalent formulation for the feasible region defined
by BIC and BIR. Using these lemmas, we show that Qp(θn,θ−n) defined in (7) and π(θn,θ−n) defined
in (8) are the optimal solution that solves the principal’s problem in (28).

Lemma 3. The solution of (28) is feasible if and only if it satisfies the following conditions for all
θn ∈ [θ, θ̄], ∀n ∈ A:

• the expected payoff of agent n is

Eθ−n

[
Uae(π(θn,θ−n), Qp(θn,θ−n), θn

)]
= Eθ−n

[ ∫ θ̄

θn

Qp(x,θ−n)dx

]
(29)

• Qp(θn,θ−n) is non-increasing in θn.

Proof. The proof of Lemma 3 is as follows. We first show that BIC and BIR imply the condition in
(29).

Notice that the first derivative of (25) is:

∂Eθ−n

[
Uae

(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
∂θn

= Eθ−n

[
−Qp(θ̂n,θ−n)

]
≤ 0. (30)

Then, for any θ1
n > θ2

n, we have

Eθ−n

[
Uae(π(θ1

n,θ−n), Qp(θ1
n,θ−n), θ1

n)
]
≤ Eθ−n

[
Uae(π(θ1

n,θ−n), Qp(θ1
n,θ−n), θ2

n)
]

≤ Eθ−n

[
Uae(π(θ2

n,θ−n), Qp(θ2
n,θ−n), θ2

n)
]
.

(31)

where the first inequality is because (30) and the second is from the BIC condition defined in (26). In
other words, for the agent n ∈ A whose cost parameter θ ≤ θn ≤ θ̄, we have

Eθ−n

[
Uae(π(θ̄,θ−n), Qp(θ̄,θ−n), θ̄)

]
≤ Eθ−n

[
Uae(π(θn,θ−n), Qp(θn,θ−n), θn)

]
≤ Eθ−n

[
Uae(π(θ,θ−n), Qp(θ,θ−n), θ)

]
. (32)

Recall that the BIR condition is

Eθ−n

[
Uae(π(θn,θ−n), Qp(θn,θ−n), θn

)]
≥ 0, ∀θn ∈ [θ, θ̄], (33)

which implies that, for the agent n ∈ A with any value θn ∈ [θ, θ̄], her expected payoff should at least
be zero. Then the expected payoff of the agent n with cost parameter θ̄ must be binding at zero.
Otherwise, the principal can reduce the π(θ̄,θ−n) by a small value of δ > 0, which does not violate the
constraint of (33) but raises the principal’s expected payoff. Hence, we have

Eθ−n

[
Uae(π(θ̄,θ−n), Qp(θ̄,θ−n), θ̄)

]
= 0. (34)

Let Uae(θn,θ−n) = Uae
(
π(θn,θ−n), Qp(θn,θ−n), θn

)
. From BIC condition, we have

Eθ−n

[
Uae(θn,θ−n)

]
= max

θ̂n

Eθ−n

[
Uae(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
.
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By using the envelope theorem, we have:

∂Eθ−n

[
Uae(θn,θ−n)

]
∂θn

=
∂Eθ−n

[
Uae(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn)

]
∂θn

∣∣∣∣∣
θ̂n=θn

= Eθ−n

[
−Qp(θn,θ−n)

]
,

(35)
where θn is a parameter. By integrating both sides from the value of θn to θ̄ and using (34) and the
assumption that the random variable θn of the agent n is independent for every n ∈ A , we get

Eθ−n

[
Uae(π(θn,θ−n), Qp(θn,θ−n), θn

)]
= Eθ−n

[ ∫ θ̄

θn

Qp(x,θ−n)dx

]
(36)

We prove Qp(θn,θn) is nonincreasing in θn by contradiction. Let pn as the shorthand for π(θn,θ−n).
Suppose for any θ1

n > θ2
n, we have Qp(θ1

n,θ−n) > Qp(θ2
n,θ−n). Because

∂2Uae
(
pn, q

p
n, θn

)
∂qpn∂θn

= −1 < 0, (37)

∂2Uae
(
pn, q

p
n, θn

)
∂qpn

2 = 0, (38)

we have

0 =
∂Uae

(
pn, q

p
n, θ

1
n

)
∂qpn

∣∣∣∣∣
qpn=Qp(θ1n,θ−n)

=
∂Uae

(
pn, q

p
n, θ

1
n

)
∂qpn

∣∣∣∣∣
qpn=Qp(θ2n,θ−n)

<
∂Uae

(
pn, q

p
n, θ

2
n

)
∂qpn

∣∣∣∣∣
qpn=Qp(θ2n,θ−n)

, (39)

where the first equality is because of BIC when the agent n’s cost parameter θn has the value of θ1
n,

the second equality is because of (38), and the inequality is because of (37).
However, based on the BIC condition, if the agent n’s cost parameter θn has the value of θ2

n, then
we should have

∂Uae
(
pn, q

p
n, θ

2
n

)
∂qpn

∣∣∣∣∣
qpn=Qp(θ2n,θ−n)

= 0,

which holds true for all scalar value of pn. Hence, for any θ1
n > θ2

n, Qp(θ1
n,θ−n) ≤ Qp(θ2

n,θ−n).
Then we need to prove that (29) implies BIC and BIR defined in (26) and (27).
BIR is verified by putting θn back to (29). Besides, by putting θn = θ̄ back to (29), we have

Eθ−n

[
Uae(π(θ̄,θ−n), Qp(θ̄,θ−n), θ̄

)]
= 0.

18



Then we prove that (29) implies BIC. Notice that we have:

Eθ−n

[
Uae(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
1
= Eθ−n

[
−
∫ θ̄

θn

∂Uae
(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), z

)
∂z

dz

]
2
= Eθ−n

[
Uae(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θ̂n

)
−
∫ θ̂n

θn

∂Uae
(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), z

)
∂z

dz

]
3
= Eθ−n

[ ∫ θ̄

θ̂n

Qp(η,θ−n)dη −
∫ θ̂n

θn

∂Uae
(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), z

)
∂z

dz

]
4
= Eθ−n

[
−
∫ θn

θ̄
Qp(η,θ−n)dη −

∫ θ̂n

θn

Qp(η,θ−n)dη +

∫ θ̂n

θn

Qp(θ̂n,θ−n)dz

]
5
= Eθ−n

[
Uae(π(θn,θ−n), Qp(θn,θ−n), θn

)
+

∫ θ̂

θn

(
Qp(θ̂n,θ−n)−Qp(η,θ−n)

)
dη
]

where the third equality and the fifth equality is obtained by (29).
If θ̂n > θn, then the above equation is non-positive (because Qp(η,θ−n) is non-increasing in η) and

hence

Eθ−n

[
Uae(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn)

]
< Eθ−n

[
Uae(π(θn,θ−n), Qp(θn,θ−n), θn)

]
.

This inequality also holds for θ̂n < θn by a similar argument. Therefore, the two condition imply BIC.

Then based on Lemma 3, we have the following Lemma.

Lemma 4. The optimisation problem in (28) has the following equivalent formulation:

max
{Qp(θ)},∀θn∈θ

Eθ
[
− 1

1/σ2
0 +

∑
n∈AQ

p(θn,θ−n)
−
∑
n∈A

Qp(θn,θ−n) · θn −
∑
n∈A

Qp(θn,θ−n) · F (θn)

f(θn)

]
,

s.t. Qp(θn,θ−n) is nonincreasing in θn, (40)

where the expectation is taken with respect to θ.

Proof. The proof of Lemma 4 is as follows. The expected payoff of the principal can be written as:

Eθ
[
− 1

1/σ2
0 +

∑
n∈AQ

p(θn,θ−n)
−
∑
n∈A

Qp(θn,θ−n) · θn −
∑
n∈A

Ua(π(θn,θ−n), Qp(θn,θ−n), θn
)]

= Eθ
[
− 1

1/σ2
0 +

∑
n∈AQ

p(θn,θ−n)
−
∑
n∈A

Qp(θn,θ−n) · θn −
∑
n∈A

∫ θ̄

θn

Qp(x,θ−n)dx

]
(41)

where the expectation is taken with respect to θ. Notice that

Eθn
[ ∫ θ̄

θn

Qp(x,θ−n)dx
]

=

∫ θ̄

θ

∫ θ̄

z
Qp(x,θ−n)dx · f(z)dz =

∫ θ̄

θ
F (z)Qp(z,θ−n)dz

=

∫ θ̄

θ

F (z)

f(z)
Qp(z,θ−n)f(z)dz = Eθn

[F (θn)

f(θn)
Qp(θn,θ−n)

]
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where the first equation is obtained by using integration by parts. Then by applying the above equation
to (41) and the fact that {θn}n∈A are assumed to be random, independently and identically distributed
on support [θ, θ̄], we can get the conclusion.

Based on Lemma 4, the principal’s problem thus reduces to choosing the desired effort qpn =
Qp(θn,θ−n) for each agent n ∈ A. We first consider the problem in (40) without the constraint.
If the solution to this unconstrained problem is increasing, then it is also a solution to the constrained
problem.

Lemma 5. Qp(θn,θ−n) defined in (7) and π(θn,θ−n) defined in (8) are the optimal solution that solves
the principal’s problem in (28)

Proof. We first prove that for the agent ∀n ∈ A,

Qp(θn,θ−n) =

{
max{1/

√
γ(θn)− 1/σ2

0, 0} if n0 = arg minm∈A θm,
0, otherwise,

is the optimal solution of (40) by contradiction.
As qpn = Qp(θn,θ−n), the problem in (40) is equivalent to

min
qp≥0

1

1/σ2
0 +

∑
n∈A q

p
n

+
∑
n∈A

qpn · γ(θn),

s.t. qpn is nonincreasing in θn, (42)

where γ(θn) = θn + F (θn)/f(θn).
Without loss of generality, let γ(θ1) ≤ γ(θ2) . . . ≤ γ(θN ). If the principal’s desired effort from all

agents are positive and the solution is

qp1 = qp,∗1 , qp2 = qp,∗2 , . . . , qpN = qp,∗N (43)

Suppose there are another solution such that
qp,†1 = qp1 + qpj ,

qp,†i = qpi , ∀i 6= 1, j, i ∈ A
qp,†j = 0,

(44)

We can verify that∑
n∈A

qp,†n =
∑
n∈A

qpn and
∑
n∈A

(
qp,†n · γ(θn)

)
≤
∑
n∈A

(
qpn · γ(θn)

)
.

Hence, (43) is not an optimal solution. Then we let qpn = 0,∀n > 1, the problem in (42) becomes

min
qp1

1

1/σ2
0 + qp1

+ qp1 · γ(θ1),

s.t. qp1 ≥ 0. (45)

By solving the above problem we can get that qp1 = max{1/
√
γ(θ1) − 1/σ2

0, 0}. As we define
n0 = arg minm∈A θm and the assumption that F is log-concave in [θ, θ̄], we have qpn0

= max{1/
√
γ(θn0)−

1/σ2
0, 0}.
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According to (29), we have

Eθ−n

[
π(θn,θ−n)−Qp(θn,θ−n) · θn

]
= Eθ−n

[ ∫ θ̄

θn

Qp(x,θ−n)dx

]
.

Then the optimal payment function given the agent n0 and 1/
√
γ(θn0)− 1/σ2

0 ≥ 0 is

π(θn0) = θn0/
√
γ(θn0)− θn0/σ

2
0 +

∫ θ̄

θn0

(
1√
γ(z)

− 1

σ2
0

)
dz = θn0/

√
γ(θn0)− θ̄/σ2

0 +

∫ θ̄

θn0

1√
γ(z)

dz.

and the payment will be zero if 1/
√
γ(θn0)− 1/σ2

0 < 0.
For other agents, the payments will be zero as they are not involved in the observation and predic-

tion.

As in the Theorem 1 , we assume that θn ∼ Uniform[θ, θ̄], independent for every n ∈ A. Putting
the expression of F and f back to the above equations, we can have the conclusion.

A.2 Proof for Theorem 2

Proof. The proof is similar to that in Section A.1. The difference is as follows.
First, the function π : [θ, θ̄]N → R+, K,S : [θ, θ̄]N × R+ → R+ are defined as

π(θ̂n,θ−n) =
1

2
·
[
θ̂n ·

[
Qp(θ̂n,θ−n)

]2
+

∫ θ̄

θ̂n

([
Qp(z,θ−n)

]2)
dz

]
, (46)

K(θ̂n,θ−n) =
[
Qp(θ̂n,θ−n) + 1/σ2

0

]2
θ̂n ·Qp(θ̂n,θ−n), (47)

S(θ̂n,θ−n) =
[
Qp(θ̂n,θ−n) + 1/σ2

0

]
θ̂n ·Qp(θ̂n,θ−n). (48)

Step 1. Truthful reporting of observation under COPE
We will analyze the strategies of the agent n, ∀n ∈ A. We will show that the agent n will choose

ŷn =
µ0 · 1/σ2

0 + yn · qn
1/σ2

0 + qn
(49)

to maximize her expected payoff given her exerting effort qn and own observation yn.
As π(θ̂n,θ−n), K(θ̂n,θ−n) and S(θ̂n,θ−n) are independent of ŷn and the value of calculated by

K(θ̂n,θ−n) is always positive. Hence, when the agent n makes reporting observation strategy to
maximize her expected payoff, i.e.,

ŷn ∈ arg maxE
[
π(θ̂n,θ−n)−K(θ̂n,θ−n)(x∗ − ŷn)2 + S(θ̂n,θ−n)

]
− C

(
qn, θn

)
,

where the expectation is taken with respect to x∗ and cost parameters θ−n = [θ1, . . . , θn−1, θn+1, . . . , θN ]T

except agent n, it is equivalent for the agent n to choose reporting strategy such that

ŷn ∈ arg minEx∗ [(x∗ − ŷn)2]. (50)

The value of Ex∗ [(x∗ − ŷn)2] is minimized when ŷn =
µ0·1/σ2

0+yn·qn
1/σ2

0+qn
. The expected value in this case

is

Ex∗ [(x∗ − ŷn)2] =
1

1/σ2
0 + qn

.
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Step 2. Truthful reporting of cost parameter under COPE
We will show that the agent n, ∀n ∈ A will truthfully reveals her cost type. The expected payoff of

the agent whose cost type is θn but report θ̂n is:

E{x∗,yn,θ−n}
[
Ua(x∗, θ̂n, qn, yn, θn,θ−n)

]
= Eθ−n

[
π(θ̂n,θ−n)−K(θ̂n,θ−n) · 1

1/σ2
0 + qn

+ S(θ̂n,θ−n)− 1

2
θnq

2
n

]
.

(51)

For notation convenience, we define

Ua(θ̂n, qn, θn,θ−n) =
[
π(θ̂n,θ−n)− K(θ̂n,θ−n)

1/σ2
0 + qn

+ S(θ̂n,θ−n)− 1

2
θnq

2
n

]
By the mean value theorem, we have:

E
[
Ua(θn, qn, θn,θ−n)

]
− E

[
Ua(θ̂n, qn, θn,θ−n)

]
= Eθ−n

[∂Ua(η, qn, θn,θ−n)

∂η

]
(θn − θ̂n), (52)

where the expectation is taken with respect to θ−n, and η lies between θn and θ̂n.
We further have

Eθ−n

[
∂Ua(η, qn, θn,θ−n)

∂η

]
= Eθ−n0

[
∂

∂η

(
1

2
· η
[
Qp(η,θ−n)

]2
+

∫ θ̄

η

[
Qp(z,θ−n)

]2
dz

+
[
Qp(η,θ−n0) + 1/σ2

0

]
η
[
Qp(η,θ−n)

]
−
[
Qp(η,θ−n) + 1/σ2

0

]2
1/σ2

0 + qn
η
[
Qp(η,θ−n)

]
− 1

2
θnq

2
n

)]

= Eθ−n

[(
1− Qp(η,θ−n) + 1/σ2

0

qn + 1/σ2
0

)(
2Qp(η,θ−n) · η · ∂Q

p(η,θ−n)

∂η
+
[
Qp(η,θ−n) + 1/σ2

0

]
·Qp(η,θ−n)

+
[
Qp(η,θ−n) + 1/σ2

0

]
· η · ∂

∂η

[
Qp(η,θ−n)

])]
(53)

We can check that if

−∂Q
p(η,θ−n)/(Qp(η,θ−n) + 1/σ2

0)

∂θn/θn
≥ 1

3
,∀n ∈ A, (54)

we have

3Qp(η,θ−n) · η · ∂Q
p(η,θ−n)

∂η
+
[
Qp(η,θ−n) + 1/σ2

0

]
·Qp(η,θ−n) ≤ 0

Later we will show that Qp(η,θ−n) is non-increasing in η, ∀n ∈ A (i.e., Lemma 6), hence, the term

3Qp(η,θ−n)η
∂Qp(η,θ−n)

∂η
+
[
Qp(η,θ−n) + 1/σ2

0

]
Qp(η,θ−n) +

η

σ2
0

∂

∂η

[
Qp(η,θ−n)

]
≤ 0.

Because the agent n will exert effort qn to maximize her expected payoff. By taking the first order
derivative of (51) with respect to qn and set it to zero, we have

(1/σ2
0 + qpn)2 · qpn · θ̂n = (1/σ2

0 + qn)2 · qn · θn, (55)
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where qpn is a shorthand for Qp(θ̂n,θ−n).
Based on (55), we have (i) if θ̂n > θn, qpn < qn, (ii) if θ̂n < θn, qpn > qn, and (iii) if θ̂n = θn, qpn = qn.
Then if θ̂n > θn, the equation (53) is negative and (52) is positive. This inequality also holds for

θ̂n < θn, by a similar argument. Therefore, the agent n will truthfully report her own cost type.
Step 3. Incentivized agents to exert precisely the effort as desired by the principal

under COPE
Then we will show that the agent n, ∀n ∈ A exerts effort such that qn = qpn would maximize her

expected payoff which is given as

E{x∗,yn,θ−n}
[
Ua(x∗, qn, yn, θn,θ−n)

]
= Eθ−n

[
π(θn,θ−n)−K(θn,θ−n) · 1

1/σ2
0 + qn

+ S(θn,θ−n)− 1

2
θnq

2
n

]
.

(56)

where the expectation is taken with respect to θ−n, x∗, and yn.
It can be verified that (56) is concave in qn. Hence, by taking the first order derivative of (56) with

respect to qn, we have

∂

∂qn
E
[
Ua(x∗, qn, yn, θn,θ−n)

]
=

[
1/σ2

0 + qpn
1/σ2

0 + qn

]2

· θn · qpn − θn0 · qn. (57)

We can verify that the value of (57) equals to zero only when qn = qpn. Hence, agent n will exert
the effort as the principal desires to maximize her expected payoff. Then (49) is rewritten as

ŷn =
µ0 · 1/σ2

0 + yn · qpn
1/σ2

0 + qpn
. (58)

Because the principal knows the value of µ0, σ2
0, and qpn, he can infer the agent n’s truth observation

yn from (58).
Step 4. Maximizes the principal’s expected utility under COPE Then we look at the

expected payoff of the principal. We then show that the desired effort level Qp(θn,θ−n) defined in (9)
and the function π(θn,θ−n) defined in (46) can maximize the principal’s expected payoff and satisfy
BIC and BIR condition.

Notice that the agent n, ∀n ∈ A exerts effort such that qn = qpn and reports ŷn =
µ0·1/σ2

0+yn·qpn
1/σ2

0+qpn
, the

expected payment function is reduced to

E{x∗,yn,θ−n}
[
R(x∗, yn, qn, θn,θ−n)

]
= Eθ−n

[
π(θn,θ−n)−K(θn,θ−n)(x∗ − ŷn)2 + S(θn,θ−n)

]
= Eθ−n

[
π(θn,θ−n)

]
. (59)

The expected payoff of the agent n is rewritten as

Eθ−n

[
Ua(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
= Eθ−n

[
π(θ̂n,θ−n)− 1

2
θn ·

[
Qp(θ̂n,θ−n)

]2]
, (60)

and the BIC and BIR conditions, i.e., (4) and (5) can be rewritten as

Eθ−n

[
Ua(π(θn,θ−n), Qp(θn,θ−n), θn

)]
≥ Eθ−n

[
Ua(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
, ∀θ̂n 6= θn (61)

Eθ−n

[
Ua(π(θn,θ−n), Qp(θn,θ−n), θn

)]
≥ 0, ∀θn. (62)
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Base on Lemma 2 and (59), the expected payoff of the principal is

Ex∗,y,θ[Up(x∗, qp,y, θ̂)] = −Bp(qp)− Ex∗,y,θ
[∑
n∈A

R(x∗, yn, θn,θ−n)
]

= − 1

1/σ2
0 +

∑
n∈A q

p
n

− Eθ
[∑
n∈A

π(θn,θ−n)
]
.

Recall that qpn = Qp(θn,θ−n), the principal’s optimal problem defined in (6) can be rewritten as

sup
{Qp(θ),π(θ)},∀θn∈θ,∀n∈A

E[Up(x∗, qp,y, θ̂)],

subject to : BIC and BIR in (61) and (62).
(63)

In the following lemmas, we characterize an equivalent formulation for the feasible region defined
by BIC and BIR. Using these lemmas, we show that Qp(θn,θ−n) defined in (9) and π(θn,θ−n) defined
in (46) are the optimal solution that solves the principal’s problem in (63).

Lemma 6. The solution of (63) is feasible if and only if it satisfies the following conditions for all
θn ∈ [θ, θ̄]:

• the expected payoff of the agent n, ∀n ∈ A is

Eθ−n

[
Ua(π(θn,θ−n), Qp(θn,θ−n), θn

)]
=

1

2
Eθ−n

[ ∫ θ̄

θn

[
Qp(x,θ−n)

]2
dx

]
(64)

• Qp(θn,θ−n) is non-increasing in θn.

Proof. The proof of Lemma 6 is as follows. We first show that BIC and BIR imply the condition in
(64).

Notice that the first derivative of (60) is:

∂Eθ−n

[
Ua
(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
∂θn

= Eθ−n

[
− 1

2

[
Qp(θ̂n,θ−n)

]2] ≤ 0. (65)

Then, for any θ1
n > θ2

n, we have

Eθ−n

[
Ua(π(θ1

n,θ−n), Qp(θ1
n,θ−n), θ1

n)
]
≤ Eθ−n

[
Ua(π(θ1

n,θ−n), Qp(θ1
n,θ−n), θ2

n)
]

≤ Eθ−n

[
Ua(π(θ2

n,θ−n), Qp(θ2
n,θ−n), θ2

n)
]
.

(66)

where the first inequality is because (65) and the second is from the BIC condition defined in (61).
Recall that the BIR condition is

Eθ−n

[
Ua(π(θn,θ−n), Qp(θn,θ−n), θn

)]
≥ 0, ∀θn ∈ [θ, θ̄], (67)

which implies that, for the agent n ∈ A with any value θn ∈ [θ, θ̄], her expected payoff should at least
be zero. Then the expected payoff of the agent n with cost parameter θ̄ must be binding at zero.
Otherwise, the principal can raise the π(θ̄,θ−n) by a small value of δ > 0, which does not violate the
constraint of (67) but raises the principal’s expected payoff. Hence, we have

Eθ−n

[
Ua(π(θ̄,θ−n), Qp(θ̄,θ−n), θ̄)

]
= 0. (68)

Let Ua(θn,θ−n) = Ua
(
π(θn,θ−n), Qp(θn,θ−n), θn

)
. From BIC condition, we have

Eθ−n

[
Ua(θn,θ−n)

]
= max

θ̂n

Eθ−n

[
Ua
(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
.
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By using the envelope theorem, we have:

∂Eθ−n

[
Ua(θn,θ−n)

]
∂θn

=
∂Eθ−n

[
Ua(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn)

]
∂θn

∣∣∣∣∣
θ̂n=θn

= Eθ−n

[
− 1

2

[
Qp(θn,θ−n)

]2]
,

where θn is a parameter. By integrating both sides from the value of θn to θ̄ and using (68), we get

Eθ−n

[
Ua(π(θn,θ−n), Qp(θn,θ−n), θn

)]
=

1

2
Eθ−n

[ ∫ θ̄

θn

[
Qp(x,θ−n)

]2
dx

]
(69)

We prove Qp(θn,θn) is nonincreasing in θn by contradiction. Let pn as the shorthand for π(θn,θ−n).
Suppose for any θ1

n > θ2
n, we have Qp(θ1

n,θ−n) > Qp(θ2
n,θ−n). Because

∂2Ua
(
pn, q

p
n, θn

)
∂qpn∂θn

= −qpn < 0, and (70)

∂2Ua
(
pn, q

p
n, θn

)
∂qpn

2 = −θn ≤ 0. (71)

we have

0 =
∂Ua

(
pn, q

p
n, θ

1
n

)
∂qpn

∣∣∣∣∣
qpn=Qp(θ1n,θ−n)

≤
∂Ua

(
pn, q

p
n, θ

1
n

)
∂qpn

∣∣∣∣∣
qpn=Qp(θ2n,θ−n)

<
∂Ua

(
pn, q

p
n, θ

2
n

)
∂qpn

∣∣∣∣∣
qpn=Qp(θ2n,θ−n)

,

where the first equality is because of BIC when the agent n’s cost parameter θn has the value of θ1
n,

the second equality is because of (70), and the inequality is because of (71).
However, based on the BIC condition, if the agent n’s cost parameter θn has the value of θ2

n, then
we should have

∂Ua
(
pn, q

p
n, θ

2
n

)
∂qpn

∣∣∣∣∣
qpn=Qp(θ2n,θ−n)

= 0,

which holds true for all scalar value of pn. Hence, for any θ1
n > θ2

n, Qp(θ1
n,θ−n) ≤ Qp(θ2

n,θ−n).
Then we need to prove that (64) implies BIC and BIR defined in (61) and (62). Notice that we

have:

Eθ−n

[
Ua(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn

)]
= Eθ−n

[
−
∫ θ̄

θn

∂Ua
(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), z

)
∂z

dz

]
= Eθ−n

[
1

2

∫ θ̄

θ̂n

[
Qp(η,θ−n)

]2
dη −

∫ θ̂n

θn

∂Ua
(
π(θ̂n,θ−n), Qp(θ̂n,θ−n), z

)
∂z

dz

]
= Eθ−n

[
− 1

2

∫ θn

θ̄

[
Qp(η,θ−n)

]2
dη − 1

2

∫ θ̂n

θn

[
Qp(η,θ−n)

]2
dη +

1

2

∫ θ̂n

θn

[
Qp(θ̂n,θ−n)

]2
dz

]
= Eθ−n

[
Ua(π(θn,θ−n), Qp(θn,θ−n), θn

)
+

1

2

∫ θ̂

θn

([
Qp(θ̂n,θ−n)

]2 − [Qp(η,θ−n)
]2)

dη

]
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where the second equality and the forth equality is obtained by (64).
If θ̂n > θn, then the above equation is non-positive (because Qp(η,θ−n) is non-increasing in η) and

hence

Eθ−n

[
Ua(π(θ̂n,θ−n), Qp(θ̂n,θ−n), θn)

]
< Eθ−n

[
Ua(π(θn,θ−n), Qp(θn,θ−n), θn)

]
.

This inequality also holds for θ̂n < θn by a similar argument. Therefore, the two condition imply BIC.
BIR is verified by putting θn back to (64).

Then based on Lemma 6, we have the following lemma.

Lemma 7. The optimisation problem in (63) has the following equivalent formulation:

max
{Qp(θ)},∀θn∈θ

Eθ
[
− 1

1/σ2
0 +

∑
n∈AQ

p(θn,θ−n)
− 1

2

∑
n∈A

[
Qp(θn,θ−n)

]2
θn −

1

2

∑
n∈A

[
Qp(θn,θ−n)

]2F (θn)

f(θn)

]
,

s.t. Qp(θn,θ−n) is nonincreasing in θn. (72)

Proof. The proof of Lemma 7 is as follows. The expected payoff of the principal can be written as:

Eθ
[
− 1

1/σ2
0 +

∑
n∈AQ

p(θn,θ−n)
− 1

2

∑
n∈A

[
Qp(θn,θ−n)

]2 · θn −∑
n∈A

Ua(π(θn,θ−n), Qp(θn,θ−n), θn
)]

= Eθ
[
− 1

1/σ2
0 +

∑
n∈AQ

p(θn,θ−n)
− 1

2

∑
n∈A

[
Qp(θn,θ−n)

]2 − 1

2

∑
n∈A

∫ θ̄

θn

[
Qp(x,θ−n)

]2
dx

]
Using integration by parts and Lemma 6, we can get the conclusion.

Based on Lemma 7, the principal’s problem thus reduces to choosing the desired effort Qp(θn,θ−n)
for each agent n ∈ A.

Let qpn = Qp(θn,θ−n) and

M
(
qp1 , . . . , q

p
N

)
=− 1

1/σ2
0 +

∑
n∈A q

p
n

− 1

2

∑
n∈A

[
qpn
]2 · θn − 1

2

∑
n∈A

[
qpn
]2F (θn)

f(θn)

Let G = [∂2M/∂qpi ∂q
p
j ] is the matrix of second order derivatives and is a symmetric matrix with

negative diagonal terms as

∂2M

∂qpi ∂q
p
j

= − 2[
1/σ2

0 +
∑

n∈A q
p
n

]3 , j 6= i

∂2M

∂qpi
2 = − 2[

1/σ2
0 +

∑
n∈A q

p
n

]3 − θi − F (θi)

f(θi)

As we can verify that, for k = 1, . . . , N , the kth leading principal minors of G alternate in sign,
hence G is negative definite and M is strictly concave. Thus, the principal’s desired effort level from
agents qpn = Qp(θn,θ−n), ∀n ∈ N is the solution of the below equations:

1[
1/σ2

0 +
∑

n∈A q
p
n

]2 −Qp(θn,θ−n) · θn −Qp(θn,θ−n) · F (θn)

f(θn)
= 0, n = 1, 2, . . . , N (73)

Using Cramer’s rule and the assumption that the c.d.f. function F is log concave in θ , we can
verify that

∂Qp(θn,θ−n)

∂θn
= −∂

2M/∂qpn∂θn

∂2M/∂qpn
2 ≤ 0, (74)
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which shows that Qp(θn,θ−n) derived from (73) is non increasing in θn, so that it is the feasible solution
of (72).

The solution of (73) is

Qp(θn,θ−n) =
1

θn + F (θn)
f(θn)

· 1[
W (θ)

]2 , (75)

where the function W : [θ, θ̄]N → R+ is the solution of the below equation:[
W (θ)

]3 − 1

σ2
0

·
[
W (θ)

]2 −∑
m∈A

1

θm + F (θm)
f(θm)

= 0. (76)

The real root of the above cubic equation is as follows.

W (θ̂) =
1

3σ2
0

+ 3

√√√√ 1

27σ6
0

+
1

2

[ ∑
m∈A

1

θ̂m + F (θ̂m)

f(θ̂m)

]
+
√
λ(θ) + 3

√√√√ 1

27σ6
0

+
1

2

[ ∑
m∈A

1

θ̂m + F (θ̂m)

f(θ̂m)

]
−
√
λ(θ),

(77)

where function λ : [θ, θ̄]N → R+ is given as

λ(θ) =
1

27σ6
0

[ ∑
m∈A

1

θ̂m + F (θ̂m)

f(θ̂m)

]
+

1

4

[ ∑
m∈A

1

θ̂m + F (θ̂m)

f(θ̂m)

]2

.

According to (64), we have

Eθ−n

[
π(θn,θ−n)− 1

2
· [Qp(θn,θ−n)]2 · θn

]
=

1

2
Eθ−n

[ ∫ θ̄

θn

[
Qp(x,θ−n)

]2
dx
]
.

From the above equation, we can derive the optimal payment function as given in (46).

B Details of Simulations

In this section, we first describe the details of the homogenous benchmark mechanism under both
the linear and quadratic cost function. Then we compare the performance of COPE to the homogeneous
benchmark in terms of expected prediction error and total payment made by the principal to the agents.

B.1 Homogenous Mechanism

The homogenous mechanism assumes all agents to be identical (although in practice they are not),
and hence does not elicit the cost parameters of individual agents. In the absence of this knowledge, the
principal operates under the belief that every agent’s cost parameter equals θ† ∈ [θ, θ̄]. The principal
thus chooses payment function Rhom := α(θ†) − β(θ†) · (x∗ − ŷn)2, where the function α : [θ, θ̄] → R+

and the function β : [θ, θ̄] → R+ are chosen to incentivize every agent n to exert optimal effort and
report observations truthfully in a manner that maximizes the principal’s payoff.

Recall that we assume the prior on x∗ ∼ N (µ0, σ
2
0). Let the function q† : R+ × [θ, θ̄] → R+ to be

the effort that the principal requires every agent to exert, based on the principal’s belief that every
agent’s cost parameter equals to θ†. Then the principal makes the prediction as

x̂ =
µ0/σ

2
0 + q†

∑
n∈A g(ŷn)

1/σ2
0 +N · q†

, (78)
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(a) Linear cost function.
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(b) Quadratic cost function.

Figure 3: The principal’s expected payoff under COPE and the homogeneous mechanism.

where ŷn is the agent n’s reported observation, and the function g : R→ R is defined as

g(ŷn) = ŷn +
ŷn − µ0

q† · σ2
0

. (79)

Linear Cost Function Under the linear cost function, the choice of function q†, α, and β are :

q†(N, θ†) =
1

N

( 1√
θ†
− 1

σ2
0

)
,

α(θ†) =
(
1/σ2

0 + q†
)
· θ†q† + θ†q†, β(θ†) =

(
1/σ2

0 + q†
)2 · θ†

The principal chooses the function α to make sure that the agent n with cost type θ† is willing to
participate the prediction task, and chooses the function β to make sure that the agent n exerts the
effort qn = q†(N, θ†) as the principal desires.

Recall that the actual cost parameter of the agent n ∈ A is θn. Hence, the agent n will exert effort
qn =

√
β(θ†)/θn − 1/σ2

0 and report ŷn =
µ0/σ2

0+yn·qn
1/σ2

0+qn
to maximize her own expected payoff. Besides, if

the expected payoff of the agent n is negative, he will not participate this prediction task.
Also recall that the principal knows the prior information of x∗ ∼ N (µ0, σ

2
0). Hence, the principal

can always achieve a payoff of −1/σ2
0 by not making any payments, and simply choosing the prior mean

has his prediction. Hence, the principal does not pay anything and simply sets x̂ = µ0 if his expected
payoff is smaller than −1/σ2

0.
Quadratic Cost Function Under the quadratic cost function,q† is the solution of the below

equation.

1(
1/σ2

0 +N · q†
)2 − ·θ† · q† = 0

The function α, and β are :

α(θ†) =
(
1/σ2

0 + q†
)
· θ†q† +

1

2
θ†
[
q†
]2
, β(θ†) =

(
1/σ2

0 + q†
)2 · θ†q†.

Recall that the actually cost parameter of the agent n ∈ A is θn. Hence, the agent n will exert
effort qn to maximize her own expected payoff, where qn is the solution of

β(
1/σ2

0 + qn
)2 − θnqn = 0.

Besides, if the expected payoff of the agent n is negative, he will not participate this prediction task.
Also, the principal does not pay anything and simply sets x̂ = µ0 if his expected payoff is smaller than
−1/σ2

0.
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Figure 4: The principal’s prediction error under COPE and the homogeneous mechanism.

B.2 Numerical Results

In the simulations, we draw x∗ ∼ N (0, 1), and set θ = 0 and θ̄ = 1. We vary the number of agents
from N = 3 to N = 19. Without loss of generality, we normalize the principal’s payoff so that it
equals zero in the ideal (unachievable) case of zero prediction error and a zero payment. Note that the
principal can always achieve a payoff of −1 by not making any payments, and simply choosing the prior
mean has her prediction.

Figure 3 depicts the expected payoff of the principal under COPE and under the homogeneous
mechanism for different values of θ†. We use the red line with circle marker denotes COPE, the blue
dash line with square marker denotes homogeneous mechanism with θ† = 0.2, the dark dash line with
diamond marker denotes homogeneous mechanism with θ† = 0.5, and the magenta line with right-
pointing triangle marker denotes homogeneous mechanism with θ† = 0.8. One can draw the following
insights from the figure. First, under COPE, the principal’s expected payoff strictly increases with
the number of agents. This is because COPE optimally exploits the presence of additional agents by
making them exert different efforts based on their respective cost types. A second inference is that
this feature of COPE allows COPE to outperform the homogeneous mechanism consistently, and the
difference depends on the principal’s belief of θ†.

By comparing Figure 3a to Figure 3b, we can see that the belief of principal (i.e., θ†) under the
homogeneous mechanism leads to different results. Under the linear cost function, the lower value of θ†

results in the good performance in terms of the principal’s payoff. However, under the quadratic cost
function, the high value of θ† results in the good performance. The reasons are as follows.

Under the homogeneous mechanism, setting different value of θ† may filtering different number and
types of agents. Setting a high value of θ† would incentivize most of the agent to participate. This is
because, for the agent n ∈ A whose cost parameter θn < θ†, she can put less effort to achieve the same
performance as the agent with cost parameter θ† does.

Under the linear cost function, similar as COPE, finding the most capable one would be optimal
for the principal, as the marginal cost is nonnegative even the agent does not put any effort. Hence,
setting the low value of θ† would eliminate the most of the agents, and have a high chance to find the
agent with θn ≤ θ†.

On the contrary, under the quadratic cost function, it would be optimal to recruit as many as the
agents to improve the prediction accuracy. The benefit brought by the accuracy improvement would be
higher than the payment paid to agents. Hence, setting the high value of θ† would help the principal
recruit most of the agents.

Figure 4 depicts the expected prediction error (i.e., the expected value of (x∗ − x̂)2) made by the
principal under COPE and under the homogeneous mechanism for different values of θ†. We can see
that COPE can achieve lowest prediction error at most cases. As there is a tradeoff between the
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Figure 5: The principal’s total payment under COPE and the homogeneous mechanism.

prediction accuracy and the payment made by the principal, the aim of COPE is to maximize the
principal’s expected payoff. Hence, the prediction error made by COPE is not the lowest at some cases.

Figure 5 shows the total payment made by COPE and under the homogeneous mechanism for
different values of θ†. In order to elicit the private information of the agents (i.e., their cost parameters),
the payment made by the principal under COPE would be high, in return, the principal can explore
the heterogeneous of the agents and improve his prediction accuracy.
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