Language and Statistics II

Lecture 9: (Mostly) Intro to Parsing

Noah Smith

Lecture Overview

- 1. Finish up HMM topology learning.
- 2. Motivations for parsing.
- 3. A really simple model for parsing: PCFG
 - PCFGs as a stochastic process
 - Relationship to other models we know
 - Naïve training of PCFGs

Learning HMM Topologies

- The problem of grammatical inference is a big one.
 - Lots of theoretical work in automaton community.
 - Learnability results (often negative).
 - Not a lot of practical work
 - Not a lot of probabilistic work.
- One nice example: Stolcke and Omohundro (1993)
 - Later extended to PCFGs

- Learning from emission symbol sequences only (don't know states).
- Start by building an HMM encoding exactly the data.
- In this example, we saw "ab" and "abab"

- Initialize as described.
- Iterate:
 - Consider merging each pair of states; compute p(data) under each merge.
 - Parameters under the merge are computed by merging the paths and renormalizing the counts.
 - p(data) is estimated by taking the best path for each string.
 - Merge the two states that hurt p(data) the least.

Example

- Initialize as described.
- Iterate:
 - Consider merging each pair of states; compute p(data) under each merge.
 - Parameters under the merge are computed by merging the paths and renormalizing the counts.
 - p(data) is estimated by taking the best path for each string.
 - Merge the two states that hurt p(data) the least.
- What's wrong here?
- Key idea: replace p(data) with p(data, model); factor in a prior.

- p(model structure) ∝ e^{-|Q|}
- p(parameters | structure) ~ symmetric
 Dirichlet ("add 0.1" smoothing)

 The prior "makes up" for the decrease in likelihood as states are merged ... but not forever!

- Initialize as described.
- Iterate:
 - Consider merging each pair of states; compute p(data, model) under each merge.
 - Parameters under the merge are computed by merging the paths and renormalizing the counts.
 - p(data, model) is estimated by taking the best path for each string.
 - Merge the two states that increase p(data, model) the most; if none, then stop.

New topic ...

Parsing

But first ...

What languages are spoken by people taking the class?

Parsing: Motivation

 Language <u>modeling</u> (Chelba & Jelinek, 1998) ... predict next word given left syntactic context (syntax) instead of previous two words (trigram):

John, who eats cookies, {love, loves} ...

Or, transformations on data:

- Machine translation (Alshawi, 1996; Wu, 1997; Chiang, 2005 ...)
- Information extraction (Hobbs, 1997; Viola & Narasimhan, 2005)
- Grammar checking (obviously!)
- NL interfaces to Databases (Collins and Zettlemoyer, 2005)
- Lexical learning (Lin, 1997)

Why are there so many parsing papers? Why are we spending two weeks on parsing?

- Parsing is hard! (cf. tagging)
 - Low 90s right now
- So many theories ...
- Easy to evaluate given annotated data
 - Evaluation is uncontroversial & automatic (cf. machine translation)
- Great problem for structured prediction
- Lots of room for magic: smoothing, search, model refinement
- History: parsing was the major problem in CL before the empirical paradigm shift - seen as crucial for "understanding"

Major Research Questions

- What's the right representation?
- What's the right model?
- How to learn to parse empirically?
- How to make parsers fast?
- How to incorporate structure downstream?

First Answers

- What's the right representation? phrase structure
- What's the right model? PCFG
- How to learn to parse empirically? MLE/treebank
- How to make parsers fast? CKY/Earley's algorithm
- How to incorporate structure downstream?

best parse

Context-Free Grammar

- Alphabet Σ
- Set of variables N
- Start symbol S ∈ N
- Rewrite rules: X → α, where X ∈ N and α ∈ (N∪Σ)*

CNF: Assume $\alpha \in \mathbb{N}^2 \cup \Sigma$.

Derivation of a CFG

Perivation of a CFG NP NP NP P DT N N with the bat

Perivation of a CFG NP NP D1 N PP NP P N the man with the bat

Perivation of a CFG NP **NP** D1 N PP NP P N the man with the bat

Perivation of a CFG NP NP DT N PP NP P N the man with the bat

Disambiguation

S → NP VP

 $NP \rightarrow I$

V → hit

 $DT \rightarrow the (2)$

N → man

PP → P NP

P

with

NP → DT N

N → bat

VP → V NP

NP → DT N'

N' → N PP

VP → V' PP NP → DT N V' → V NP

Probabilistic CFG

- Alphabet Σ
- Set of variables N
- Start symbol S ∈ N
- Rewrite rules: $X \to^p \alpha$, where $X \in \mathbb{N}$, $\alpha \in (\mathbb{N} \cup \Sigma)^*$, and $p \in \mathbb{R}_{\geq 0}$.
 - All ps for a given X sum to one.

CNF: Assume $\alpha \in \mathbb{N}^2 \cup \Sigma$.

PCFG as a Generative Process

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow^p \bullet$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

$$Q = \{S^{(0)}\}$$
$$t = 0$$

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, \ldots, \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

$$Q = \{S^{(0)}\}$$
$$t = 0$$

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow^p \bullet$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of X^(a).
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

$$Q = {S^{(0)}}$$

t = 1

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow^p \bullet$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, \ldots, \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

$$Q = \{\}$$

 $t = 1$
 $S^{(0)}$

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow^p \bullet$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, \ldots, \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

Q = {}
t = 1
$$S^{(0)}$$

S \rightarrow 0.84 NP VP

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p \bullet$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

Q = {}
t = 1
$$S^{(0)}$$

S \rightarrow 0.84 NP VP

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_{i}^{(t)}$ that is a nonterminal, push $\alpha_{k}^{(t)}$ onto Q.

Q = {NP⁽¹⁾, VP⁽¹⁾}
t = 1
$$S^{(0)}$$

S \rightarrow 0.84 NP VP

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of X^(a).
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

$$Q = \{NP^{(1)}, VP^{(1)}\}\$$

t = 1

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, \ldots, \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_{i}^{(t)}$ that is a nonterminal, push $\alpha_{k}^{(t)}$ onto Q.

$$Q = \{NP^{(1)}, VP^{(1)}\}\$$

t = 2

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of X^(a).
 - For each $\alpha_{i}^{(t)}$ that is a nonterminal, push $\alpha_{k}^{(t)}$ onto Q.

$$Q = \{NP^{(1)}\}\$$

t = 2
 $VP^{(1)}$

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, \ldots, \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_{i}^{(t)}$ that is a nonterminal, push $\alpha_{k}^{(t)}$ onto Q.

Q = {NP⁽¹⁾}
t = 2
VP⁽¹⁾
VP
$$\rightarrow$$
 0.12 V

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p \bullet$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_{i}^{(t)}$ that is a nonterminal, push $\alpha_{k}^{(t)}$ onto Q.

Q = {NP⁽¹⁾}
t = 2
VP⁽¹⁾
VP
$$\rightarrow$$
 0.12 V

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

Q = {NP⁽¹⁾, V⁽²⁾}
t = 2
VP⁽¹⁾
VP
$$\rightarrow$$
 0.12 V

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, ..., \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of X^(a).
 - For each $\alpha_i^{(t)}$ that is a nonterminal, push $\alpha_k^{(t)}$ onto Q.

$$Q = \{NP^{(1)}, V^{(2)}\}$$

t = 2

- Instantiate the start symbol S (S⁽⁰⁾); Q ← {S⁽⁰⁾}; t ← 0
- While Q ≠ {}:
 - t ← t + 1
 - Pop a symbol X^(a) off of Q.
 - Draw $\alpha = \langle \alpha_1, \alpha_2, ..., \alpha_k \rangle$ according to the distribution defined by $X \rightarrow p$.
 - Add $\langle \alpha_1^{(t)}, \alpha_2^{(t)}, \ldots, \alpha_k^{(t)} \rangle$ to the tree as the sequence of children of $X^{(a)}$.
 - For each $\alpha_{i}^{(t)}$ that is a nonterminal, push $\alpha_{k}^{(t)}$ onto Q.

Mathematical Properties

- The probability of generating a tree is simply a product of the rule probabilities for all rule tokens in the tree.
- Given a tree, it's O(n) to compute the probability.
- The queueing policy doesn't matter as long as it's consistent. It doesn't affect the probabilities.
- Independence assumption?