Language and Statistics ||

Lecture 9: (Mostly) Intro to Parsing

Noah Smith

Lecture Overview

1. Finish up HMM topology learning.
2. Motivations for parsing.

3. A really simple model for parsing. PCFG
« PCFGs as a stochastic process
 Relationship to other models we know
* Nalive training of PCFGs

Learning HMM Topologies

* The problem of grammatical inference is a
big one.

— Lots of theoretical work in automaton community.
— Learnability results (often negative).
— Not a lot of practical work

— Not a lot of probabilistic work.

* One nice example: Stolcke and Omohundro
(1993)

— Later extended to PCFGs

HMM Topology Learning
(Stolcke and Omohundro, 1993)

* Learning from emission symbol sequences
only (don’'t know states).

 Start by building an HMM encoding exactly
the data.
* |n this example, we saw “ab” and “abab”

ot P
j" rkw-l_.-'l ‘-"-\.,_2__.-""'--_
_,aqu,__-.-

....L.,-"._.'.., I-"'._“"'\-. ."'.:.'-\. I.-__. '\-\\. - "'.__.'-\.
(il =5 =6 —> F)
A R A A A

HMM Topology Learning
(Stolcke and Omohundro, 1993)

* Initialize as described.

 lterate:
— Consider merging each pair of states; compute p(data) under each
merge.

« Parameters under the merge are computed by merging the paths and re-
normalizing the counts.

 p(data) is estimated by taking the best path for each string.
— Merge the two states that hurt p(data) the least.

.___.r"--- ""'\-\.__\H
) @ b 5/ @ b)
P TN ~, = ny =
"7 =0/ -£)
I b/ F \r
::E: 1) :::E;Eﬁjj) kF:"
l -1/ " < - "

o b

(00— 1 —w{ 207 ()

L L A L
> 13

HMM Topology Learning
(Stolcke and Omohundro, 1993)

Initialize as described.

lterate:

— Consider merging each pair of states; compute p(data) under each
merge.

« Parameters under the merge are computed by merging the paths and re-
normalizing the counts.

 p(data) is estimated by taking the best path for each string.
— Merge the two states that hurt p(data) the least.

What's wrong here?

Key idea: replace p(data) with p(data, model); factor in a
prior.

HMM Topology Learning
(Stolcke and Omohundro, 1993)

» p(model structure) « el

* p(parameters | structure) ~ symmetric
Dirichlet ("add 0.1" smoothing)

* The prior “"makes up” for the decrease In
likelihood as states are merged ... but not

forever!

HMM Topology Learning
(Stolcke and Omohundro, 1993)

* Initialize as described.

 lterate:
— Consider merging each pair of states; compute p(data, model) under
each merge.

« Parameters under the merge are computed by merging the paths and re-
normalizing the counts.

» p(data, model) is estimated by taking the best path for each string.

— Merge the two states that increase p(data, model) the most; if none,
then stop.

New topic ...

Parsing

But first ...

What languages are spoken
by people taking the class?

Parsing. Motivation

* Language modeling (chelba & Jelinek, 1998) ... predict next
word given left syntactic context (syntax) instead of
previous two words (trigram):

John, who eats cookies, {love, loves} ...
Or, transformations on data:
 Machine translation (aishawi, 1996: Wu, 1997: Chiang, 2005 ...)
e |nformation extraction (Hobbs, 1997: Viola & Narasimhan, 2005)
« Grammar checking (obviously!)
* NL interfaces to Databases (Collins and zettlemoyer, 2005)
Lexical learning (Lin, 1997)

Why are there so many parsing

pa pe FS’7 Why are we spending two weeks on parsing?

Parsing is hard! (cf. tagging)
— Low 90s right now
So many theories ...

Easy to evaluate given annotated data

— Evaluation is uncontroversial & automatic (cf. machine
translation)

Great problem for structured prediction

Lots of room for magic: smoothing, search, model
refinement

History: parsing was the major problem in CL
before the empirical paradigm shift - seen as crucial
for “understanding”

Major Research Questions

What's the right representation?

What's the right model?

-How to learn to parse empirically?

How to make parsers fast?

-How to incorporate structure downstream?

First Answers

What's the right representation? phrase structure
What's the right model? rcrc

-How to learn to parse empirically? wiLE/ireebank
How to make parsers fast? ckvieariey’s algorithm
-How to incorporate structure downstream?

best parse

Context-Free Grammar

* Alphabet X

» Set of variables N
« Start symbol S € N

 Rewrite rules: X — o, where X& N and a &
(NUZ)*

CNF: Assume o € N2U 2.

Derivation of a CFG

&
®0®® R
%%
7S

6%

ithf the I hat

sawl the Ina

erivation of a CFG

®
®© 2

Yo &,

ithl th

rivation of a CFG

®

rivation of a CFG

erivation of a CFG

S = NP VP
NP = |

V = hit
DT = the (2)
N = man
PP = P NP
P =» with
NP = DT N
N = bat

Disambiguation

VP 2> V NP
NP = DT N
N'=> N PP

VP = V' PP
NP = DT N
V' => V NP

Probabilistic CFG

* Alphabet X

» Set of variables N
« Start symbol S € N

* Rewrite rules: X —=F q,
where X € N, a € (NUZ)*, and p € R_,.

* All ps for a given X sum to one.

CNF: Assume o € N2U 2.

PCFG as a Generative Process

* Instantiate the start symbol S (S(); Q < {SO}; t < 0
. While Q = {}:
" t—t+ 1

= Pop a symbol X@) off of Q.

= Draw a = (a4, o, ..., a,) according to the
distribution defined by X —P o .
= Add (o, O, a,), ..., o,) to the tree as the

sequence of children of X(@).

= For each o.(! that is a nonterminal, push o, () onto
Q.

PCFG Example

Q = {S(O)}

« Instantiate the start symbol S (S(0); Q < {S(0};t< 0
« While Q = {}:
= te—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q = {S(O)}

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
= te—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, onto Q.

Q

PCFG Example

= {S(O)}

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:

t—t+1
Pop a symbol X@ off of Q.
Draw a = (o, o, ..., o) according to the distribution defined by X —r e .
Add (a0, o, 0, ..., o, V) to the tree as the sequence of children of X(@
For each o, that is a nonterminal, push o, onto Q.

Q

PCFG Example

=1

30)

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:

t—t+1

Pop a symbol X(@ off of Q.
Draw a = (o, o, ..., o) according to the distribution defined by X —r e .
Add (a0, o, 0, ..., o, V) to the tree as the sequence of children of X(@
For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q= {}
t=1
3(0)
S —08 NP VP

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
" t—t+1
= Pop a symbol X@ off of Q.
= Draw a ={a,, 0, ..., a,) according to the distribution defined by X —r ¢ .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q= {}
t=1
3(0)
S —08 NP VP

« Instantiate the start symbol S (S©); Q < {S©)};t <0

« While Q = {}:
" t—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (oY, o, ¥, ..., o, V) to the tree as the sequence of children of X(.
= For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q = {NP(), VP(1)}
t=1
3(0)
S —08 NP VP

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
= te—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, () onto Q.

PCFG Example

Q = {NP), VP
t=1

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
= te—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q = {NP), VP
t=2

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
= t—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q = {NP()}

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
" t—t+1
= Pop a symbol X(@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q = {NP(")}
t=2
VP
VP —0.12

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
" t—t+1
= Pop a symbol X@ off of Q.
= Draw a ={a,, 0, ..., a,) according to the distribution defined by X —r ¢ .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q = {NP(")}
t=2
VP
VP —0.12

« Instantiate the start symbol S (S©); Q < {S©)};t <0

« While Q = {}:
= te—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (0,1, a,, ..., o,) to the tree as the sequence of children of X().
= For each o, that is a nonterminal, push o, onto Q.

PCFG Example

Q = {NP(, V)
t=2
VP()
VP —0.12

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
= te—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, () onto Q.

PCFG Example

Q = {NP(, V)

« Instantiate the start symbol S (S©); Q < {S©)};t <0
« While Q = {}:
= te—t+1
= Pop a symbol X@ off of Q.
= Draw a = (a4, a,, ..., o) according to the distribution defined by X —r « .
= Add (o, o, ..., o, V) to the tree as the sequence of children of X(@
= For each o, that is a nonterminal, push o, onto Q.

Mathematical Properties

The probabillity of generating a tree is simply a
product of the rule probabilities for all rule
tokens in the tree.

Given a tree, it's O(n) to compute the
probability.

The queueing policy doesn’t matter as long as
it's consistent. It doesn't affect the
probabillities.

Independence assumption?

