Language and Statistics ||

Lecture 6: Log-Linear Models
(Practical Matters)
Noah Smith



Today's Plan

Conditional MLE

Conditional random fields made simple
Feature selection

Regularization




Log-Linear Models for Prediction

» So far, we've talked about p(X), a single
random variable.

« Consider p(X, Y), where Xis the input and Y
Is the output.




Decoding

» At test time, pick the most probable
value of Y, given the value of X:

ﬁ(x) = argmaxp(x,y) = argmaxp(y‘x)p(x) = argmax p(y‘x)

y y y

Do we need, then, to model X?



Related

* Recall from last week that we can use log-
linear models for language modeling:

p(Wi_1 =w‘wf‘1)= | . ' Denominator

depends on
history

e | said: “It makes no sense to have features
that don't look at the next word at all.”



A function
that doesn’t
look at the

next word

p(Wi—l = W‘Wli_l) = =




Motivating Conditional
Estimation

« Speaking in general (not just about log-
linear models):

)= pbk) o pl) = fien) ful)



Conditional MLE

« Marginal p(x) doesn'’t affect decoding;
why bother modeling it?

* Decoding is as before:
ﬁ(x) = argmaxp(x,y) = argmaxp(y‘x)p(x) = argmax p(y‘x)
y y

* Training (estimation) is different:

D
max | [ p; (5[%)
0 i=1



Conditional MLE for Log-
Linear Models

L(6) - %Eez £,(5,5) ~logDexp D £,(x.¥) 6,
TR




Is it Still Maximum Entropy?

 Remember, ME(empirical constraints) =
MLE(log-linear). What about CMLE?

maxzp ( Y|x)

subject to

v, Eﬁ(X,Y)[fJ(X’Y)] - Eﬁ(X)p~(Y\X)[fj(X’Y)]

0



Conditional Random Fields
Made Simple

Start with an HMM's features (transitions and
emissions)

All log-probabilities =» arbitrary weights.

Now we have a log-linear model giving p(tags,
words)
Train to maximize p(tags | words).

— Required quantities (for L and VL) will come from
forward-backward algorithms!

Add more fine-grained features if you want to.




Maximum Mutual Information
Estimation

(Or, the speech people had the same idea!)

Assume empirical
distribution over
X, Y

Assume p(Y) is
uniform

- p(x,Y)
I[(X;Y)=E|log
(X:Y) o8 X p(r)
- pxy) | p(v]x)
~E_ . |1 =E_ ., .|l
p(X,Y)- 08 p(X)p Y) B(X.Y) | 08 p(Y)




Example

« Suppose we're building a conditional log-
linear model over character j, given the
previous characterj - 1.

1 ifc=qandc'=u

c,c') =+ ,
f342( ) LO otherwise
finlend) (1 ifc=qandc' =V
C,C = < .
- LO otherwise

 In training, q is always followed by u. This
happens 52 times.



Example

* |deal for maximizing conditional likelihood:

p(ulq) € 1
* To do this, drive 05,4, to +o

* At the same time, drive 05,5 to -
L(6)=— 30,2 £,(7:5) -+ Dlog Dexp 3 £,(%:7) 9,
oL 1Q , . -

?Oj = Bgfj(xi’yi) ‘E,a(x)-pé(yx)[fj(X’Y)]

* |s this really what we want?



The infinity problem




The infinity problem

10-10




Problems with “Max Ent”

Training can be expensive
— lterative algorithms
— Inference at each step, possibly involves DP

No generalization guarantees.
Based on empirical counts.
More features = better fit (overfitting).

Next up:
— Feature selection
— Regularization



Poor Man’s Feature Induction
(Ratnaparkhi, 1996)

* |Include a feature if it is observed five or
more times in the training data.



Feature Induction
(Della Pietra et al., 1997)

Start with no active features.

Consider candidates:
“Atomic” features
Conjoined features (1 active & 1 atomic)
Pick the candidate g with the greatest gain.

Gain is the maximal improvement over values for g's
weight, assuming other feature weights are fixed.

 Closed form for binary features! (See the paper.)
Add g to the model.
Retrain the model.



Regularization

 MLE and CMLE tend to overfit, even for log-linear
models.

 |dea borrowed from neural networks: regularize,
or penalize models that are too “extreme.”
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L, Regularization
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Probabillistic Interpretation

 Maximum a posteriori (MAP) estimation:

max () (0)

~
—

= méaxlogpé(x) + log p(é)

« Zero-mean diagonal Gaussian prior is
equivalent to L, (Chen & Rosenfeld,
1999).

0’

logﬂ\f(Hj;u = 0,02) = const(ﬁj) — 2(;

2



Probabillistic Interpretation

 Goodman (2003): Laplacian prior
corresponds to L, regularization; also
presents exponential prior.

 Related:

— Kazama & Tsuji’i (2003) and Khudanpur (1995),
“relaxed” constraints

* Added bonus for these: sparsity

— As the prior is strengthened (c is increased),
more weights go to zero.



Cusp; function is not

differentiable here.

Sparsity

Goodman —
Kazama & Tsuijii

Gradient < 0; always
pushing toward 0.

This shows the penalty from a single parameter.




Sparsity

Gradient is O.

Cusp; function is not
differentiable here.

Kazama & Tsujii's smoothing =
Goodman's smoothing =
Gaussian smoothing =

1.5



Wrapping Up Log-Linear
Models

« Last Thursday: the basic idea
— Features!
— Informal thoughts about decoding.

« Tuesday: motivation and training (l)
— Max Ent and MLE
— MLE as numerical optimization.

* Today: training (ll)
— Conditional estimation

— Feature selection
— Regularization



