
Language and Statistics II

Lecture 5: Log-Linear Models
(The Details)
Noah Smith

Today’s Plan

• (Anonymous) pop quiz
• Maximum Entropy modeling
• Relationship to log-linear models
• How to do it!
• Feature selection
• Regularization
• Conditional estimation

Data

How to assign
probability to each

type?

3
4

1

0

2
3

.19

.25

.06

0

.12

.19

Maximum Likelihood
(Multinomial)

1

0

1
0

0

1

.06

0

.06
0

0

.06

Overfitting?

11 df

Maximum Likelihood
Estimation

• Given a model family, pick the
parameters to maximize

p(data | model)
• Examples:

– Gaussian:
– Bernoulli:
– Multinomial:
– n-gram model?
– HMM?

!

ˆ µ = x , ˆ " =

x
i
ˆ µ ()

2

i

$

n

!

ˆ p =
n

success

n

!

"i, ˆ p i =
ni

n }closed form
solution

Using the Chain Rule

Color

Shape Size

Pr(Color, Shape, Size) = Pr(Color) • Pr(Shape | Color) • Pr(Size | Color, Shape)

0.5
0.5

0.375

0.375

0.125

0.125

0.500

0.500 0.000large
0.000small
1.000large

0.667small
0.333large

0.000large

small
large
small

small
large

small

0.000

0.250

1.000

1.000

1.000

0.750

These two are the same!

These two are the same!

11 df

 Add an Independence
Assumption?

Color

Shape Size

Pr(Color, Shape, Size) = Pr(Color) • Pr(Shape) • Pr(Size | Color, Shape)

0.5
0.5

0.375
0.125

0.500 0.000large
0.000small
1.000large

0.667small
0.333large

0.000large

small
large
small

small
large

small

0.000

0.250

1.000

1.000

1.000

0.750

9 df

Reverse Arrows?

Color

Shape Size

Pr(Color, Shape, Size) = Pr(Size) • Pr(Shape | Size) • Pr(Color | Size)

small

large
0.333

0.667

0.538

0.462

0.385

0.333

0.077

0.333

0.538

small
0.333

large

0.375large
small 0.625

7 df

What’s my
prob.?

Strong Independence?

Color

Shape Size

Pr(Color, Shape, Size) = Pr(Size) • Pr(Shape) • Pr(Color)

0.375
0.125

0.500

0.375large
small 0.625

0.5
0.5

4 df

This Is Hard!
• Different factorizations affect

– Model size (e.g., number of parameters or df)
– Complexity of inference
– “Interpretability”
– Goodness of fit to the data
– Generalization
– Smoothing methods

• How would it change if we used log-linear
models?

• Arguable: some major “innovations” in NLP
involved really good choices about independence
assumptions, directionality, and smoothing!

A Log-Linear Shape Model

!

p(shape) =

exp f i shape()
i

" #$i

Z
r
$ ()

How do
we pick

the
features

?

How do
we set

the
weights

?

Desideratum: after we pick features, picking the
weights should be the computer’s job!

Some Intuitions

• Simpler models are better
– (E.g., fewer degrees of freedom)
– Why?

• Want to fit the data
• Don’t want to assume that an

unobserved event has probability 0

Occam’s Razor

One should not
increase, beyond

what is necessary,
the number of

entities required to
explain anything.

Uniform model

0.0830.0830.083large

0.0830.0830.083small

0.0830.0830.083large

0.0830.0830.083small

Constraint: Pr(small) = 0.625

0.0630.0630.063large

0.1040.1040.104small

0.0630.0630.063large

0.1040.1040.104small
0.625

Where did the constraint come from?

Pr(, small) = 0.048

0.0630.0630.063large

0.1440.1440.024small

0.0630.0630.063large

0.1440.1440.024small
0.625

0.048

Pr(large,) = 0.125

0.0630.0630.063large

0.1440.1440.024small

0.0630.0630.063large

0.1440.1440.024small
0.625

?

0.048

Maximum Entropy

!

"j # 1,2,...,m{ }, Ep f j X()[] =$ j

!

p(x)
x

" f j x() =# j

!

max
p
H(p) "max

p
#p(x)log p(x)

x

$

subject to

!

p(x) =1
x

" , #x, p(x) $ 0

Questions Worth Asking

• Does a solution always exist?
– What to do if it doesn’t?

• How to find the solution?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Entropy Review

• Measurement on a distribution
• Value in [0, log|X|]
• High entropy  uniform
• Low entropy  determinism
• Concave in p

!

H(p) = "p(x)log p(x)
x

#

Max Ent

0

0.5

1
0

0.5

1

0

0.5

1

1.5

p1

p2

H

Max

Maximum Entropy

!

"j # 1,2,...,m{ }, Ep f j X()[] =$ j

!

p(x)
x

" f j x() =# j

!

max
p
H(p) "max

p
#p(x)log p(x)

x

$

subject to

!

p(x) =1
x

" , #x, p(x) $ 0

Marginal Constraints

!

p(x)
x

" f j x() =# j

!

p(x)
x

" f j x() =
1

D
f j

˜ x i()
i=1

D

"

!

p(x)
x

"
1 if x is square

0 otherwise

$
%

=
1

D

1 if ˜ x i is square

0 otherwise

$
% i=1

D

" =
count square()

D

Let P represent the set of distributions p that meet the constraints.

Example:

Claim 1

The unique solution to the maximum entropy problem

!

argmax
p"P

H(p)

is a log-linear model on the same features as P.

Claim 2

The unique solution to the maximum entropy problem

!

argmax
p"P

H(p)

is the log-linear model on the same features as P
that also solves

!

argmax
p"Loglinear

p ˜
r
x ()

Max

constrained
|X| variables (p)
concave in p

unconstrained
m variables (θ)
concave in θ

Mathematical Magic

Mathematical Magic

For details: see handout on course page.

1. Use Lagrangean multipliers (one per
constraint).

2. Take the gradient, set equal to zero.
3. Algebra …
4. Voilà! Maximum likelihood problem!

!

E f
1
X()[] =

19

3

E f
2
X()[] = 3

!

p
1

+ p
2

+ p
3

=1

p1

p2

H(p)

θ1

θ2

L(θ)

!

p1 =
1

Z "1,"2()
exp "1 f1 x1() + "2 f2 x1()()

!

p2 =
1

Z "1,"2()
exp "1 f1 x2() + "2 f2 x2()()

!

p3 =
1

Z "1,"2()
exp "1 f1 x3() + "2 f2 x3()()

What if we took out f2?

Additional Point

• If the constraints are empirical, then they are
satisfiable (solution exists).

• So there is a unique solution to:
Max Ent = Log-linear MLE

Slightly More General View

• Instead of “maximize entropy,” can describe
this as “minimize divergence” to a base
distribution q (which happens so far to be
uniform, but needn’t have been).

• Everything goes through pretty much the
same.

!

D p q() = p x()
x

" log
p(x)

q(x)

Training the Weights

• Old answer: “iterative scaling”
– Specialized method for this problem
– Later versions: Generalized IS (Darroch

and Ratliff, 1972) and Improved IS (Della
Pietra, Della Pietra, and Lafferty, 1995)

• More recent answer:
– It’s unconstrained, convex optimization!
– See Malouf (2002) for comparison.

Improved Iterative Scaling
(Della Pietra et al., 1997)

• Initialize each θj arbitrarily.
• Let:
• Repeat until convergence:

– Solve for each δj:

– Update:

Berger’s IIS tutorial gives a derivation.

!

˜ p x() f j x()
x

" =
exp f x() #

r
$

Z
r
$ ()x

" f j x()e
% j f# x()

!

f
#
x() = f j x()

j

"

!

" j #" j + $ j

Gradient Ascent

• Initialize each θj arbitrarily.
• Repeat until convergence:

– Line search for step size:

– Gradient step:

!

ˆ " # argmax
"

f
r
$ +"%f

r
$ ()()

!

r
" #

r
" + ˆ $ %f

r
" ()

Quasi-Newton Methods
• Use the same information as gradient ascent:

function value and gradient.
• Build up an approximate Hessian matrix (second

derivatives) over time.
• Converge much faster.
• There are existing implentations: you provide a

function that computes f and ∇f.

• (Could use true Hessian, but n×n second derivatives
to compute!)

• Common examples: conjugate gradient, L-BFGS.

What are the Function and
Gradient?

!

L "() =
1

D
" j f j

˜ x i()
i=1

D

#
j

$ log exp f j x() %
j

" j

x

#

Z
r
" ()

1 2 4 4 4 3 4 4 4

&L

&" j

=
1

D
f j

˜ x i()
i=1

D

$E
p r
"

X() f j X()[]
Should

remind you of
Max Ent

constraints!

