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Today's Plan

(Anonymous) pop quiz
Maximum Entropy modeling
Relationship to log-linear models
How to do it!

Feature selection

Regularization

Conditional estimation
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Maximum Likelihood
Estimation

* Given a model family, pick the
parameters to maximize

p(data | model)

 Examples: S (x, - i
— Gaussian: a=x.6=|"—
— Bernoulli:  p = Msueces closed form

_ _ no,. . N, solution
— Multinomial: Vi, p,=—

— n-gram model?
— HMM?
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Using the Chain Rule

Pr(Color, Shape, Size) =

0.125

0.375

0.500
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‘ These two are the same!

e —

These two are the same!

A large 0.000
small 1.000
O large 0.333
small 0.667
large 0.250
small 0.750
arge 1.000
small 0.000
arge 0.000
small 1.000
large 0.000
small 1.000

Pr(Color) « Pr(Shape | Color) « Pr(Size | Color, Shape)




Add an Independence
Assumption?

9 df
H 0.5 large | 0.000
0.5 A small | 1.000
\ O large | 0.333
small 0.667
large 0.250
O small 0.750
/\| 0.125 Shap% —> A large | 1.000
O] 0.375 small | 0.000
0.500 O large 0.000
small 1.000
large 0.000
small 1.000

Pr(Color, Shape, Size) = Pr(Color) * Pr(Shape) * Pr(Size | Color, Shape)



Reverse Arrows?
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[ df
large 0.375
small 0.625
at’s

prob.?

Pr(Color, Shape, Size) = Pr(Size) * Pr(Shape | Size) * Pr(Color | Size)




Strong Independence?

4 df

0.5
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O

0.125 ngp large | 0.375
. 9\ small 0.625
0.375

0.500

Pr(Color, Shape, Size) = Pr(Size) * Pr(Shape) * Pr(Color)



This Is Hard!

 Different factorizations affect
— Model size (e.g., number of parameters or df)
— Complexity of inference
— “Interpretability”
— Goodness of fit to the data
— Generalization
— Smoothing methods

 How would it change if we used log-linear
models?

* Arguable: some major “innovations” in NLP
involved really good choices about independence
assumptions, directionality, and smoothing!



A Log-Linear Shape Model

How do || How do
we pick || we set

the the
featu res weights

{}{}

expE f shape
p(Shape) = : Z(—»)

v,

Desideratum: after we pick features, picking the

weights should be the computer’s job!




Some Intuitions

« Simpler models are better
— (E.g., fewer degrees of freedom)
— Why?

» Want to fit the data

* Don’t want to assume that an
unobserved event has probability O



Occam’s Razor

One should nof
increase, begond
what is necessary,
the number of
enfifies requived fo
explain angthing.




Uniform model

A | O

small 0.083 0.083 0.083

0.083 0.083 0.083

0.083 0.083 0.083

0.083 0.083 0.083




Constraint: Pr(small) = 0.625
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small 0.104 0.104 0.104
0.104 0.104 0.104
0.063 0.063 0.063
0.063 0.063 0.063

Where did the constraint come from?

0.625



Pr(/\, small) = 0.048
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Maximum Entropy
max H(p) = maxz—p(x)log p(x)

subject to

2 p(x)=1, Vx,p(x)=0

Vj€{1.2...m}, E,|[f,(X)|=c,
Y p(0)fi(x)=«a,



Questions Worth Asking

* Does a solution always exist?
— What to do if it doesn’t?

 How to find the solution?



0.9

Eptropy Revi

H(p)=),-p(x)log p(x)

* Measurement on a distribution
Value in [0, log|X]]
High entropy =» uniform\
Low entropy =2 determinism
« Concaveinp
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Maximum Entropy
max H(p) = maxz—p(x)log p(x)

subject to

2 p(x)=1, Vx,p(x)=0

Vj€{1.2...m}, E,|[f,(X)|=c,
Y p(0)fi(x)=«a,



Marginal Constraints

Ep(x)fj(x) =a;

>, POf (%) = %ifj(fc,-)

=1
Example: ’

lif xissquare | « |lif X, issquare count(square
2 p(X){ = 52{ = ( )
=1

0 otherwise 0 otherwise D

Let P represent the set of distributions p that meet the constraints.



Claim 1

The unique solution to the maximum entropy problem

argmax H(p)

pE?P

is a log-linear model on the same features as 2.



Claim 2

The unique solution to the maximum entropy problem

argmax H(p)

pE?P

is the log-linear model on the same features as 7
that also solves

arg max p()zc:)

p ELoglinear



Mathematical Magic

|

constrained
|X] variables (p)
concave in p

unconstrained
m variables (0)
concave in 6




Mathematical Magic

For details: see handout on course page.

1.

o

Use Lagrangean multipliers (one per
constraint).

Take the gradient, set equal to zero.
Algebra ...
Voila! Maximum likelihood problem!
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Additional Point

* |If the constraints are empirical, then they are
satisfiable (solution exists).

« So there is a unique solution to:
Max Ent = Log-linear MLE



Slightly More General View

 |nstead of "maximize entropy,” can describe
this as "minimize divergence” to a base
distribution g (which happens so far to be
uniform, but needn’t have been).

~ p(x)
Dpla)= 2 p(x)iog =

* Everything goes through pretty much the
same.



Training the Welights

* Old answer: “iterative scaling”
— Specialized method for this problem

— Later versions: Generalized IS (Darroch
and Ratliff, 1972) and Improved IS (Della
Pietra, Della Pietra, and Lafferty, 1995)

* More recent answer:
— It's unconstrained, convex optimization!
— See Malouf (2002) for comparison.



Improved Iterative Scaling
(Della Pietra et al., 1997)

* Initialize each 6; arbitrarily.
« Let: s()=35()
» Repeat until convergence:

- Solve foreach ;¥ p(x)f,(x) = S22 ;((g)) -0 £i(x)e

— Update: Hj - 9j + 5]-

Berger’s IIS tutorial gives a derivation.



Gradient Ascent

* Initialize each 9; arbitrarily.

* Repeat until convergence:
— Line search for step size:

O <— argmax f(é + (fo(é))

(04

— Gradient step:
6 < 6+av(6)



Quasi-Newton Methods

Use the same information as gradient ascent:
function value and gradient.

Build up an approximate Hessian matrix (second
derivatives) over time.

Converge much faster.

There are existing implentations: you provide a
function that computes f and VT .

(Could use true Hessian, but nxn second derivatives
to compute!)

Common examples: conjugate gradient, L-BFGS.



What are the Function and
Gradient?

I 1 & Should
B Efj(’zi)‘Epé(x)[fj(X)] remind you of
! ! Max Ent
constraints!




