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Today’s Plan

• (Anonymous) pop quiz
• Maximum Entropy modeling
• Relationship to log-linear models
• How to do it!
• Feature selection
• Regularization
• Conditional estimation
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Maximum Likelihood
Estimation

• Given a model family, pick the
parameters to maximize

p(data | model)
• Examples:

– Gaussian:
– Bernoulli:
– Multinomial:
– n-gram model?
– HMM?
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Using the Chain Rule
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 Add an Independence
Assumption?
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Reverse Arrows?
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Shape Size

Pr(Color, Shape, Size) = Pr(Size) • Pr(Shape | Size) • Pr(Color | Size)

small

large
0.333

0.667

0.538

0.462

0.385

0.333

0.077

0.333

0.538

small
0.333

large

0.375large
small 0.625

7 df

What’s my
prob.?



Strong Independence?
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This Is Hard!
• Different factorizations affect

– Model size (e.g., number of parameters or df)
– Complexity of inference
– “Interpretability”
– Goodness of fit to the data
– Generalization
– Smoothing methods

• How would it change if we used log-linear
models?

• Arguable:  some major “innovations” in NLP
involved really good choices about independence
assumptions, directionality, and smoothing!



A Log-Linear Shape Model
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Desideratum:  after we pick features, picking the
weights should be the computer’s job!



Some Intuitions

• Simpler models are better
– (E.g., fewer degrees of freedom)
– Why?

• Want to fit the data
• Don’t want to assume that an

unobserved event has probability 0



Occam’s Razor

One should not
increase, beyond

what is necessary,
the number of

entities required to
explain anything.



Uniform model
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Constraint:  Pr(small) = 0.625
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Maximum Entropy
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Questions Worth Asking

• Does a solution always exist?
– What to do if it doesn’t?

• How to find the solution?
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Entropy Review

• Measurement on a distribution
• Value in [0, log|X|]
• High entropy  uniform
• Low entropy  determinism
• Concave in p

! 

H(p) = "p(x)log p(x)
x

#



Max Ent

0

0.5

1
0

0.5

1

0

0.5

1

1.5

p1

p2

H

Max



Maximum Entropy
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Marginal Constraints
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Example:



Claim 1

The unique solution to the maximum entropy problem
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is a log-linear model on the same features as P.



Claim 2

The unique solution to the maximum entropy problem
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that also solves
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Max

constrained
|X| variables (p)
concave in p

unconstrained
m variables (θ)
concave in θ

Mathematical Magic



Mathematical Magic

For details:  see handout on course page.

1. Use Lagrangean multipliers (one per
constraint).

2. Take the gradient, set equal to zero.
3. Algebra …
4. Voilà!  Maximum likelihood problem!
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Additional Point

• If the constraints are empirical, then they are
satisfiable (solution exists).

• So there is a unique solution to:
Max Ent = Log-linear MLE



Slightly More General View

• Instead of “maximize entropy,” can describe
this as “minimize divergence” to a base
distribution q (which happens so far to be
uniform, but needn’t have been).

• Everything goes through pretty much the
same.
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Training the Weights

• Old answer:  “iterative scaling”
– Specialized method for this problem
– Later versions:  Generalized IS (Darroch

and Ratliff, 1972) and Improved IS (Della
Pietra, Della Pietra, and Lafferty, 1995)

• More recent answer:
– It’s unconstrained, convex optimization!
– See Malouf (2002) for comparison.



Improved Iterative Scaling
(Della Pietra et al., 1997)

• Initialize each θj arbitrarily.
• Let:
• Repeat until convergence:

– Solve for each δj:

– Update:

Berger’s IIS tutorial gives a derivation.
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Gradient Ascent

• Initialize each θj arbitrarily.
• Repeat until convergence:

– Line search for step size:

– Gradient step:
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Quasi-Newton Methods
• Use the same information as gradient ascent:

function value and gradient.
• Build up an approximate Hessian matrix (second

derivatives) over time.
• Converge much faster.
• There are existing implentations:  you provide a

function that computes f and ∇f.

• (Could use true Hessian, but n×n second derivatives
to compute!)

• Common examples:  conjugate gradient, L-BFGS.



What are the Function and
Gradient?
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