
Language and Statistics II

Lecture 4:  Log-Linear Models
(The Big Idea)

Noah Smith



Administrivia

• What lit review topics are we (you)
thinking about?



(m+1)-gram Models, A Different Way
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Log-Linear Models

  

! 

p(x) =
exp

r 
" #

r 
f x( )

Z
r 
" ( )

log p(x)$
r 
" #

r 
f x( )

What are the parameters?What are the features?
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(m+1)-gram Model
as a Log-Linear Model over

the Next Word
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Distributions over “the next
word”

The man who is
was

knew
saw
…
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Adding features

The man who is
was

knew
saw
…

  

! 

p is | history( ) =
exp

r 
f history is( ) "

r 
# 

exp
r 
f history w( ) "

r 
# 

w

$



Watch Out!

• Nobody said nothin’ ‘bout “max ent”
(yet)!

• We haven’t talked about estimation
(picking θ values from data).

• Don’t worry about that yet.



Bait:  Feature Brainstorm



Switch

How are we going to …
• Pick the best sequence in a (possibly

weighted) lattice?
• Sum up over sequences (e.g., for minimum

expected-loss decoding)?

• We need analogs to Dijkstra’s algorithm …
• (In fact, we will need such algorithms for
training, too!)



What Makes Log-Linear
Models Difficult

• Z (easy … so far!)
• Decoding with “big” or “long-distance”

features
• Training is generally expensive



About the θs

• In a log-linear model, each θ can take any
real value at all.

• θj < 0: feature j gets penalized (event is less likely)
• θj = 0: has no effect
• θj > 0: feature j gets a bonus (event is more likely)

• $64,000 question:  how do we pick the θs?
(Next week)



Question

• Last week, we talked about choosing a path
through an unweighted or weighted lattice,
using an (m+1)-gram model.

• To do this, we used dynamic programming.
• What changes, if the model is log-linear

(still based on (m+1)-grams) instead of a
classical Markov model?



Claim

• HMMs are log-linear models, too.
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Log-linear HMMs

• In a standard trigram HMM, two feature
schemata (or templates).
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This fact succinctly encodes
an independence assumption!



Ratnaparkhi (1996)

• Current word, current tag
• Tag trigram, tag bigram, tag unigram
• Current word prefix, current tag
• Current word suffix, current tag
• Previous word, current tag
• Next word, current tag

• Conjoined features:  fi = fj ^ fk
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Another point about
Ratnaparkhi (1996)

• Orthogonal to the model:  decoding
• Ratnaparkhi used a beam search

– In principle, exact decoding is possible!
– Why did he use a beam?



Food for Thought

• Where do the features come from?
– Too many features:  overfit
– Too few good features:  don’t learn
– Ratnaparkhi:  cutoffs.

• Good models = good features + good weight
training.

• Consider:
– Every log-linear model on structures x actually

includes all possible features of x.
– Most of them have weight θ = 0.



Global Log-Linear Models

• Instead of predicting “the next word”
given the history …

• Build one big model that scores the
whole sequence and normalizes once.

• Rosenfeld (1994) - language modeling
• Lafferty et al. (2001) - HMM-style

models



(m+1)-gram Model
as a Log-Linear Model over

Sequences
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Summary & Ad

• Log-linear models:
– Any features you want!
– What the weights mean
– The models we already know are examples
– Some of the issues/choices/concerns

• Next time:
– Training the weights (estimation)
– Why they’re called “max ent” models
– Selecting the features


