
Language and Statistics II

Lecture 4: Log-Linear Models
(The Big Idea)

Noah Smith

Administrivia

• What lit review topics are we (you)
thinking about?

(m+1)-gram Models, A Different Way

!

p s
1

n() = " si | si#m
i#1()

i=1

n

$
%

&
'

(

)
* + " stop | sn#m+1

n()

!

= " s | s1
m()

count s1 ,...,sm ,s ;s1
n()

s1 ,...,sm ,s # $% start,stop{ }()m+1

&

!

= exp count s1,...,sm ,s ;s1
n() " log# s | s1m()

s1 ,...,sm ,s $ %& start,stop{ }()m+1

'

Log-Linear Models

!

p(x) =
exp

r
" #

r
f x()

Z
r
" ()

log p(x)$
r
" #

r
f x()

What are the parameters?What are the features?

!

exp count s1,...,sm ,s ;s1
n() " log# s | s1m()

s1 ,...,sm ,s $ %& start,stop{ }()m+1

'
Where is Z?

(m+1)-gram Model
as a Log-Linear Model over

the Next Word

!

fr
s

r
s () ="

r
s ,

r
s ()

!

"
s,s1 ,...,sm

= log# s | s1,...,sm()

!

p(s1
n) = p si | si"m

i"1()
i=1

n +1

=
exp

r
$ %

r
f si"m

i()
exp

r
$ %

r
f si"m

i"1 .s()
s&'

(i=1

n +1

#

Distributions over “the next
word”

The man who is
was

knew
saw
…

!

p is |man who() =
exp

r
f man who is() "

r

exp
r
f man who w() "

r

w

$

Adding features

The man who is
was

knew
saw
…

!

p is | history() =
exp

r
f history is() "

r

exp
r
f history w() "

r

w

$

Watch Out!

• Nobody said nothin’ ‘bout “max ent”
(yet)!

• We haven’t talked about estimation
(picking θ values from data).

• Don’t worry about that yet.

Bait: Feature Brainstorm

Switch

How are we going to …
• Pick the best sequence in a (possibly

weighted) lattice?
• Sum up over sequences (e.g., for minimum

expected-loss decoding)?

• We need analogs to Dijkstra’s algorithm …
• (In fact, we will need such algorithms for
training, too!)

What Makes Log-Linear
Models Difficult

• Z (easy … so far!)
• Decoding with “big” or “long-distance”

features
• Training is generally expensive

About the θs

• In a log-linear model, each θ can take any
real value at all.

• θj < 0: feature j gets penalized (event is less likely)
• θj = 0: has no effect
• θj > 0: feature j gets a bonus (event is more likely)

• $64,000 question: how do we pick the θs?
(Next week)

Question

• Last week, we talked about choosing a path
through an unweighted or weighted lattice,
using an (m+1)-gram model.

• To do this, we used dynamic programming.
• What changes, if the model is log-linear

(still based on (m+1)-grams) instead of a
classical Markov model?

Claim

• HMMs are log-linear models, too.

!

p c1
n,s1

n() = " si | ci() # $ ci | ci%m

i%1()
i=1

n

&
'

(
)

*

+
, # $ stop | cn%m +1

n()

p c1
n | s1

n() =
1

p s1
n()

" si | ci() # $ ci | ci%m

i%1()
i=1

n

&
'

(
)

*

+
, # $ stop | cn%m +1

n()

=
1

Z
r
- ,s1

n()
exp

r
f c1

i,s1
n()

i=1

n +1

& #
r
-

Log-linear HMMs

• In a standard trigram HMM, two feature
schemata (or templates).

!

f
c,c' "c'' c1

i
,s
1

n() =
1 if ci#2 = c$ci#1 = c'$ci = c''

0 otherwise

%
&
'

!

f
c"s c1

i
,s
1

n() =
1 if ci = c# si = s

0 otherwise

$
%
&

!

r
f c

1

i
,s
1

n() =
r
f ci"2

i
,si()

This fact succinctly encodes
an independence assumption!

Ratnaparkhi (1996)

• Current word, current tag
• Tag trigram, tag bigram, tag unigram
• Current word prefix, current tag
• Current word suffix, current tag
• Previous word, current tag
• Next word, current tag

• Conjoined features: fi = fj ^ fk

!

r
f c

1

i
,s
1

n() =
r
f ci"2

i
,si"1

i+1()

Another point about
Ratnaparkhi (1996)

• Orthogonal to the model: decoding
• Ratnaparkhi used a beam search

– In principle, exact decoding is possible!
– Why did he use a beam?

Food for Thought

• Where do the features come from?
– Too many features: overfit
– Too few good features: don’t learn
– Ratnaparkhi: cutoffs.

• Good models = good features + good weight
training.

• Consider:
– Every log-linear model on structures x actually

includes all possible features of x.
– Most of them have weight θ = 0.

Global Log-Linear Models

• Instead of predicting “the next word”
given the history …

• Build one big model that scores the
whole sequence and normalizes once.

• Rosenfeld (1994) - language modeling
• Lafferty et al. (2001) - HMM-style

models

(m+1)-gram Model
as a Log-Linear Model over

Sequences

!

f
s,s1 ,...,sm

s
1

n() = count s,s1,...,sm ;s1n()

!

"
s,s1 ,...,sm

= log# s | s1,...,sm()

!

p(s1
n
) =
exp

r
" #

r
f s1

n()
Z

r
" ()

=
exp

r
" #

r
f s1

n()
exp

r
" #

r
f

r
s ()

r
s $%*

&

Summary & Ad

• Log-linear models:
– Any features you want!
– What the weights mean
– The models we already know are examples
– Some of the issues/choices/concerns

• Next time:
– Training the weights (estimation)
– Why they’re called “max ent” models
– Selecting the features

