Language and Statistics II

Lecture 21: Bootstrapping

Noah Smith

So Far ...

- We've talked mainly about building **models** from either annotated data or unannotated data.
- We've focused on classes of models that predict different kinds of structure.
- We've explored different ways to **estimate** those models.
- Today, we focus on mixing labeled and unlabeled data.

Word Sense Disambiguation

- Can a word sense disambiguation?
- Homographs
 - park the car vs. walk in the park
 - water the plant vs. work at the plant
 - the x and y axes vs. chopping down trees with axes
 - palm of my hand vs. palm tree
- Assume we know the set of senses for a word type. Can we pick the right one for ambiguous tokens in text?
- Note: the "output variable" ranges over a small, finite set. So machine learning people love WSD.

One Sense Per Discourse

p(more than one occurrence)

p(most frequent sense | more than one occurrence)

		_	
Word	Senses	Accuracy	Applicblty
plant	living/factory	99.8 %	72.8 %
tank	vehicle/contnr	99.6 %	50.5 %
poach	steal/boil	100.0 %	44.4 %
palm	tree/hand	99.8 %	38.5 %
axes	grid/tools	100.0 %	35.5 %
sake	benefit/drink	100.0 %	33.7 %
bass	fish/music	100.0 %	58.8 %
space	volume/outer	99.2 %	67.7 %
motion	legal/physical	99.9 %	49.8 %
crane	bird/machine	100.0 %	49.1 %
Average		99.8 %	50.1 %

One Sense Per Discourse

This is a fancy way of saying that, within a discourse (e.g., document), ambiguous tokens of the same type tend to be correlated.

One Sense Per Collocation

- Certain features of the context are very strong predictors for one sense or another.
 - ... power plant ...
 - ... palm of ...
 - -... the park ...
- This is a fancy way of saying that (some) collocations are excellent features.

The Yarowsky Algorithm

- Given: ambiguous word type w, lots of text
- 1. Choose a few seed collocations for each sense and label data in those collocations.

? ? Manufacturin ?

A = SENSE-A training example B = SENSE-B training example ? = currently unclassified training example Life = Set of training examples containing the collocation "life".

The Yarowsky Algorithm

- Given: ambiguous word type **w**, lots of text
- 1. Choose a few seed collocations for each sense and label data in those collocations.
- 2. Train a supervised classifier on the labeled examples. (Yarowsky used a decision list.)
- Label all examples. Keep the labels about which the supervised classifier was highly confident (above threshold).
 - Optionally, exploit one-sense-per-discourse to "spread" a label throughout the discourse.
- 4. Go to 2.

Whence Seeds?

- Yarowsky suggests:
 - dictionary definitions
 - single defining collocate (e.g., from WordNet)
 - label extremely common collocations

• See Eisner & Karakos (2005) for more about seeds.

Experimental Results

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
[[%		Seed Tr	aining C	p tions	(7) +	OSPD	
		Samp.	Major	Supvsd	Two	Dict.	Тор	End	Each	Schütze
Word	Senses	Size	Sense	Algrtm	Words	Defn.	Colls.	only	Iter.	Algrthm
plant	living/factory	7538	53.1	97.7	97.1	97.3	97.6	98.3	98.6	92
space	volume/outer	5745	50.7	93.9	89.1	92.3	93.5	93.3	93.6	90
tank	vehicle/container	11420	58.2	97.1	94.2	94.6	95.8	96.1	96.5	95
motion	legal/physical	11968	57.5	98.0	93.5	97.4	97.4	97.8	97.9	92
bass	fish/music	1859	56.1	97.8	96.6	97.2	97.7	98.5	98.8	- 1
palm	tree/hand	1572	74.9	96.5	93.9	94.7	95.8	95.5	95.9	-
poach	steal/boil	585	84.6	97.1	96.6	97.2	97.7	98.4	98.5	-
axes	grid/tools	1344	71.8	95.5	94.0	94.3	94.7	96.8	97.0	- 1
duty	tax/obligation	1280	50.0	93.7	90.4	92.1	93.2	93.9	94.1	-
drug	medicine/narcotic	1380	50.0	93.0	90.4	91.4	92.6	93.3	93.9	-
sake	benefit/drink	407	82.8	96.3	59.6	95.8	96.1	96.1	97.5	-
crane	bird/machine	2145	78.0	96.6	92.3	93.6	94.2	95.4	95.5	
AVG		3936	63.9	96.1	90.6	94.8	95.5	96.1	96.5	92.2

Several Ways to Think About This

- Like Viterbi EM, but new features induced on each iteration.
 - Yarowsky didn't use a probability model in the conventional way; he used a decision list.
- Leveraging several assumptions about the data to help each other
 - One sense per collocation (inside the decision list)
 - One sense per discourse (finding new collocations)
- Meta-learner in which any supervised method can be nested!

Important Note

- Yarowsky's algorithm is not just for word sense! Similar algorithms have been applied to diverse problems:
 - Named entity recognition
 - Grammatical gender prediction
 - Morphology learning
 - Bilingual lexicon induction
 - Parsing

Cotraining (Blum and Mitchell, 1998)

- Rather difficult paper, but rather elegant idea.
- Input is x; suppose it can be broken into x₁ and x₂, disjoint "views" of x.
- Cotraining iteratively builds two classifiers (one on x₁ and one on x₂) and uses each to help improve the other.

Cotraining

- Given labeled examples L, unlabeled examples U
- 1. Train c_1 on x_1 from L, and train c_2 on x_2 from L. (B&M used Naïve Bayes.)
- Label examples in U using c₁; add those it's most confident about for each class to L.
- 3. Ditto (c₂).
- 4. Go to 1.

WebKB-Course Data

- Data: CS department sites from four universities
- Task: Is a given page a course web page or not?
- X₁: bag of words in the page
- X₂: bag of words in *hyperlinks to the page*

	Page-based classifier	Hyperlink-based classifier	Combined classifier
Supervised training	12.9	12.4	11.1
Co-training	6.2	11.6	5.0

What's Different?

- The "view" formulation.
 - Yarowsky has one classifier; B&M have two.
- Yarowsky allows relabeling of unlabeled examples; B&M do not.
- Yarowsky (1995) focused on particular properties of the data and exploited them. No general claims.
- B&M (1998) were seeking a general meta-learner that could leverage unlabeled examples; they actually gave PAC-style learnability results under an assumption that X₁ and X₂ were conditionally independent given Y.
- Unlike EM, neither of these methods maintains **posterior distributions** over the labels.

Nigam and Ghani (2000)

 Compare EM and cotraining, with the same model/featues. On the WebKB-Course dataset:

Algorithm	# Labeled	# Unlabeled	Error
Naive Bayes	788	-0-	3.3%
Co-training	12	776	5.4%
$\mathbf{E}\mathbf{M}$	12	776	4.3%
Naive Bayes	12	-0-	13.0%

Nigam and Ghani (2000)

- Ceiling effects?
- Are the content/hyperlink views really independent? (Probably not.) Semi-synthetic experiment:

Algorithm	# Labeled	# Unlabeled	Error
Naive Bayes	1006	-0-	3.9%
Co-training	6	1000	3.7%
EM	6	1000	8.9%
Naive Bayes	6	-0-	34.0%

• EM > Cotraining

Hybrids

- EM:
- ||: A softly labels data; A trains :||
- Co-EM:

||: A softly labels data; B trains;B softly labels data; A trains :||

• Co-training:

||: A, B label a few examples; A, B train :||

• Self-training:

||: A labels a few examples; A trains :||

Results (Synthetic Data)

More Results

- If no natural feature split is available, can split features **randomly**.
- On synthetic data, that actually worked better than the smart split!
- On real data, best results came from self-training (!?!?)
 - Hard to draw any firm conclusions.
 - Possibly has to do with the supervised learner (why not use something more powerful than Naïve Bayes?).
 - Ng and Cardie (2003): more mixed results, but come out in favor of "single-view" algorithms.
 - Critical comment: go back to the objective function!

Abney (2004)

- "Understanding the Yarowsky Algorithm"
- Entirely under-appreciated paper!
- Demonstrates that certain variants of the Yarowsky algorithm are actually optimizing likelihood. Others are optimizing a bound on likelihood.
- Likelihood under what model?

Understanding the Abney Understanding of the Yarowsky Algorithm

- Modifications:
 - Once an originally-unlabeled example is labeled, it stays labeled.
 - Fix threshold at 1/(# classes).
- Assumption: base learner *improves* **KL divergence** between empirical distribution and the base model.
 - Either on labeled examples only,
 - or overall (assuming unlabeled examples have uniform empirical)
- Yarowsky's base learner doesn't do this; Abney gives variants that do.
 - The "DL-EM" base learners he describes essentially amount to a single step of the EM algorithm.
- The proofs are involved; the insight (I believe) is that the algorithm starts to look more like (Viterbi) EM with some labels fixed so they can't change.

Cotraining for Parsing?

• Steedman et al. (2003) cotrained two parsers.

Collins-CFG	LTAG	
Bi-lexical dependencies are between	Bi-lexical dependencies are between	
lexicalized nonterminals	elementary trees	
Can produce novel elementary	Can produce novel bi-lexical	
trees for the LTAG parser	dependencies for Collins-CFG	
When using small amounts of seed data,	When using small amounts of seed data,	
abstains less often than LTAG	abstains more often than Collins-CFG	

Parser Self-training

Parser Cotraining

Steedman et al., 2003

- Also showed cross-domain improvement (WSJ and Brown corpus).
- If you start with "enough" labeled data, cotraining doesn't help.
 - Similar to many other results: Merialdo (1994), Elworthy (1994), Smith (2006), ...

Semisupervised Learning: Hot

- Adaptation to new domains
 - Or languages! Hwa et al., 2002; Wicentowski et al., 2001; Smith and Smith, 2004, …
- Ando and Zhang (2005): use multiple tasks to leverage unlabeled data
- Lessen the cost of annotation projects (annotate fewer examples)
- Interesting theoretical topic (many papers lately)
- So much unlabeled data, how could we not want to learn from it!

Two Important Lessons

- There usually is no unqualified "best" method. All kinds of things affect this. More subtle questions than, "does A beat B":
 - What conditions lead to better performance for A vs. B?
 - What kinds of errors is A more susceptible to than B?
- Nifty ideas can often be shown (sometimes years later) to have solid mathematical underpinnings.