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Proof that EM = Partial-Data MLE

* Claim: EM iterations improve likelihood,
converging to a local optimum.

maximizing likelihood

ljpé(xi) = ﬂzpé(xi’)’) = glogng(xi’)’) = E[)(x)logzpé(x,y)

the M step

> B(x)a(ylx)log py (%) = > B(x) Y a(v]x)log py (x.y)



MLE-Objectve - M-Step-Objective

what MLE wants maximized what the M st pm imizes

E logzp,, %,y) - Ep Eq yjx)log p, (x.)

E Eq ylx logzpe x,y') Ep Eq y|x)log p; (x.y)

=—2px gq y‘x logzp(( )

g\
y
=~ B(x) Y a(]x)log p; (y]x)
X y
what MLE wan mmdA what the M step maximizes: @ A

Ep logzp %) = Ep qu\x logpexy Ep E (v[x)1og p, (v]x)



Central Claim

part 1: M step CD(é“ B q) maXCD(é 61) = q)(e(’),q)

0

part 2: Estep| A(d".q)-A(6"".q) = 3 () T a{sl)iog " “’(yi)>

E El? y‘x log j@ <)"X) =El;[D(P§<t)HP§(m) ]20
what MLE wants maximized: A WhtthMtpm ximiz

Ep logngxy Ep qu\x logpexy Ep Eq x)log p, y\x




Central Claim

o i)

M step E step
guarantees guarantee
an S a
iIncrease in decrease

() In A

what MLE wants maximized: A what the M step maximiz A

Ep logngxy Ep qu\x logpexy Ep E x)log p, (v]x)




Convergence

« EM iterations will never decrease likelihood.

* Under some conditions, EM converges to a
saddle point; generally it is assumed that
EM will converge to a local maximum.

* Linear convergence (i.e., slow); depends on
how much information is missing.
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Toward Structure Models

* There are way too many values of Y to sum
over!

* Two key points:
— Never need to sum over Y by enumeration.
— Never need g to be computed explicitly.



Consider the M Step

6!+ — argmaxzp y‘x)logpe (x,y)

X,y "preten dp( )

To maximize likelihood, what do we need?

* For multinomial-based models (HMMs,
PCFGs, etc.), we need counts.

* For log-linear models in general, we need
counts.



Simplifying the M Step
(multinomials)
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Simplifying the M Step
(log-linear models)
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next time!




Sufficient Statisics

» A statistic is sufficient for a parameter when

5()

p(data

é) = p(data

* The M step only requires sufficient statistics
under q.

* For NLP models, this usually means
expected counts.



HMM Forward and Backward

Probabilities
(x(i,c) = p(sf‘+1 |C. = C) “backward” probability
Bli,c) = p(sf,Cl. — c) “forward” probability
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CKY Inside and Outside
Probabilities

a(i.jN)=p(s" N, s7.,1S,,) [ “outside” probability

;) “inside” probability
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expected count of rule




In General

* Don’t compute g directly in the E step.
— Just get the sufficient statistics.

— Inside and Outside algorithms can help for some
models!

— Other alternatives (less common in NLP):
« Sample from q(y | x) to get sufficient statistics.
« Use a variational approximation to q(y | x).

* This should remind you of the factored dual
in structured maximum margin training!

— Use statistics on structure pieces instead of
whole structures.



Pereira and Schabes (1992)

« Suppose you have a partially bracketed corpus.

* Want to constrain re-estimation to respect the
known bracketings. Everything else is hidden.

Democrats took control of both houses) no information

(Democrats) took control of (both houses)) base NPs

(Democrats) took (control of (both houses))) ail NPs
emocrats (took control of both houses)) vp
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Pereira and Schabes (1992)

 When compared with unconstrained EM:
— Better fit to the data (cross-entropy)
— Better accuracy
— Faster convergence

o Later result (Hwa, 1999):  [wmeti= "]
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Merialdo (1994)

Suppose you have some tagged text and
some untagged text.

You could train a tagger on the tagged text.
Can you use the untagged text to help?

Merialdo:
— Vary the amount of tagged text

— Use the tagged text to initialize
— Run EM.
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Merialdo (1994)

Similar results by Elworthy (1994).
Another way to combine the data:

méaleogp(xi,yi) + Elog p(xl.)
i€L e

Equivalently, augment E step counts with
observed counts before each M step.

(Same effect, anecdotally.)



The Two Main Problems With EM

» Marginal likelihood # Accuracy
* Local optima

0 )
aftor ENE raiming Plot from Smith
50 (2006);
7 s similar results in
E fixa Charniak (1993)
g 30
Fooal
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log-likelihood (training)



Variants

MAP instead of MLE: add a prior (smoothing)

For speed:

— Viterbi approximation (mode instead of expectation in E
step)

— Incremental EM (M step after every example)
To improve search quality:

— Deterministic annealing: gradually relax an entropy
constraint on g (affects the E step only)

— Random restarts
— Random reweighting of examples

Really good initialization
Alternative objective (next week)



Klein & Manning (2002)

A highly deficient grammatical model that
predicts POS tag sequences.

Constituent-context model (CCM).

Best published unsupervised parsing results
on WSJ-10 (in 2002)

Trained using EM ... with an interesting

initializer: Prg,;



Constituent-Context Model

t=(t, ... t) is the tag sequence.

LetC,; be ar.v.,, equalto 1ift ... t is a constituent, O if not.

C is the set of all C;; (an upper matrix). The valid values of C are the ones
that are binary trees.

Pr(t, C) = Pr(C) - Pr(t| C)
= Pr(C) - I_Ii,j: 1<izj<n Pr(t 4 | Cij) - Prtiy, g | C))
= (1/7(n)) - I_Ii,j: 1<igjen PrG [ C) - Prtg, Gy | C))
.

v— N JERN

Y Y
uniform distribution over trees “constituent”

“context”
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About CCM

* Only four multinomials to estimate.

* Need two features for every substring of
tags! (This is why they used WSJ-10.)

» Highly deficient!



Pr

split

Given length of sentence, n.

Choose N, u.a.r. from {1, 2, ..., n}

Choose N, u.a.r. from {1, 2, ..., N, — 1}
Choose N; u.a.r. from{1, 2, ..., n—N, - 1}

Continue until no further splits can be
made.

/\
/\
NZ Nl NZ

This model gives a closed form for m\

the expectations; K&M use it to
generate Initial expectations, then
start with an M step.

*See also Cover & Thomas problem 4.3 (p. 72).

N n—N; —N;



Importance of Pr

split
Alg'm | Model UP UR| Ave.| Perfct 0CB| =<2CB| It.s| Cross-E
(%) (%) CB (%) (bits)
Right-|] 46.62| 62.54 1.78| 13.54| 28.13| 71.42 -- --
branching trees
EM| CCM| 58.24| 78.14 098 | 16.86| 50.39| 87.48 | 123 | 725.17
(Prsplit)
EM| CCM| 45.62| 61.20 1.69| 11.28| 26.53| 71.79| 145| 724.96
(unif.)
Upper bound | 74.54 | 100.00 0.00| 25.93| 100.00 | 100.00 -- --
(binary trees)




Next Time

 Contrastive estimation as an alternative to
EM

— Application to unsupervised tagging, parsing



