Language and Statistics II

Lecture 18: Clustering

Noah Smith

Clustering

- Given a set of examples, infer classes.
- Class variable has never been observed!
 - So this is **unsupervised** classification.
 - Usual insight: if two examples are very similar, they are probably in the same class.
- In some settings, it's clear how to define the similarity between two examples.

– But not always (e.g., in NLP).

Clustering **R** Data

K-Means

- Given: examples {x_i}, K
- 1. Randomly select m_1, \ldots, m_K .
- 2. Assign each x_i to the nearest m_i .

 $\hat{y}_i = \operatorname*{argmin}_{m_i} d(x_i, m_j)$

- 3. Select each m_j to be the mean of all x_i assigned to it. $m_j = \frac{1}{\left|\left\{i: \hat{y}_i = m_j\right\}\right|} \sum_{i: \hat{y}_i = m_j} x_i$
- 4. If all m_i have converged stop; else go to 2.

Questions

- How to choose K?
- Try different K; choose the smallest K such that adding another cluster will not explan much variance.

Questions

- How to choose K?
- Does the choice of distance measure matter?
 - Yes!
- Guaranteed to converge?
 - Yes.
- Always to same centroids?
 - No.
- Is there an objective function that is being optimized?
 Yes (locally).
- Does this have a probabilistic interpretation?
 - Yes.

From K-Means to EM

• Soft K-Means ... add a parameter β .

Each x_i gets one vote, which it divides between clusters.

From K-Means to EM

- Soft K-Means ... add a parameter β .
 - β is "stiffness" it controls how much variance the clusters can have.
 - $\beta \rightarrow \infty$ approaches hard K-Means!

$$V_{j}(x_{i}) = \frac{\exp\left[-\beta d(x_{i}, m_{j})\right]}{\sum_{j'} \exp\left[-\beta d(x_{i}, m_{j'})\right]} \stackrel{\beta \to \infty}{\longrightarrow} \begin{cases} 1 & \text{if } m_{j} = \operatorname*{arg\,min} d(x_{i}, m) \\ 0 & \text{otherwise} \end{cases}$$

$$m_{j} = \frac{\sum_{i} x_{i} V_{j}(x_{i})}{\sum_{i} V_{j}(x_{i})}$$

Soft K-Means, Visualized

Soft K-Means, Visualized

Soft K-Means, Visualized

From K-Means to EM

- Soft K-Means ... add a parameter β .
 - β is "stiffness" it controls how much variance the clusters can have.
 - $\beta \rightarrow \infty$ approaches hard K-Means!
- Claim: this is the EM algorithm, for a particular log-linear model!

$$p(X = x, M = m) \propto \exp[-\beta d(x, m)]$$

From K-Means to EM

• If d(x, y) is squared Euclidean distance, clusters are equiprobable *a priori*, all clusters have same variance, and $\beta = 2\sigma^2 \dots$

$$p(X = x, M = m) = p(x|m)p(m) = \frac{1}{K}p(x|m)$$
$$= \frac{1}{K\sqrt{|\Sigma|(2\pi)^{D}}}\exp\left(-\frac{1}{2}(x-m)'\Sigma^{-1}(x-m)\right)$$

$$\propto \exp\left(-\beta(x-m)^2\right)$$

$$p(X = x, M = m) \propto \exp[-\beta d(x, m)]$$

What is this EM?

- EM is many things.
 - Class of alternating minimization algorithms
 - Likelihood maximization technique for hidden variables (like clusters)
 - Approximate inference technique
- For now, think of it as a soft clustering method with two alternating steps:
 - E (expectation or "election") step
 - M (maximization or "model-fitting") step

E (Election) Step

- Each example x_i decides how much of its vote to give to each cluster.
- To allocate x_i's vote, consider the posterior probability that x_i came from m_i:

$$q(m_j|x_i) \propto e^{-\beta d(x_i,m_j)}$$

– The closer m_i is, the more of x_i 's vote it gets.

- For squared Euclidean distance, you can tell this generative story:
 - Pick a centroid j uniformly.
 - Sample X according to a Gaussian at mean m_i.

M (Model-Fitting) Step

- Each cluster conforms to its constituents!
- I.e., given a set of (possibly fractional) examples, carry out MLE for m_i:

$$\hat{m}_{j} = \underset{m}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_{i}|m) \overbrace{q(m_{j}|x_{i})}^{\operatorname{fractional}} = \underset{m}{\operatorname{argmax}} \sum_{i=1}^{n} q(m_{j}|x_{i}) \log p(x_{i}|m)$$

$$= \underset{m}{\operatorname{arg\,max}} \sum_{i=1}^{n} q(m_{i}|x_{i}) \log e^{-\beta d(x_{i},m)}$$

$$= \underset{m}{\operatorname{argmin}} \sum_{i=1}^{n} q(m_{j}|x_{i}) d(x_{i},m)$$

Another View of EM

 If we knew the m_j, we could say how strongly each x_i belongs to each m_i. (Easily!)

If we knew how strongly each x_i belongs to each m_j, we could guess where the m_j are. (Easily!)

Another View of EM

- If we knew the m_j, we could say how strongly each x_i belongs to each m_j. (Easily!)
 This is the E step.
- If we knew how strongly each x_i belongs to each m_j, we could guess where the m_j are. (Easily!)

This is the M step.

The Model

- Two random variables: X and Y
- Each x_i is observed (the data)
- Each Y_i is **hidden** or **latent**
- -d(x, y) is a similarity (negative distance) feature
- β is the weight of that feature
- The possible values of the y_j (the possible values for each Y_i) are the model parameters. We know there are K vectors, m₁, ..., m_K.

(This model really only makes sense in a continuous space where we can take weighted averages!)

In General ...

- EM can be applied to any probabilistic model.
 - But it's much easier to apply to some models than to others!
- There's always a "winner-take-all" variant.
 You should think of this as an approximation.

EM in General

• E step:

$$\forall i, y, q(y|x_i) \leftarrow p_{\vec{\theta}^{(t)}}(y|x_i) = \frac{p_{\vec{\theta}^{(t)}}(x_i, y)}{\sum_{y'} p_{\vec{\theta}^{(t)}}(x_i, y')}$$

soft assignment or voting

• M step:

$$\vec{\theta}^{(t+1)} \leftarrow \arg\max_{\vec{\theta}} \sum_{x,y} \underbrace{\tilde{p}(x)q(y|x)}_{\text{"pretend"}\;\tilde{p}(x,y)} \log p_{\vec{\theta}}(x,y) \qquad \begin{array}{c} \text{fully-observed} \\ \text{data MLE} \end{array}$$

Aside: EM ≈ Gibbs Sampling

- Alternative view: we have two hidden variables, Θ (the parameters) and Y.
- Randomized approach to inference: sample each hidden variable in turn, given all the others.
 - Sample Y given X, Θ . (E step: exact inference)
 - Sample Θ given X, Y. (M step: take the mode)

Claims

- EM is trying to maximize the likelihood of the data.
 - The observed part: $\{x_i\}$
 - The hidden part, Y, is marginalized over.
- EM converges to a **local** optimum.
 - Which local optimum depends on the initial parameters (or posterior).
 - EM can take many iterations to converge.

Clustering Words

- Brown et al. (1992)
- Pereira et al. (1993)
- Schütze (1993)

Brown et al., 1992

- Motivation: improved language modeling.
- Class-based language model:

$$p(s_i|s_{i-m}...s_{i-1}) = p(s_i|c_i)p(c_i|c_{i-m}...c_{i-1})$$

- Classes are hard clusters.
- Greedy search algorithm ...

Brown et al., 1992

- Input: vocabulary of V words, K
- 1. Initialize with each word in its own class.
- 2. For t = 1 to V K:
 - 1. Compute the average mutual information between each class pair.
 - 2. Merge the class pair that will result in the smallest loss in average mutual information.

*Some implementation tricks required!

Average Mutual Information

Likelihood of the data:

$$\begin{split} \frac{1}{N} \sum_{i=1}^{N} \log(p(w_i|c_i)p(c_i|c_{i-1})) &= \mathbf{E}_{\tilde{p}} \left[\log(p(W|C)p(C|C')) \right] \\ &= \mathbf{E}_{\tilde{p}} \left[\log \left(\frac{p(W|C)p(C|C')p(C)}{p(C)} \right) \right] \\ &= \mathbf{E}_{\tilde{p}} \left[\log \left(\frac{p(C|C')}{p(C)} \right) + \log(p(W|C)p(C)) \right] \\ &= \mathbf{E}_{\tilde{p}} \left[\log \left(\frac{p(C',C)}{p(C')p(C)} \right) + \log(p(W)) \right] \end{split}$$

Comparison

K-Means

- Hard classes
- Distance feature (similarity model)
- Fixed # classes K
- Winner-take-all EM (optimize "extreme" likelihood)

Brown et al., 1992

- Hard classes
- Bigram features (bigram class model)
- # classes: $V \rightarrow K$
- Greedy search based on MI (optimize likelihood)

Both can be seen as trying to optimize likelihood.

Pereira et al., 1993

*Warning: this is a very confusing paper because it introduces lots of new ideas.

- **Soft** clustering of **nouns** based on the **verbs** that take them as objects.
- The model: $p(v,n) = \sum p(c)p(v|c)p(n|c)$
- Like in K-Means, there is a distance feature: it is the KL divergence between two distributions:

 $d(n,c) = D(\tilde{p}(V|n) || p(V|c))$

- Unlike the other methods discussed so far, K is not fixed. It starts at 1, and they gradually increase it by **splitting** clusters.
- To make this happen, they manipulate β ...

Deterministic Annealing and Phase Transitions

• Recall:

$$q(m_j|x_i) \propto e^{-\beta d(x_i,m_j)}$$
 $q(c|n) \propto e^{-\beta d(n,c)}$

- When β is close to 0, every noun is in every cluster with about the same strength.
- As β increases, model commits more.
- Can think of β as a Lagrange multiplier controlling the entropy of the posterior! $F = E_{p(C|N)} [d(N,C)] \frac{1}{\beta} H(p(C|N))$

Deterministic Annealing and Phase Transitions

• Recall:

$$q(m_j|x_i) \propto e^{-\beta d(x_i,m_j)}$$
 $q(c|n) \propto e^{-\beta d(n,c)}$

- When β is close to 0, every noun is in every cluster with about the same strength.
- As β increases, model commits more.
- Can think of β as a Lagrange multiplier controlling the entropy of the posterior! $F = E_{p(C|N)} [d(N,C)] \frac{1}{\beta} H(p(C|N))$
- Physical analogy: $\beta = 1$ /temperature.
 - At high temperatures, the system is equally likely to be in any state.
 - As system cools (β gets large), system commits to one state.
 - Goal of annealing in metalworking is to find a stable configuration (low free energy).

Deterministic Annealing and Phase Transitions

• Recall:

$$q(m_j|x_i) \propto e^{-\beta d(x_i, m_j)}$$
 $q(c|n) \propto e^{-\beta d(n, c)}$

- When β is close to 0, every noun is in every cluster with about the same strength.
- As β increases, model commits more
- Can think of β as a Lagrange multiplier controlling the entropy of the posterior! $F = E_{p(C|N)}[d(N,C)] \frac{1}{\beta}H(p(C|N))$

Phase transitions are the effect of gradually increasing β .

DA Clustering

- Start out with two clusters: c and its twin, c.t, and set β to be close to zero.
- Iteratively re-estimate the cluster centroids, gradually increasing β .
 - Whenever a cluster c and its twin c.t become sufficiently distinct (in terms of distance from each other), **split** c.t into a new cluster c', and give c and c' new twins (slight perturbations).

Note: can extract a hierarchical clustering from this! How?

The Objective Function View

Comparison

K-Means

- Hard classes
- **Distance** feature (similarity model)
- Fixed # classes Κ
- Winner-take-all EM (optimize "extreme" likelihood)

- Hard classes
- Bigram features Distributional (bigram class model)
- # classes: $V \rightarrow$ Κ
- Greedy search based on MI (optimize likelihood)

Brown et al., 1992 Pereira et al., 1993

- Soft classes
- similarity feature
- # classes: $1 \rightarrow K$
- DA/EM search (optimize likelihood)

All three can be seen as trying to optimize likelihood.

Schütze (1993)

- Map words into high-dimensional ℝ vector of coocurrence counts (-2, -1, +1, +2).
- Singular value decomposition to reduce dimensionality
- Didn't work well for ambiguous words; used a neural network to do classification *in context*.
- See paper for more details.

Next Time

 EM-based unsupervised learning with models of discrete structures (sequences and trees).