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Clustering

* Given a set of examples, infer classes.

» Class variable has never been observed!
— So this is unsupervised classification.

— Usual insight: if two examples are very similar,
they are probably in the same class.

* In some settings, it's clear how to define the
similarity between two examples.

— But not always (e.g., in NLP).



Clustering R Data



K-Means

Given: examples {x}, K

. Randomly select m,, ..., my.

. Assign each x; to the nearest m;.
3, = argmmind(xi,m )

. Select each m; to be the mean of all x;
assigned to it. 1 S
{i:)’\;i =mj} i:§i=mjl

. Ifall m; have converged stop; else go to 2.

mj=‘




K-Means, Visualized
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K-Means, Visualized



Questions

« How to choose K?

Try different K; choose the smallest K such
that adding another cluster will not explan

much variance.

K

A




Questions

How to choose K?

Does the choice of distance measure matter?

— Yes!

Guaranteed to converge?

— Yes.

Always to same centroids?

— No.

Is there an objective function that is being optimized?
— Yes (locally).

Does this have a probabilistic interpretation?
— Yes.



From K-Means to EM

Soft K-Means ... add a parameter .

Each x; gets one vote, which it divides
between clusters.

portion of
v (x) = exp[_ﬁd(xi’mj)] < X.'s vote
A zexp[—[o’d(xi,mj,)] going to m,
Cluster m, is chosen by a vote among all x;.

E'xivj(xi) weighted

m; = ZEVj(xi) < average of x; (by

their votes)




From K-Means to EM

« Soft K-Means ... add a parameter .

= 3 is “stiffness” - it controls how much variance
the clusters can have.

= § — o approaches hard K-Means!

V.(x,)=

J 1

exp[—[a’d(xi,mj)] /3;00{1 ifm; = argmind(x,,m)

Eexp[—/a’d(xi,mj.)] .

0 otherwise
r

ExiVj(xi)
T EVj(xi)




Soft K-Means, Visualized
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Soft K-Means, Visualized



From K-Means to EM

« Soft K-Means ... add a parameter .

= 3 is “stiffness” - it controls how much variance
the clusters can have.

= § — o approaches hard K-Means!

e Claim: this is the EM algorithm, for a
particular log-linear model!

p(X=x,M=m)x exp[—ﬁd(x,m)]



From K-Means to EM

 If d(X, y) is squared Euclidean distance, clusters are
equiprobable a priori, all clusters have same

variance, and 5 = 202 ...

p(X=x,M=m)= p(x‘m)p(m) = %p(x‘m)
1 :

1 T
i ST A

o exp(—[a’(x - m)z)

p(X=x,M=m)x exp[—ﬁd(x,m)]



What is this EM?

 EM is many things.
— Class of alternating minimization algorithms

— Likelihood maximization technique for hidden
variables (like clusters)

— Approximate inference technique

* For now, think of it as a soft clustering
method with two alternating steps:

— E (expectation or “election”) step
— M (maximization or “model-fitting”) step



E (Election) Step

» Each example x; decides how much of its vote to
give to each cluster.

» To allocate x's vote, consider the posterior
probability that x; came from m;:

—/J’d(xl.,mj)

r) e

l

g(m,
— The closer m; is, the more of x;'s vote it gets.
* For squared Euclidean distance, you can tell this
generative story:

— Pick a centroid j uniformly.
— Sample X according to a Gaussian at mean m..



M (Model-Fitting) Step

 Each cluster conforms to its constituents!

* |l.e., given a set of (possibly fractional)
examples, carry out MLE for m;:

fractional
count of x;
f_J;_\

m,; = argmaxﬁp(xi‘m) i) _ argmax iq(mj‘xi)log plx,|m)
m i=1 m i=1

= argmax iq(mj‘xi)log e_ﬁd(x"’m)
m i=1

= argmin iq(mj‘xi)d(xi,m)
m i=1



Another View of EM

* If we knew the m;, we could say how strongly
each x; belongs to each m,. (Easily!)

» |f we knew how strongly each x; belongs to
each m;, we could guess where the m; are.

(Easily!)



Another View of EM

* If we knew the m;, we could say how strongly
each x; belongs to each m,. (Easily!)

This Is the E step.

» |f we knew how strongly each x; belongs to
each m;, we could guess where the m; are.

(Easily!)
This Iis the M step.



The Model

* Two random variables: X and Y

* Each x;is observed (the data)

 Each Y, is hidden or latent

* -d(x, y) is a similarity (negative distance) feature
* [ is the weight of that feature

» The possible values of the y; (the possible values
for each Y.) are the model parameters. We know
there are K vectors, m,, ..., my.

(This model really only makes sense in a continuous
space where we can take weighted averages!)



In General ...

 EM can be applied to any probabilistic
model.

— But it's much easier to apply to some models
than to others!

* There’s always a “winner-take-all” variant.
— You should think of this as an approximation.



EM in General

* E step:

P (x l,y)
Ep

Vi,y, q(

xi)

* M step:

0" < argmaxzp yix)log p; (x.5)

Y pretend p(x y)

soft assignment
or voting

fully-observed
data MLE




Aside: EM = Gibbs Sampling

* Alternative view: we have two hidden
variables, © (the parameters) and Y.

 Randomized approach to inference: sample
each hidden variable in turn, given all the
others.

— Sample Y given X, 0. (E step: exact inference)
— Sample © given X, Y. (M step: take the mode)



Claims

 EM is trying to maximize the likelihood of the
data.

— The observed part: {x}
— The hidden part, Y, is marginalized over.

 EM converges to a local optimum.

— Which local optimum depends on the initial
parameters (or posterior).

— EM can take many iterations to converge.



Clustering Words

* Brown et al. (1992)
* Pereira et al. (1993)
« Schutze (1993)



Brown et al., 1992

Motivation: improved language modeling.
Class-based language model:

si_m...sl._l) = p(sl. ci)p(cl. ci_m...cl._l)

P(Si

Classes are hard clusters.
Greedy search algorithm ...



Brown et al., 1992

* Input: vocabulary of V words, K

1. Initialize with each word in its own class.
2. Fort=1toV -K:

1. Compute the average mutual information
between each class pair.

2. Merge the class pair that will result in the
smallest loss in average mutual information.

*Some implementation tricks required!



Average Mutual Information

* Likelihood of the data:

%2 log(P(Wi‘ci)P(Ci‘C i—l)) =E; [lOg(p (W\C)p (C‘C'))]

p(W|C)p(CIC')p(O)

=E_|log
’ p(C)

r(c|c)
p(C)

=E;|log

+ log(p(W ‘C)p(C))

p(C',C)

R ErE

+ log( p(W ))




Comparison

K-Means Brown et al., 1992
Hard classes * Hard classes
Distance feature « Bigram features
(similarity model) (bigram class model)
Fixed # classes K * #classes: V—=K
Winner-take-all EM * Greedy search based
(optimize “extreme” on MI (optimize
likelihood) likelihood)

Both can be seen as trying to optimize likelihood.




Pereira et al., 1993

*Warning: this is a very confusing paper because it introduces lots of new ideas.

Soft clustering of nouns based on the verbs that
take them as objects

The model: p(v.n) Ep p(vle)p(nle)

Like in K-Means, there | is a distance feature: itis
the KL divergence between two distributions:

d(n,c) = D(ﬁ(V‘n) H p(V‘c))
Unlike the other methods discussed so far, K is not

fixed. It starts at 1, and they gradually increase it
by splitting clusters.

To make this happen, they manipulate {3 ...



Deterministic Annealing and
Phase Transitions

Recall:

—/J’d(xl.,mj) e—/a’d(n,c)

almfx,) e dlcln)

When f is close to 0, every noun is in every cluster with
about the same strength.

As P increases, model commits more.

Can think of § as a Lagrange muiltiplier controlling the
entropy of the posterior!  r- EP(CN)[d(N,C)]—%H(p(C\N))



Deterministic Annealing and
Phase Transitions

Recall:

—/J’d(xl.,mj) ~fd(n,c)

o) e

q(mj ; q(c‘n) X e
When {3 is close to 0, every noun is in every cluster with

about the same strength.
As p increases, model commits more.
Can think of § as a Lagrange muiltiplier controlling the
entropy of the posterior!  r-& . [d(v.C)]-~H(p(cIN))
. ' B
Physical analogy: p = 1/temperature.

— At high temperatures, the system is equally likely to be in any state.
— As system cools (f gets large), system commits to one state.

— Goal of annealing in metalworking is to find a stable configuration
(low free energy).



Deterministic Annealing and
Phase Transitions

Recall:

—/J’d(xl.,mj) ~fd(n,c)

x.) x e q(c‘n) x e

l

q(m,

When {3 is close to 0, every noun is in every cluster with
about the same strength.

As p increases, model commits more

Can think of § as a Lagrange muiltiplier controlling the
entropy of the posterior! F=EP(CN)[d(N,C)]—%H(p(C\N))

Phase transitions are the effect of gradually
iIncreasing B.



DA Clustering

o Start out with two clusters: c¢ and its twin, c.t, and
set B to be close to zero.

* lteratively re-estimate the cluster centroids,
gradually increasing f3.

— Whenever a cluster ¢ and its twin c.t become
sufficiently distinct (in terms of distance from
each other), split c.t into a new cluster ¢’, and
give c and ¢’ new twins (slight perturbations).

Note: can extract a hierarchical clustering from this! How?
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Comparison

K-Means Brown et al., 1992 Pereira et al., 1993
Hard classes « Hard classes « Soft classes
Distance feature  « Bigram features + Distributional
(similarity (bigram class similarity feature
model) model)  f#classes: 1 — K
Fixed # classes - #classes: V— . DA/EM search
K K (optimize
Winner-take-all  Greedy search likelihood)

EM (optimize based on M
“extreme” (optimize
likelihood) likelihood)

All three can be seen as trying to optimize likelihood.




Schiitze (1993)

Map words into high-dimensional R vector of
coocurrence counts (-2, -1, +1, +2).

Singular value decomposition to reduce
dimensionality

Didn’t work well for ambiguous words; used a
neural network to do classification in context.

See paper for more details.



Next Time

 EM-based unsupervised learning with
models of discrete structures (sequences
and trees).



